首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objectives of this work were to compare the pharmacokinetics of erythromycin administered by the intramuscular (i.m.) and intravenous (i.v.) routes between nonlactating and lactating goats and to determine the passage of the drug from blood into milk. Six nonpregnant, nonlactating and six lactating goats received erythromycin by the i.m. (15 mg/kg) and the i.v. (10 mg/kg) routes of administration. Milk and blood samples were collected at predetermined times. Erythromycin concentrations were determined by microbiological assay. Results are reported as mean +/- SD. Comparison of the pharmacokinetic profiles between nonlactating and lactating animals after i.v. administration indicated that significant differences were found in the mean body clearance (8.38 +/- 1.45 vs. 3.77 +/- 0.83 mL/kg x h respectively), mean residence time (0.96 +/- 0.20 vs. 3.18 +/- 1.32 h respectively), area under curve from 0 to 12 h (AUC(0-12)) (1.22 +/- 0.22 vs. 2.76 +/- 0.58 microg x h/mL respectively) and elimination half-life (1.41 +/- 1.20 vs. 3.32 +/- 1.34 h); however, only AUC(0-12) showed significant differences after the i.m. administration. Passage of erythromycin in milk was high (peak milk concentration/peak serum concentration, 2.06 +/- 0.36 and AUC(0-12milk)/AUC(0-12serum),6.9 +/- 1.05 and 2.37 +/- 0.61 after i.v. and i.m. administrations respectively). We, therefore, conclude that lactation affects erythromycin pharmacokinetics in goats.  相似文献   

2.
The aim of this investigation was to examine the pharmacokinetics and mammary excretion of erythromycin administered to lactating ewes (n = 6) by the intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) routes at a dosage of 10 mg/kg. Blood and milk samples were collected at pre-determined times, and a microbiological assay method was used to measure erythromycin concentrations in serum and milk. The concentration-time data were analysed by compartmental and non-compartmental kinetic methods. The serum concentration-time data of erythromycin were fit to a two-compartment model after i.v. administration and a one-compartment model with first-order absorption after i.m. and s.c. administration. The elimination half-life (t(1/2beta)) was 4.502 +/- 1.487 h after i.v. administration, 4.874 +/- 0.296 h after i.m. administration and 6.536 +/- 0.151 h after s.c. administration. The clearance value (Cl tot) after i.v. dosing was 1.292 +/- 0.121 l/h/kg. After i.m. and s.c. administration, observed peak erthyromycin concentrations (Cmax) of 0.918 +/- 0.092 microg/ml and 0.787 +/- 0.010 microg/ml were achieved at 0.75 and 1.0 h (Tmax) respectively. The bioavailability obtained after i.m. and s.c. administration was 91.178 +/- 10.232% and 104.573 +/- 9.028% respectively. Erythromycin penetration from blood to milk was quick for all the routes of administration, and the high AUC milk/AUC serum (1.186, 1.057 and 1.108) and Cmax-milk/Cmax-serum ratios reached following i.v., i.m. and s.c. administration, respectively, indicated an extensive penetration of erythromycin into the milk.  相似文献   

3.
The purpose of this study was to investigate the pharmacokinetics of ceftriaxone after single intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) doses in healthy dogs. Six mongrel dogs received ceftriaxone (50 mg/kg) by each route in a three-way crossover design. Blood samples were collected in predetermined times after drug administration. Results are reported as mean +/- standard deviation (SD). Total body clearance (Cl(t)) and apparent volume of distribution (V(z)) for the i.v. route were 3.61 +/- 0.78 and 0.217 +/- 0.03 mL/kg, respectively. Terminal half-life harmonic mean (t(1/2 lambda)) was 0.88; 1.17 and 01.73 h for the i.v., i.m and s.c. routes, respectively. Mean peak serum concentration (C(max)) was 115.10 +/- 16.96 and 69.28 +/- 14.55 microg/mL for the i.m and s.c. routes, respectively. Time to reach C(max) (t(max)) was 0.54 +/- 0.24 and 1.29 +/- 00.64 h for the i.m and s.c. routes, respectively. Mean absorption time (MAT) was 1.02 +/- 0.64 and 2.23 +/- 00.73 h for the i.m and s.c. routes, respectively. Bioavailability was 102 +/- 27 and 106 +/- 14% for the i.m and s.c. routes, respectively. Statistically significant differences were determined in C(max), t(max), MAT and t(1/2 lambda) of s.c. administered ceftriaxone when compared with the i.v and i.m. routes. These findings suggest that once or twice s.c. or i.m. daily administered ceftriaxone should be adequate to treat most susceptible infections in dogs.  相似文献   

