首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Self-amplified spontaneous emission in a free-electron laser has been proposed for the generation of very high brightness coherent x-rays. This process involves passing a high-energy, high-charge, short-pulse, low-energy-spread, and low-emittance electron beam through the periodic magnetic field of a long series of high-quality undulator magnets. The radiation produced grows exponentially in intensity until it reaches a saturation point. We report on the demonstration of self-amplified spontaneous emission gain, exponential growth, and saturation at visible (530 nanometers) and ultraviolet (385 nanometers) wavelengths. Good agreement between theory and simulation indicates that scaling to much shorter wavelengths may be possible. These results confirm the physics behind the self-amplified spontaneous emission process and forward the development of an operational x-ray free-electron laser.  相似文献   

2.
A quantum-cascade long-wavelength infrared laser based on superlattice active regions has been demonstrated. In this source, electrons injected by tunneling emit photons corresponding to the energy gap (minigap) between two superlattice conduction bands (minibands). A distinctive design feature is the high oscillator strength of the optical transition. Pulsed operation at a wavelength of about 8 micrometers with peak powers ranging from approximately 0.80 watt at 80 kelvin to 0.2 watt at 200 kelvin has been demonstrated in a superlattice with 1-nanometer-thick AlInAs barriers and 4.3-nanometer-thick GaInAs quantum wells grown by molecular beam epitaxy. These results demonstrate the potential of strongly coupled superlattices as infrared laser materials for high-power sources in which the wavelength can be tailored by design.  相似文献   

3.
Structure determination of proteins and other macromolecules has historically required the growth of high-quality crystals sufficiently large to diffract x-rays efficiently while withstanding radiation damage. We applied serial femtosecond crystallography (SFX) using an x-ray free-electron laser (XFEL) to obtain high-resolution structural information from microcrystals (less than 1 micrometer by 1 micrometer by 3 micrometers) of the well-characterized model protein lysozyme. The agreement with synchrotron data demonstrates the immediate relevance of SFX for analyzing the structure of the large group of difficult-to-crystallize molecules.  相似文献   

4.
Tissue welding is a potentially important biomedical application of laser technology. The structural alterations basic to this phenomenon were studied in experimental repair of lesions of the rat carotid artery and sciatic nerve. A modified neodymiumdoped yttrium-aluminum-garnet laser operating at a wavelength of 1.319 micrometers was used in conjunction with conventional suture techniques. Histological and fine-structural analysis revealed a homogenizing change in collagen with interdigitation of altered individual fibrils that appeared to be the structural basis of the welding effect.  相似文献   

5.
A semiconductor injection laser that differs in a fundamental way from diode lasers has been demonstrated. It is built out of quantum semiconductor structures that were grown by molecular beam epitaxy and designed by band structure engineering. Electrons streaming down a potential staircase sequentially emit photons at the steps. The steps consist of coupled quantum wells in which population inversion between discrete conduction band excited states is achieved by control of tunneling. A strong narrowing of the emission spectrum, above threshold, provides direct evidence of laser action at a wavelength of 4.2 micrometers with peak powers in excess of 8 milliwatts in pulsed operation. In quantum cascade lasers, the wavelength, entirely determined by quantum confinement, can be tailored from the mid-infrared to the submillimeter wave region in the same heterostructure material.  相似文献   

6.
We generated a coherently synthesized optical pulse from two independent mode-locked femtosecond lasers, providing a route to extend the coherent bandwidth available for ultrafast science. The two separate lasers (one centered at 760 nanometers wavelength, the other at 810 nanometers) are tightly synchronized and phase-locked. Coherence between the two lasers is demonstrated via spectral interferometry and second-order field cross-correlation. Measurements reveal a coherently synthesized pulse that has a temporally narrower second-order autocorrelation width and that exhibits a larger amplitude than the individual laser outputs. This work represents a new and flexible approach to the synthesis of coherent light.  相似文献   

