首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current study combined P and N removal using organic flocculant chemicals and woodchip bioreactors in both freshwater and brackish water (7 ppm) recirculating aquaculture systems (RAS). The use of carbon (C) containing flocculant chemicals in the process was hypothesized to further stimulate C-demanding N removal (denitrification) in bioreactors. The trial of combined P and N removal consisted of four treatments: freshwater and brackish water RAS with and without the addition of supernatant from flocculation process to the woodchip reactor. Duplicate woodchip reactors were used per treatment and the trial was run for six weeks. 56% and 49% of P was removed from fresh and brackish sludge water, respectively. The nitrate-N (NO3-N) removal rate was improved in the treatment when supernatant from flocculation process was used together with RAS discharge water when compared against the control. In brackish water RAS, the improvement was more pronounced (from 6.6–16.5 g NO3-N m−3 d-1) than in freshwater RAS (from 5.1–6.5 NO3-N m−3 d-1). In the freshwater bioreactors using supernatant, N was largely discharged as a nitrite-N (NO2-N). High NO2-N concentrations in freshwater reactors allude to incomplete denitrification reactions taking place. The results suggest that the organic flocculants did provide an additional C source for denitrification, which improved the N-removal process. However, in freshwater RAS this might have been partly due to untargeted processes such as DNRA (dissimilatory nitrate reduction to ammonium), and/or insufficient denitrification reactions taking place (excessive NO2-N production).  相似文献   

2.
Intensive, recirculating aquaculture systems create concentrated wastes high in solid content. Geotextile has successfully dewatered aquaculture effluent; however, burlap, made from natural plant fiber, may provide similar filtering capabilities at a lower cost. The trial was designed as a 2 × 2 factorial to evaluate burlap bags and geotextile bags with or without polymer addition for dewatering Nile tilapia, Oreochromis niloticus, effluent from an intensive biofloc production system. There were no significant interactions (P > 0.05) between the main effects on the removal efficiency of total suspended solids (TSS) concentration. There were no significant differences (P > 0.05) in the main effect of textile; however, there were significant differences (P≤ 0.001) in the main effect of polymer on the removal efficiency of TSS concentration from effluent. Overall, TSS removal efficiency in textile‐only treatments was 81%, whereas textile treatments in combination with polymer removed 98%. Partial budget analysis indicated that the cost per kilogram of solids (dry weight) removed from untreated effluent was US$1.52, 1.51, 0.16, and 0.14 for the geotextile with polymer (GP), geotextile without polymer (GNP), burlap with polymer (BP), and burlap without polymer (BNP) treatments, respectively. The BP could provide an effective treatment process for removing TSS in discharged effluent.  相似文献   

3.
Recirculating aquaculture systems (RAS) are operated as outdoor or indoor systems. Due to the intensive mode of fish production in many of these systems, waste treatment within the recirculating loop as well as in the effluents of these systems is of primary concern. In outdoor RAS, such treatment is often achieved within the recirculating loop. In these systems, extractive organisms, such as phototrophic organisms and detritivores, are cultured in relatively large treatment compartments whereby a considerable part of the waste produced by the primary organisms is converted in biomass. In indoor systems, capture of solid waste and conversion of ammonia to nitrate by nitrification are usually the main treatment steps within the recirculating loop. Waste reduction (as opposed to capture and conversion) is accomplished in some freshwater and marine indoor RAS by incorporation of denitrification and sludge digestion. In many RAS, whether operated as indoor or outdoor systems, effluent is treated before final discharge. Such effluent treatment may comprise devices for sludge thickening, sludge digestion as well as those for inorganic phosphate and nitrogen removal. Whereas waste disposed from freshwater RAS may be treated in regional waste treatment facilities or may be used for agricultural purposes in the form of fertilizer or compost, treatment options for waste disposed from marine RAS are more limited. In the present review, estimations of waste production as well as methods for waste reduction in the recirculating loop and effluents of freshwater and marine RAS are presented. Emphasis is placed on those processes leading to waste reduction rather than those used for waste capture and conversion.  相似文献   