4.
The objective of this study was to evaluate the pharmacokinetic profile of enrofloxacin and its active metabolite, ciprofloxacin, in Korean catfish after intravenous and oral administrations. Enrofloxacin was administered to Korean catfish by a single intravenous and oral administrations at the dose of 10 mg/kg body weight. The plasma concentrations from intravenous and oral administrations of enrofloxacin were determined by LC/MS. Pharmacokinetic parameters from both routes were described to have a two-compartmental model. After intravenous and oral administrations of enrofloxacin, the elimination half-lives (t(1/2,beta)), area under the drug concentration-time curves (AUC), oral bioavailability (F) were 17.44 +/- 4.66 h and 34.13 +/- 11.50 h, 48.1 +/- 15.7 microgxh/mL and 27.3 +/- 12.4 microgxh/mL, and 64.59 +/- 4.58% respectively. The 3.44 +/- 0.81 h maximum concentration (C(max)) of 1.2 +/- 0.2 microg/mL. Ciprofloxacin, an active metabolite of enrofloxacin, was detected at all the determined time-points from 0.25 to 72 h, with the C(max) of 0.17 +/- 0.08 microg/mL for intravenous dose. After oral administration, ciprofloxacin was detected at all the time-points except 0.25 h, with the C(max) of 0.03 +/- 0.01 microg/mL at 6.67 +/- 2.31 h. Ciprofloxacin was eliminated with terminal half-life t(1/2,beta) of 52.08 +/- 17.34 h for intravenous administration and 52.43 +/- 22.37 h for oral administration.  相似文献   

5.
The purpose of this study was to investigate the plasma disposition kinetics of ceftriaxone in female camels (n=5) following a single intravenous (i.v.) bolus or intramuscular (i.m.) injections at a dosage of 10mg kg(-1) body weight in all animals. A crossover design was carried out in two phases separated by 15 days. Jugular blood samples were collected serially for 48h and the plasma was analysed by high-performance liquid chromatography (HPLC). Following single i.v. injections the plasma concentration time curves of ceftriaxone were best fitted to a two-compartment model. The drug was rapidly distributed with half-life of distribution t(1/2alpha) of 0.24+/-0.01h and moderately eliminated with elimination rate constant and elimination half-life of 0.27+/-0.13h(-1) and 2.57+/-0.52h, respectively. The volume of distribution at steady state (V(dss)) was 0.32+/-0.01lkg(-1) and the total body clearance (Cl(tot)) was 0.11+/-0.01lkg(-1)h(-1), respectively. Following i.m. administration, the mean T(max), C(max), t(1/2el) and AUC values for plasma data were 1.03+/-0.23h, 21.54+/-2.61microg ml(-1), 1.76+/-0.03h and 85.82+/-11.21microg ml(-1)h(-1), respectively. The i.m. bioavailability was 93.42+/-21.4% and the binding percentage of ceftriaxone to plasma protein was moderate, ranging from 33% to 42% with an average of 34.5%.  相似文献   