7.
Interference between two freely expanding Bose-Einstein condensates has been observed. Two condensates separated by approximately 40 micrometers were created by evaporatively cooling sodium atoms in a double-well potential formed by magnetic and optical forces. High-contrast matter-wave interference fringes with a period of approximately 15 micrometers were observed after switching off the potential and letting the condensates expand for 40 milliseconds and overlap. This demonstrates that Bose condensed atoms are "laser-like"; that is, they are coherent and show long-range correlations. These results have direct implications for the atom laser and the Josephson effect for atoms.  相似文献   

8.
Phase-coherent matter-wave amplification was demonstrated using Bose- Einstein-condensed rubidium-87 atoms. A small seed matter wave was created with coherent optical Bragg diffraction. Amplification of this seed matter wave was achieved by using the initial condensate as a gain medium through the superradiance effect. The coherence properties of the amplified matter wave, studied with a matter-wave interferometer, were shown to be locked to those of the initial seed wave. The active matter-wave device demonstrated here has great potential in the fields of atom optics, atom lithography, and precision measurements.  相似文献   

9.
A cantilever resonant microbeam, laser diodes, and a photodiode have been fabricated on the surface of a gallium arsenide substrate. The microbeam is excited photothermally by light from a laser diode. The vibration is detected with a photodiode as the variation in light output caused by the difference in optical length between the microbeam and another laser diode. A high carrier-to-noise ratio (45 decibels) is achieved with a short (3 micrometers) external cavity length. Such a small distance allows a lensless system, which increases the ease of fabrication. This work could lead to applications in which photomicrodynamic systems are monolithically integrated on a gallium arsenide substrate with surface micromachining technology.  相似文献   

10.
Phase-matched harmonic conversion of visible laser light into soft x-rays was demonstrated. The recently developed technique of guided-wave frequency conversion was used to upshift light from 800 nanometers to the range from 17 to 32 nanometers. This process increased the coherent x-ray output by factors of 10(2) to 10(3) compared to the non-phase-matched case. This source uses a small-scale (sub-millijoule) high repetition-rate laser and will enable a wide variety of new experimental investigations in linear and nonlinear x-ray science.  相似文献   

11.
It appears that the two most sensitive infrared receptors known in the biological world are found in two widely different families of snakes, the pit vipers and the boas. After an infrared stimulus from a carbon dioxide laser, which has a monochromatic output at 10.6 micrometers, we find evoked potentials in boas with chronically implanted electrodes. Our data suggest that the receptors operate on a thermal principle.  相似文献   

12.
Coincidence counting techniques have been combined with time-of-flight mass spectrometry in the examination of surfaces for chemical microhomogeneity. A mathematical formalism was developed to describe the principles underlying this coincidence counting technique and was used to produce a quantitative method for handling the data obtained. This technique of testing for chemical homogeneity has been demonstrated with a sample that consists of a physical mixture of polystyrene and crystals of NaF which were tenths of micrometers in diameter. Ultimately this approach is expected to be useful for the routine testing of surfaces for chemical homogeneity at the level of tens of nanometers.  相似文献   

13.
We report on stimulated Raman scattering in an approximately 1-meter-long hollow-core photonic crystal fiber filled with hydrogen gas under pressure. Light was guided and confined in the 15-micrometer-diameter hollow core by a two-dimensional photonic bandgap. Using a pulsed laser source (pulse duration, 6 nanoseconds; wavelength, 532 nanometers), the threshold for Stokes (longer wavelength) generation was observed at pulse energies as low as 800 +/- 200 nanojoules, followed by a coherent anti-Stokes (shorter wavelength) generation threshold at 3.4 +/- 0.7 microjoules. The pump-to-Stokes conversion efficiency was 30 +/- 3% at a pulse energy of only 4.5 microjoules. These energies are almost two orders of magnitude lower than any other reported energy, moving gas-based nonlinear optics to previously inaccessible parameter regimes of high intensity and long interaction length.  相似文献   