4.
《水生生物资源》1998,11(4):279-287
This paper describes both an experimental and a commercial-scale system for sludge dewatering and stabilisation. In the experimental system, back-wash water from rotating disk microsieves was settled in a conical sedimentation tank. This tank functioned well, commonly removing more than 75–80 % of the solids, at an overflow rate of 1.0–2.7 m·h−1. The hydraulic load was maintained low, so treatment efficiency was significantly positively influenced by inlet concentration and not inflow rate. Lime was added to the settled sludge. More than 99.9 % of the pathogenic viruses and bacteria studied were killed within 7 days at pH 12. In the commercial system, a newly developed combined effluent treatment and sludge processing system, was located in a large Norwegian salmon (Salmo salar) smolt farm. Four drum microsieves were used to separate particles from the primary effluent flow. The back-wash water, amounting to a maximum of 0.3 % of the 30–35 m3·min−1 primary flow, was dewatered using another drum microsieve. Dewatered back-wash water from this sieve was pumped to a sedimentation tank with a top surface area of 3.3 m2 and a volume of 5.5 m3. This system produced on average 0.7 L settled sludge containing ca. 10 % dry matter per kg of feed supplied. Sludge tapped from the bottom of the sedimentation tank was stabilised by mixing with lime. This system produced on average 0.7 L settled sludge containing ca. 10 % dry matter per kg of feed supplied. After stabilisation, the stored sludge was diluted with cattle manure and spread on agricultural land. The primary treated effluent was discharged into the receiving marine water body. The running costs of effluent and sludge treatment, including sieving, settling and stabilisation, amounted to US$ 0.056 per smolt produced, or about 5 % of the total production costs. In the recipient, no settled solids were detected on the seabed at the outlet point of the treated effluent.  相似文献   

5.
Recirculating aquaculture systems (RAS) discharge management limits the development of the aquaculture sector, because RAS do not automatically result in low nutrient emissions. Research has helped develop discharge management systems such as wetlands and woodchip bioreactors that have been adopted by Danish commercial model trout farms. To further develop the Danish concept, we have modelled and built a novel “zero-discharge” recirculating aquaculture system with an annual capacity of approximately 14 tonnes. The aim of this paper is to describe the entire concept and present the results from the start-up phase of the whole system. The concept includes the treatment of RAS effluent (overflow and sludge supernatant) using a hybrid solution of a woodchip bioreactor, constructed vertical wetland, and sand infiltration. Using this three-step process, the nitrate, phosphorus, and organic matter effluent are decreased to acceptable levels to reuse the water in the RAS process reducing the need for new raw water. In the first nine months of operation, a water treatment field was used as an end-of-pipe treatment to ensure the water was safe to recirculate for fish. During the winter, the water temperature dropped to 2.7 degrees in the sand filter, but the frost did not reach the water levels in any of the treatment processes. It therefore appears that a hybrid solution can operate sufficiently even in winter conditions. In the first year of operation, a woodchip bioreactor can remove 97 % of the nitrate, although the slow start-up of the RAS caused the bioreactor to be N-limited. On average, 79 % and 92 % of the inflow phosphate concentration was removed in the woodchip bioreactor and the entire hybrid treatment field respectively. The wetland and sand filter removed organic matter sufficiently (35 %), but because of the longer than designed actual water residence, it leached from the bioreactor more than was expected. Further experimentation is needed to identify the financial applicability and performance during higher feeding rates.  相似文献   

6.
Recirculating aquaculture systems (RAS) can emit total phosphorus (TP) concentrations in their discharge water, which exceed environmentally tolerated restrictions. A compact phosphorus (P) elimination module has been developed and its performance has been tested using the discharge water from a commercial scale freshwater RAS for pike perch (Sander lucioperca) production. To enable its widespread and easy use in practical conditions, the standard principle of chemical-physical phosphorus elimination was adapted to the conditions prevalent in RAS operations. The effect of different precipitants and flocculants in RAS discharge water was studied in laboratory trials. When it came to the TP-elimination performance and the environmental impact, the combination of iron(III) chloride and calcium hydroxide proved highly suitable as the precipitation and flocculation agents. Based on the results that were obtained, a commercial scale P-elimination module was designed. The module was equipped with a 500-L hopper-bottomed reaction tank, dosing units for the precipitation and flocculation agents and valves for the automatic discharge of sludge and cleared water. The TP-elimination potential in different operational modes and retention times was examined. The amounts of excess sludge and cleared water quality were evaluated. The designed 500 L P-elimination module works in automatic batch mode and enables operators to eliminate approx. 95% of the phosphorus emissions from the discharge water from a RAS for annual fish production of about 20 to 25 t. It was possible to achieve TP concentrations of below 1 mg L?1 in the module’s cleared water discharge.  相似文献   