6.
The present study was planned to investigate the plasma disposition kinetics and the pattern of moxifloxacin elimination in the milk of lactating ewes (n=6) following a single intravenous (IV) bolus or intramuscular (IM) injections at a dosage of 5 mg/kg in all animals. A crossover study was carried out in two phases separated by 21 days. Plasma and milk samples were collected serially for 72 h and moxifloxacin concentrations were assayed using high performance liquid chromatography with fluorescence detection. A two-compartment open model best described the decrease of moxifloxacin concentration in the plasma after IV injection. The disposition after IM administration moxifloxacin was best described by a one-compartment model. Following IV administration, the distribution half-life (t(1/2alpha)) was 0.22+/-0.02 h. The elimination half-life was 1.77+/-0.23 h. The volume of distribution at steady state (V(dss)) was 0.84+/-0.12L/kg, the total body clearance (Cl(tot)) was 0.34+/-0.04 L/h/kg and the area under the curve (AUC) was 14.74+/-2.16 microg h/mL. Following IM administration, the mean T(max), C(max), t(1/2el) and AUC values for plasma data were 1.45+/-0.02 h, 2.21+/-0.27 microg/mL, 2.68+/-0.19 h and 14.21+/-2.35 microg h/mL. The IM bioavailability was 96.35+/-17.23% and the in vitro protein binding of moxifloxacin ranged from 32-37%. Penetration of moxifloxacin from the blood into milk was rapid and extensive, and the moxifloxacin concentrations in milk exceeded those in plasma from 1h after administration. The kinetic values AUC(milk)/AUC(plasma) and C(maxmilk)/C(maxplasma) ratios indicated a wide penetration of moxifloxacin from the bloodstream to the mammary gland. The in vitro minimum inhibitory concentration (MIC) of moxifloxacin for Mannheimia haemolytica was found to be 0.035 microg/mL.  相似文献   

7.
The pharmacokinetic properties of ceftriaxone were investigated in 10 goats following a single intravenous (i.v.) and intramuscular (i.m.) administration of 20 mg kg(-1) body weight. After i.v. injection, ceftriaxone serum concentration-time curves were characteristic of a two-compartment open model. The distribution and elimination half-lives (t(1/2alpha), t(1/2beta)) were 0.12 and 1.44 h respectively. Following i.m. injection, peak serum concentration (C(max)) of 23.6 microg ml(-1) was attained at 0.70 h. The absorption and elimination half-lives (t(1/2ab), t(1/2el)) were 0.138 and 1.65 h respectively. The systemic bioavailability of the i.m. administration (F %) was 85%. Following i.v. and i.m. administration, the drug was excreted in high concentrations in urine for 24 h post-administration. The drug was detected at low concentrations in milk of lactating goats. A recommended dosage of 20 mg kg(-1) injected i.m. every 12 h could be expected to provide a therapeutic serum concentration exceeding the minimal inhibitory concentrations for different susceptible pathogens.  相似文献   

8.
A study on bioavailability and pharmacokinetics of florfenicol was conducted in 20 crossbred healthy sheep following a single intravenous (i.v.) and intramuscular (i.m.) doses of 20 and 30 mg/kg body weight (b.w.). Florfenicol concentrations in serum were determined by a validated high-performance liquid chromatography method with UV detection at a wavelength of 223 nm in which serum samples were spiked with chloramphenicol as internal standard. Serum concentration-time data after i.v. administration were best described by a three-compartment open model with values for the distribution half-lives (T(1/2alpha)) 1.51 +/- 0.06 and 1.59 +/- 0.10 h, elimination half-lives (T(1/2beta)) 18.83 +/- 6.76 and 18.71 +/- 1.85 h, total body clearance (Cl(B)) 0.26 +/- 0.03 and 0.25 +/- 0.01 L/kg/h, volume of distribution at steady-state (V(d(ss))) 1.86 +/- 0.11 and 1.71 +/- 0.20 L/kg, area under curve (AUC) 76.31 +/- 9.17 and 119.21 +/- 2.05 microg.h/mL after i.v. injections of 20 and 30 mg/kg b.w. respectively. Serum concentration-time data after i.m. administration were adequately described by a one-compartment open model. The pharmacokinetic parameters were distribution half-lives (T(1/2k(a) )) 0.27 +/- 0.03 and 0.25 +/- 0.09 h, elimination half-lives (T(1/2k(e) )) 10.34 +/- 1.11 and 9.57 +/- 2.84 h, maximum concentrations (C(max)) 4.13 +/- 0.29 and 7.04 +/- 1.61 microg/mL, area under curve (AUC) 67.95 +/- 9.61 and 101.95 +/- 8.92 microg.h/mL, bioavailability (F) 89.04% and 85.52% after i.m. injections of 20 and 30 mg/kg b.w. respectively.  相似文献   