14.
A laser method based upon carbon ion implantation and pulsed laser melting of copper has been used to produce continuous diamond thin film. Carbon ions were implanted with ion energies in the range of 60 to 120 keV, and doses of 1.0 x 10(18) to 2.0 x 10(18) ions cm(-2). The ion-implanted specimens were treated with nanosecond excimer laser pulses with the following parameters: energy density, 3.0 to 5.0 J cm(-2); wavelength, 0.308 microm; pulse width, 45 nanoseconds. The specimens were characterized with scanning electron microscopy (SEM), x-ray diffraction, Rutherford backscattering/ion channeling, Auger, and Raman spectroscopy. The macroscopic Raman spectra contained a strong peak at 1332 cm(-1) with full width at half maximum of 5 cm(-1), which is very close to the quality of the spectra obtained from single-crystal diamond. The selected area electron diffraction patterns and imaging confirmed the films to be defect-free single crystal over large areas of up to several square micrometers with no grain boundaries. Low voltage SEM imaging of surface features indicated the film to be continuous with presence of growth steps.  相似文献   

15.
A method combining laser ablation cluster formation and vapor-liquid-solid (VLS) growth was developed for the synthesis of semiconductor nanowires. In this process, laser ablation was used to prepare nanometer-diameter catalyst clusters that define the size of wires produced by VLS growth. This approach was used to prepare bulk quantities of uniform single-crystal silicon and germanium nanowires with diameters of 6 to 20 and 3 to 9 nanometers, respectively, and lengths ranging from 1 to 30 micrometers. Studies carried out with different conditions and catalyst materials confirmed the central details of the growth mechanism and suggest that well-established phase diagrams can be used to predict rationally catalyst materials and growth conditions for the preparation of nanowires.  相似文献   

16.
The 3 March 1987 Charon occultation by Pluto was observed in the infrared at 1.5, 1.7, 2.0, and 2.35 micrometers. Subtraction of fluxes measured between second and third contacts from measurements made before and after the event has yielded individual spectral signatures for each body at these wavelengths. Charon's surface appears depleted in methane relative to Pluto. Constancy of flux at 2.0 micrometers throughout the event shows that Charon is effectively black at this wavelength, which is centered on a very strong water absorption band. Thus, the measurements suggest the existence of water ice on Pluto's moon.  相似文献   

17.
Ablation of polymers and biological tissue by ultraviolet lasers   总被引:9,自引:0,他引:9  
When pulsed, ultraviolet laser radiation falls on the surface of an organic polymer or biological tissue, the material at the surface is spontaneously etched away to a depth of 0.1 to several micrometers. In the process, the depth of etching is controlled by the width of the pulse and the fluence of the laser, and there is no detectable thermal damage to the substrate. The material that is removed by etching consists of products ranging from atoms to small fragments of the polymer. They are ejected at supersonic velocities. This dry photoetching technique is useful in patterning polymer films. It is also under serious investigation in several areas in surgery.  相似文献   

18.
We demonstrate polarization mode selection in a two-dimensional (2D) photonic crystal laser by controlling the geometry of the unit cell structure. As the band diagram of the square-lattice photonic crystal is influenced by the unit cell structure, calculations reveal that changing the structure from a circular to an elliptical geometry should result in a strong modification of the electromagnetic field distributions at the band edges. Such a structural modification is expected to provide a mechanism for controlling the polarization modes of the emitted light. A square-lattice photonic crystal with the elliptical unit cell structure has been fabricated and integrated with a gain media. The observed coherent 2D lasing action with a single wavelength and controlled polarization is in good agreement with the predicted behavior.  相似文献   

19.
The dynamics of a fluid surface filled with high-amplitude ripples were studied with a technique (diffusing light photography) that resolves the height at all locations instantaneously. Even when nonlinearities are strong enough to generate a (Kolmogorov) cascade from long wavelength (where energy is input) to shorter wavelength, the resulting turbulent state contains large coherent spatial structures. The appearance of these structures in a thermal equilibrium state (with the same average energy) would be highly improbable.  相似文献   

20.
Absorption lines in the v, band of water vapor at 6.3 micrometers have been fully resolved by using a tunable semiconductor laser. Three attnospheric water vapor lines near 5.32 micrometers were studied in detail and found to have linle widths two to four times narrower than the width calculated by Benedict and Kaplan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号