7.
In recirculating aquaculture systems (RAS), the crucial step of eliminating toxic N compounds like ammonia and nitrite is mediated via nitrifying microorganisms and takes place in biofilters. In this study, analyses of microorganisms colonizing biocarriers of nine moving-bed biofilters of three different RAS operated with freshwater, brackish or marine process water uncovered site specific communities. Illumina-based amplicon sequencing of the V4-region of the 16S rRNA gene revealed a high microbial diversity with 1000–2500 species-level operational taxonomic units (OTUs) in all biofilters with the highest diversity in the brackish RAS. Proteobacteria, Bacteriodetes, Plantomycetes, Chloroflexi and Nitrospirae represented the most abundant phyla. 76 out of 674 known genera occurred in all nine biofilters and were defined as core-taxa, including nitrifying bacteria (Nitrosomonas and Nitrospira) as well as members of the (heterotrophic) genera Planctomyces, Blastopirellula, Nannocystis and Lewinella. Nitrifying communities composed of different, closely related and so far uncultured members of Nitrosomonas and Nitrospira were identified, strongly indicating that several potentially novel ammonia and nitrite oxidizing species are present in RAS biofilters. Relatives of known comammox Nitrospira were detected in the brackish biofilters, revealing 94–99 % identity of the 16S rRNA gene sequence to Ns. inopinata. Salinity tolerance tests with biocarriers derived from biofilters of the three distinct RAS showed an unexpected broad physiological flexibility with regard to salinity. Nitrification performance of freshwater nitrifiers was drastically reduced with increasing salinity and nearly completely inhibited at 15 PSU, while the brackish and marine nitrifiers showed a high resistance and maintained nitrification activity in a broad range of salt concentrations. This data can help to improve the nitrification process in RAS with changing salinity of the process water.  相似文献   

8.
Saline effluents from marine land-based aquaculture production can neither be disposed in common municipal wastewater treatment plants, nor disposed as landfill. Furthermore, stricter environmental regulations require the reduction of phosphorous and organic matter levels from marine environment discharges to minimize eutrophication. Chemical coagulation with FeCl3 and AlSO4 is commonly used for removing phosphorous and suspended solids in wastewater treatment. The capacity of these coagulants for creating particle aggregations depends on the characteristics and chemistry of the treated wastewater, such as the ionic strength or mixing conditions. Marine water has a higher ionic strength than fresh or brackish water, which may be beneficial when using chemical coagulants to treat the effluents from farms operated at high salinities. The following study compared the application of FeCl3 and AlSO4, to treat the two effluents discharged from a marine land-based recirculating aquaculture system (RAS) producing salmon (Salmo salar). The aim of the study was to determine; 1) in what effluent (sludge flow vs. exchange water overflow) at the end-of-pipe treatment the coagulant application is more efficient for the removal of PO43−-P, total suspended solids (TSS), total phosphorous (TP) and total chemical oxygen demand (TCOD); and 2) the optimal coagulant dose to apply and its associated chemical sludge production. The results show that more than 89 % removal of TCOD, TSS and TP is achieved when treating the sludge flow, arguably because the sludge flow contained the largest fraction of the target masses (P and organic matter) discharged from the system. Up to 80 % of TSS removal was achieved by simple sedimentation, and with the highest coagulant dose tested, up to 95 % of TSS could be removed from the effluent. To remove 90 % of PO43−-P, FeCl3 and AlSO4 need to be dosed at a molar ratio of 2.6:1 Fe:PO43−-P and 5.7:1 Al: PO43−-P, respectively. Dosing above 90 % removal efficiency did not significantly affect removal of PO43-P and TSS, but substantially increased the volume of chemical sludge produced. Finally, FeCl3 is proposed as a better overall alternative for P removal at the end-of-pipe treatment in marine land-based RAS.  相似文献   