9.
Pharmacokinetic parameters of florfenicol were determined in 10 adult sheep (five wethers and five ewes) after a single 40 mg/kg intravenous (i.v.) dose, and three daily subcutaneous (s.c.) doses of 40 mg/kg of a commercial preparation (Nuflor((R))). The concentration of florfenicol in serum samples was assayed using a proprietary HPLC assay method, and pharmacokinetic parameters derived for individual animal data by each route using compartmental and noncompartmental approaches. Two animals (one male and one female) were excluded due to observed i.v. dosing problems, and a biexponential model was found to fit the i.v. data well for six of the other eight animals. Data from two males showed prolonged low concentrations of florfenicol in serum and were better fit by a three-compartment model. The mean +/- SD for the half-lives of the distribution and elimination phases for the six sheep best fit with a two-compartment model were 0.069 +/- 0.018 and 1.01 +/- 0.09 h respectively, and for the V(d(ss)) and clearances were 0.503 +/- 0.035 L/kg and 366 +/- 53 mL/h/kg respectively. The data collected during the s.c. multiple dose study were analyzed using noncompartmental methods only. The bioavailability (F%) after s.c. dosing was calculated in three ways to compare estimation methods as steady-state had not been reached and single dose s.c. data were not obtained past 24 h. Using the AUC(0--24) and AUC(0--> infinity ) from the first dose, the F% values averaged 27 and 40% respectively. Using the AUC(0--> infinity ) for all doses, the F% was 65%. Calculations of the mean time during which the serum concentration exceeded 0.5 and 1.0 microg/mL were 105 +/- 3.9 and 74.7 +/- 12.2 h respectively.  相似文献   

10.
The pharmacokinetics and pharmacodynamics of A77 1726 and leflunomide after intravenous (i.v.) and oral (p.o.) administration were evaluated in adult cats. Three treatments were administered: a single i.v. dose of A77 1726 (4 mg/kg), a single oral dose of leflunomide (4 mg/kg), and multiple oral doses of leflunomide (2 mg/kg). Mean pharmacokinetic parameter values after a single i.v. dose of A77 1726 were distribution (A) and elimination (B) intercepts (15.2 μg/mL and 34.5 μg/mL, respectively), distribution and elimination half-lives (1.5 and 71.8 h, respectively), area under the curve (AUC(0 → ∞); 3723 μg*h/mL), mean residence time (MRT; 93 h), clearance (Cl(obs); 1.1 mL/kg/h), and volume of distribution at steady state (Vd(ss); 97 mL/kg). Mean pharmacokinetic parameter values after a single oral dose of leflunomide were absorption and elimination rate constants (0.3 1/h and 0.01 1/h, respectively), absorption and elimination half-lives (2.3 and 59.1 h, respectively), AUC(0 → ∞) (3966 μg*h/mL), and maximum observed plasma concentration (C(max); 38 μg/mL). The bioavailability after a single oral dose of leflunomide was 100%. The mean ± SD A77 1726 concentration that inhibited 50% lymphocytes (EC(50) ) was 16 ± 13.5 μg/mL. The mean ± SD maximum A77 1726 concentration (EC(max)) was 61.0 ± 23.9 μg/mL.  相似文献   