9.
Intensive recirculating aquaculture systems (RAS) produce high volumes of biosolid waste. The high salinity of brackish/marine sludge limits its use in landfill sites and waste outflows and it is a source of pollution. A reduction in sludge mass would therefore minimize the potential environmental hazard and economic burden stemming from its disposal. The aims of the current study were: 1) to characterize brackish aquaculture sludge (BAS) from three RAS in order to test for potentially suitable treatments, and 2) to test the BAS's suitability for anaerobic digestion in an upflow anaerobic sludge blanket reactor (UASB). Brackish sludge from three intensive RAS was collected periodically and analyzed for a variety of physical and chemical parameters. The mean sludge electrical conductivity and pH values ranged from 4.0 to 8.6 mS cm− 1 and 7.0 to 7.7, respectively. A low sludge redox potential averaging − 80 mV and dissolved oxygen concentrations of less than 1 mg l− 1 indicated the existence of anaerobic conditions. Volatile solids comprised 56 to 76% of the dry weight and the sludge volume index ranged from 44 to 69 ml g − 1. High concentrations of total nitrogen and total carbon were also observed, resulting in a C:N ratio ranging between 8.1 and 10.3. Toxic and/or inhibitory compounds for methanogenesis such as nitrites, nitrates and sulfides were almost absent. Sludge BOD5 ranged from 10 to 30% dry weight. These data suggest that BAS may be used in anaerobic digestion and methanogenesis without pretreatment. This concept was tested by digesting aquaculture sludge in UASB reactors. Despite the high sulfate and phosphate concentrations in the BAS, these were found not to be inhibitory to methanogenesis. Up to 70% sludge-mass reduction and an average of 40% methane production were demonstrated.  相似文献   

10.
Recirculating aquaculture system (RAS) is being applied in many aquaculture industries as it provides an opportunity to produce fish in a contained system with minimal use of water. In proposed RAS-based farming of the American eel, 17β-estradiol (E2) is being investigated as an in-feed drug to feminize and increase growth of farmed eels. This creates potential for release of E2 and its metabolites from the eel RAS and information is needed to monitor and manage eel farm effluents to reduce impact on the environment. In the current study, the concentrations of E2 and its metabolites (i.e., estrone (E1) and estriol (E3)) were monitored from different compartments in the RAS and analyzed by liquid chromatography tandem mass spectrometry (LC–MS/MS). E2 levels ranged from 8 to 25 ng/L in the water recirculating within the RAS and declined to 2–6 ng/L in the weeks post-treatment. E1 levels were within similar ranges as E2, whereas E3 levels were below 2 ng/L throughout the study. The results were used to develop a computational model to describe the fate of E2 and its metabolites in the RAS, and to delineate the influences of metabolism and hydrodynamics for the removal of E2 by RAS processes. The rapid removal of uneaten feed and feces downstream of inventory tanks was found to be the most significant mechanism for the removal of 2–6% of the E2 added in feed daily, producing a concentrated effluent stream suitable for strategic treatment strategies. Greater than 94% of E2 added to the system with feed was either metabolized by the eels and/or bacteria in the biofilters of the RAS or was sufficiently bound to solids fractions in the solid samples to resist organic extraction and detection. Additionally, reducing daily water exchange from 23 to 7% of the system water inventory resulted in an increase of only 1 ng/L in E1 concentrations within the RAS system while a negligible change in the concentration of E2 was observed.  相似文献   

11.
Wastes contained in the microscreen backwash discharged from intensive recirculating aquaculture systems were removed and dewatered in simple geotextile bag filters. Three chemical coagulation aids (aluminum sulfate (alum), ferric chloride, and calcium hydroxide (hydrated lime)), were tested in combination with a long-chain polymer flocculation aid (HyChem CE 1950 at 25 mg/L) to determine the most cost effective and efficient treatment combination. Three different coagulants were tested to determine if coagulant choice impacts nutrient and carbonaceous biochemical oxygen demand (cBOD5) leaching into the filtrate and the final composition of the bag-captured biosolids at the end of each period. If nutrient leaching into the bag filtrate could be minimized through coagulant selection, then geotextile bags could provide a convenient and effective method to dewater waste biosolids and provide them in a form that fish farmers could readily transport, store, or send for disposal.Results from replicate geotextile bag filter tests indicate that when alum, ferric chloride, and hydrated lime (plus a polymer) were amended to a backwash flow, both suspended solids capture and solids thickening were improved; i.e., total suspended solids removal rates of 95.8, 95.1, and 96.0%, respectively, were achieved along with final dewatered filter cake percent solids concentrations of 22.1, 19.3, and 20.9%, respectively. Alum, ferric chloride, and hydrated lime (plus a polymer) amended geotextile bags were not as effective in chemical oxygen demand (COD) and cBOD5 removal, resulting in removal rates of 69.6, 67.2, and 35.3%, respectively, and 56.6, 9.3, and ?47.4%, respectively. Further, the use of lime as a coagulant resulted in filtrate COD and cBOD5 concentrations that exceeded inlet concentrations. Total nitrogen removal applying alum, ferric chloride, and lime were also less than effective, resulting in removal rates of 39.1, 46.7, and ?8.9%, respectively. Filtrate total nitrogen concentrations were primarily in the inorganic form (total ammonia nitrogen) suggesting mineralization of ammonia as solids were stored within geotextile bags under anaerobic conditions. Alum, ferric chloride, and lime amended bags were moderately efficient at total phosphorus removal, resulting in removal rates of 67.6, 47.0, and 77.3%, respectively. Alum was identified as the most cost effective chemical for coagulation, but hydrated lime was the most effective at dissolved phosphorus precipitation and removal.  相似文献   

12.
The objective of this study was to determine the solids separation efficiency of the four swirl separators and the drum filter within one of the water recirculation systems (RAS) of a salmon-smolt hatchery. Water flowrates and concentrations of total suspended solids (TSS) within the RAS were measured weekly over 5 weeks in 2004 and 4 weeks in 2005. During the study, the hydraulic retention time in the tanks was 2.8 h and the feed rate ranged between 0.16 and 0.84 kg/m3 of make-up water. The system volume replacement rate and the water flow recycle rate were respectively 21%/day and 96% in 2004, and 50%/day and 91% in 2005. A mathematical model was developed to determine the transient concentration of fine particles in the recirculation loop. By fitting the predictions of the model to the measured TSS concentrations, it was determined that about 15% of the waste generated within the RAS (assumed equal to 20% of daily feed rate) was removed by the system overflow water. Using this information and TSS data from the backwash water of the drum filter, it was calculated that the swirl separators and drum filter removed respectively 63% and 22% of the waste solids rejected by the fish.  相似文献   

13.
Sieving as an effluent treatment method for aquaculture   总被引:1,自引:0,他引:1  
A new device designed for sieving of fish farm effluent (trademark Triangel Filter TF 2400) was tested in order to prove if such an apparatus may be used instead of the swirl concentrator. The phosphorus reduction was estimated by water sampling and phosphorus budget and by measuring the phosphorus content in flushing water and in settled sludge.

Sieving is a promising and useful method to treat aquaculture effluent, especially in ‘high-tech’ systems (recirculation, warmed water facilities) where high effluent quality and the most effective removal of solids is needed.  相似文献   


14.
By keeping tropical shrimp, like Litopenaeus vannamei, in recirculating aquaculture systems (RAS), valuable food for human consumption can be produced sustainable. L. vannamei tolerates low salinities, and therefore, the systems can operate under brackish water conditions. The stabilization of the microbial community in RAS might be difficult under high organic loads, and therefore, water treatment measures like UV irradiation or ozone application are commonly used for bacterial reduction. To investigate the impact of these measures, the effects of UV irradiation and ozone application were studied in small-scale brackish water RAS with a salinity of 15‰ stocked with L. vannamei. UV reactors with 7 and 9 W were used, and by ozonizers with a power of 5–50 mg/hr, the redox potential in the water was adjusted to 350 mV. Ozone had a stabilizing effect on the microbial composition in the water and on biofilms of tank surfaces and shrimp carapaces, prevented an increase of nitrite and accelerated the degradation of nitrate in the water. UV irradiation led to changes in the microbial composition and was less effective in optimizing the chemical water quality. Thus, the use of ozone could be recommended for water treatment in brackish water RAS for shrimp.  相似文献   