11.
The pharmacokinetics (PK) of azithromycin after i.v. and i.m. injection at a single dosage of 20 mg/kg bodyweight was studied in sheep. Blood samples were collected from the jugular vein until 120 h after dosing for both routes. Plasma concentrations of azithromycin were determined by bioassay. The plasma concentration-time data of azithromycin best fitted a three-compartment model after i.v. administration and a two-compartment model with first-order absorption after i.m. administration. The elimination half-life (t(1/2lambdaz)) was 47.70 +/- 7.49 h after i.v. administration and 61.29 +/- 13.86 h after i.m. administration. Clearance value after i.v. dosing was 0.52 +/- 0.08 L/kg.h. After i.m. administration a peak azithromycin concentration (C(max)) of 1.26 +/- 0.19 mg/L was achieved at 1.24 +/- 0.31 h (t(max)). Area under the curve (AUC) were 38.85 +/- 5.83 mg.h/L and 36.03 +/- 1.52 mg.h/L after i.v. and i.m. administration respectively. Bioavailability obtained after i.m. administration was 94.08 +/- 11.56%. The high tolerability of this i.m. preparation and the favourable PK behaviour such as the long half-life and high bioavailability make azithromycin likely to be effective in sheep.  相似文献   

12.
Enrofloxacin pharmacokinetics were studied in European cuttlefish, Sepia officinalis, after a single 5 mg/kg i.v. injection or a 2.5 mg/L 5 h bath. A pilot study with two animals was also performed following a 10 mg/kg p.o. administration. The concentration of enrofloxacin in hemolymph was assayed using high-performance liquid chromatography (HPLC) and pharmacokinetic parameters were derived from compartmental methods. In the i.v. study, the terminal half-life (t(1/2)), apparent volume of distribution, and systemic clearance were respectively 1.81 h, 385 mL/kg, and 4.71 mL/min/kg. Following bath administration the t(1/2), peak hemolymph concentration (C(max)), and area under the curve to infinity (AUC(0-infinity)) were 1.01 h, 0.5 +/- 0.12 mug/mL, and 0.98 microg.h/mL, respectively. After oral administration, the t(1/2), C(max), and AUC(0-infinity) were 1.01 h, 10.95 microg/mL, 26.71 mug.h/mL, respectively. The active metabolite of enrofloxacin, ciprofloxacin, was not detected in any samples tested. The hemolymph concentration was still above minimum inhibitory concentration (MIC) values for shrimp and fish bacterial isolates at 6 h after i.v. administration, therefore, a dose of 5 mg/kg i.v. every 8-12 h is suggested for additional studies of efficacy. The C(max) value for the water bath was lower than for the i.v. study, but a bath of 2.5 mg/L for 5 h once to twice daily is suggested for additional studies to test efficacy against highly susceptible organisms. Although only two animals were used for the oral study, a dose of 10 mg/kg produced hemolymph concentrations of enrofloxacin that were in a range consistent with therapeutic efficacy in other species.  相似文献   

13.
Ceftiofur, a third generation cephalosporin, demonstrates in vitro efficacy against microorganisms isolated from septicemic neonatal foals. This pharmacokinetic study evaluated the intravenous and subcutaneous administration of ceftiofur sodium (5 mg/kg body weight; n = 6 per group) and subcutaneous administration of ceftiofur crystalline free acid (6.6 mg/kg body weight; n = 6) in healthy foals. Plasma ceftiofur- and desfuroylceftiofur-related metabolite concentrations were measured using high performance liquid chromatography following drug administration. Mean (±SD) noncompartmental pharmacokinetic parameters for i.v. and s.c. ceftiofur sodium were: AUC(0→∝) (86.4 ± 8.5 and 91 ± 22 h·μg/mL for i.v. and s.c., respectively), terminal elimination half-life (5.82 ± 1.00 and 5.55 ± 0.81 h for i.v. and s.c., respectively), C(max(obs)) (13 ± 1.9 μg/mL s.c.), T(max(obs)) (0.75 ± 0.4 h for s.c.). Mean (± SD) noncompartmental pharmacokinetic parameters for s.c. ceftiofur crystalline free acid were: AUC(0→∝) (139.53 ± 22.63 h·μg/mL), terminal elimination half-life (39.7 ± 14.7), C(max(obs)) (2.52 ± 0.35 μg/mL) and t(max(obs)) (11.33 ± 1.63 h). No adverse effects attributed to drug administration were observed in any foal. Ceftiofur- and desfuroylceftiofur-related metabolites reached sufficient plasma concentrations to effectively treat common bacterial pathogens isolated from septicemic foals.  相似文献   