15.
Abstract

We evaluate the profitability and technical efficiency of aquaculture in the Philippines. Farm‐level data are used to compare two production systems corresponding to the intensive monoculture of tilapia in freshwater ponds and the extensive polyculture of shrimps and fish in brackish water ponds. Both activities are very lucrative, with brackish water aquaculture achieving the higher level of profit per farm. Stochastic frontier production functions reveal that technical efficiency is low in brackish water aquaculture, with a mean of 53%, explained primarily by the operator's experience and by the frequency of his visits to the farm. In freshwater aquaculture, the farms achieve a mean efficiency level of 83%. The results suggest that the provision of extension services to brackish water fish farms might be a cost‐effective way of increasing production and productivity in that sector. By contrast, technological change will have to be the driving force of future productivity growth in freshwater aquaculture.  相似文献   

16.
Onsite research indicates that activated sludge membrane biological reactors (MBRs) are an effective waste treatment technology for aquaculture effluents. MBRs produce a filtered permeate that is nearly free of dissolved nutrients, organics, and solids; therefore, this technology could be well-suited for integration within the process control loop of recirculation aquaculture systems (RAS). A four-month study was carried out to evaluate the feasibility of incorporating single-vessel MBRs within freshwater RAS while culturing rainbow trout Oncorhynchus mykiss. Triplicate RAS with and without MBRs (controls) were evaluated; mRAS and cRAS, respectively. System backwash water of mRAS was processed and retained within MBRs which allowed increased water recycling, while cRAS utilized standard dilution rates to limit nitrate accumulation. On average, mRAS required six and a half times less makeup water. Mean daily water replacement of the RAS volume for mRAS and cRAS was 1.2 ± 0.4 and 7.8 ± 0.5%, respectively (P < 0.05). A range of water quality concentrations were significantly greater in mRAS including chloride, carbon dioxide, heterotrophic bacteria count, pH, nitrate-nitrogen, total ammonia-nitrogen, total phosphorous, and true color, as well as dissolved concentrations of calcium, copper, magnesium, and sulfur. Alkalinity and ultraviolet transmittance levels were significantly lower in mRAS. These culture environment differences did not affect rainbow trout growth, feed conversion, or survival (P > 0.05). In addition, concentrations of common off-flavor compounds (geosmin and 2-methylisoborneol) in water and fish flesh were not affected by MBR presence. Improvements for future MBR integration with RAS were realized including optimization of MBR permeate rates, increased RAS water exchange through the MBRs, and infrequent supplementation of a carbon source to enhance denitrification efficiency and alkalinity recovery. Overall, incorporating MBRs within RAS resulted in substantial water savings and was biologically feasible for rainbow trout production.  相似文献   

17.
Regardless of the degree of closure of a recirculation system, effluents are produced and replacement water is needed, which limits the possibility of locating a seawater production system away from the shoreline. At the Palavas Ifremer station, in the south of France, a High Rate Algal Pond (HRAP) was operated during several years to treat the effluent from a recirculating aquaculture system before reusing it. The effect of the HRAP-treated water on the recirculation system and on the fish was investigated and the optimal algae growing conditions were defined. The experiments were carried out in three rearing systems: one flow through, one recirculating and one recirculating with a HRAP. The water flow rate, temperature, pH and salinity conditions were similar in all systems.The effect of reusing the HRAP-treated water is very limited (1) on the functioning of the recirculation system and (2) on fish performance, but it allows a significant reduction of the dissolved inorganic nitrogen and phosphorus concentration in the rearing water. HRAP treatment reduced metal accumulation in muscle and liver of RAS fish, except for chromium and arsenic. All biomarkers presented no significant difference between systems, except for Superoxide Dismutase (SOD) and EROD, which showed a higher concentration in RAS and in both recirculating system respectively.  相似文献   

18.
Land-based Atlantic salmon, Salmo salar, grow-out facilities utilize depuration to remediate off-flavor. Water used in this process is either discharged or repurposed as supply water in recirculating aquaculture systems (RAS). Both approaches require an understanding of water quality and waste production for water treatment decisions and compliance with pollution discharge standards; however, these data were lacking. Therefore, a study was carried out to characterize these parameters. To begin, 311 salmon (5–6 kg) originally cultured in freshwater RAS were stocked at 100 kg/m3 in an 18 m3 depuration tank. Feed was withheld 1 day before transfer and throughout the 7-day study period. Hours after stocking, total suspended solids (TSS), total phosphorus (TP), and total ammonia nitrogen (TAN) levels spiked, and concentrations declined thereafter. Delta TSS and TP were negligible by the end of the trial; however, TAN plateaued, indicating that salmon began to catabolize somatic tissue in the absence of feeding. Geosmin and 2-methylisoboreol levels in water and fish were low throughout the study. This research indicates that residual waste production occurs while depurating Atlantic salmon. Procedural refinements and recommendations were gleaned including locality for introducing depuration system water within RAS and extension of the feed withholding period before depuration.  相似文献   

19.
Sludge Production and Management for Recirculating Aquacultural Systems   总被引:5,自引:0,他引:5  
Waste discharge from recirculating aquacultural systems is typically in the form of sludge composed of partially stabilized excreta, uneaten food particles, and bacterial growth. The amount of solids produced can be estimated using an equation presented in this paper. In a typical recirculating system, total suspended solids (TSS) is the major pollutant of the sludge produced. The production of TSS ranges from 10 to 30% of the feeding rate on a dry weight basis. The ratio of 5-d biochemical oxygen demand to total suspended solids (BODS/TSS) of the sludge ranges from 0.10 to 0.2, the total Kjeldahl nitrogen (TKN) content of the TSS ranges from 4 to 6%, and total phosphorus ranges from 0.2 to 2%.
The nature of the waste and the economics of the treatment processes dictate the disposal of aquacultural sludge. Effective clarification of aquacultural waste is critical in reducing sludge volume. Using lagoons for stabilization and storage is the most practical option. While direct disposal by land application seems feasible for rural areas with dry climates, additional stabilization/storage in a lagoon with eventual disposal through land application seems most feasible for a variety of conditions. The effluent produced from the sludge treatment processes can be used for irrigation or for direct discharge after further polishing (treatment).  相似文献   

20.
Current shrimp pond management practices generally result in elevated concentrations of nutrients, suspended solids, bacteria and phytoplankton compared with the influent water. Concerns about adverse environmental impacts caused by discharging pond effluent directly into adjacent waterways have prompted the search for cost‐effective methods of effluent treatment. One potential method of effluent treatment is the use of ponds or raceways stocked with plants or animals that act as natural biofilters by removing waste nutrients. In addition to improving effluent water quality prior to discharge, the use of natural biofilters provides a method for capturing otherwise wasted nutrients. This study examined the potential of the native oyster, Saccostrea commercialis (Iredale and Roughley) and macroalgae, Gracilaria edulis (Gmelin) Silva to improve effluent water quality from a commercial Penaeus japonicus (Bate) shrimp farm. A system of raceways was constructed to permit recirculation of the effluent through the oysters to maximize the filtration of bacteria, phytoplankton and total suspended solids. A series of experiments was conducted to test the ability of oysters and macroalgae to improve effluent water quality in a flow‐through system compared with a recirculating system. In the flow‐through system, oysters reduced the concentration of bacteria to 35% of the initial concentration, chlorophyll a to 39%, total particulates (2.28–35.2 µm) to 29%, total nitrogen to 66% and total phosphorus to 56%. Under the recirculating flow regime, the ability of the oysters to improve water quality was significantly enhanced. After four circuits, total bacterial numbers were reduced to 12%, chlorophyll a to 4%, and total suspended solids to 16%. Efforts to increase biofiltration by adding additional layers of oyster trays and macroalgae‐filled mesh bags resulted in fouling of the lower layers causing the death of oysters and senescence of macroalgae. Supplementary laboratory experiments were designed to examine the effects of high effluent concentrations of suspended particulates on the growth and condition of oysters and macroalgae. The results demonstrated that high concentrations of particulates inhibited growth and reduced the condition of oysters and macroalgae. Allowing the effluent to settle before biofiltration improved growth and reduced signs of stress in the oysters and macroalgae. A settling time of 6 h reduced particulates to a level that prevented fouling of the oysters and macroalgae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号