14.
The pharmacokinetics of enrofloxacin (EFL) and its active metabolite ciprofloxacin (CIP) was investigated in 7-8 month old turkeys (6 birds per sex). EFL was administered intravenously (i.v.) and orally (p.o.) at a dose 10 mg kg(-1) body weight. Blood was taken prior to and at 0.17, 0.33, 0.5, 1, 2, 3, 4, 6, 8, 10 and 24 h following drug administration. The concentrations of EFL and CIP in blood serum were determined by high-performance liquid chromatography (HPLC). Serum concentrations versus time were analysed by a noncompartmental analysis. The elimination half-live and the mean residence time of EFL after i.v. injection for the serum were after oral administration 6.64+/-0.90 h, 8.96+/-1.18 h and 6.92+/-0.97 h, 11.91+/-1.87 h, respectively. After single p.o. administration, EFL was absorbed slowly (MAT=2.76+/-0.48 h) with time to reach maximum serum concentrations of 6.33+/-2.54 h. Maximum serum concentrations was 1.23+/-0.30 microg mL(-1). Oral bioavailability for for EFL after oral administration was found to be 69.20+/-1.49%. The ratios C(max)/MIC and AUC(0 --> 24)/MIC were respectively from 161.23+/-5.9 h to 12.90+/-0.5 h for the pharmacodynamic predictor C(max)/MIC, and from 2153.44+/-66.6 h to 137.82+/-4.27 h for AUC(0 --> 24)/MIC, for the different clinically significant microorganisms, whose values for MIC varies from 0.008 microg L(-1) to 0.125 microg mL(-1).  相似文献   

15.
A 20% solution of apramycin was administered intravenously (j.v.) and intramuscularly (i.m.) to lactating cows with clinically normal and acutely inflamed udders, to lactating ewes with normal or subclinically infected, inflamed udders and i.v. to lactating goats with normal udders. The i.v. disposition kinetics of apramycin was very similar in cows, ewes and goats. The elimination half-life was approximately 2 h and the steady-state volume of distribution was 1.26–1.45 L/kg. The absorption rate of the drug from the i.m. injection site was rapid, the i.m. bioavailability was 60–70% and the mean elimination half-life was 265 min in cows and 145.5 min in ewes. The binding percentage of apramycin to serum protein was low (< 22.5%). Concentrations of apramycin in milk produced by clinically normal mammary glands of cows, ewes and goats were consistently lower than in serum; the kinetic value AUC milk/ AUC serum was < 0.32. Drug penetration into the milk from the acutely inflamed quarters of cows was extensive; mastitis milk C max values were more than tenfold greater than the C max in normal milk. On the other hand, the drug had limited access to the milk produced by subclinically infected inflamed half-udders of ewes.  相似文献   

16.
The pharmacokinetics of cefepime were studied following i.v. and i.m. administration of 20 mg/kg in 10 ewes. Following i.v. administration of a single dose, the plasma concentration-time curves of cefepime were best fitted using a two-compartment open model. The elimination half-life (t(1/2beta)) was 1.76 +/- 0.07 h, volume of distribution at steady-state [V(d(ss))] was 0.32 +/- 0.01 L/kg and total body clearance (Cl(B)) was 2.37 +/- 0.05 mL/min.kg. Following i.m. administration, the drug was rapidly absorbed with an absorption half-life (t(1/2ab)) of 0.49 +/- 0.05 h, maximum plasma concentration (Cmax) of 31.9 +/- 1.5 mug/mL was attained at (tmax) 1.1 +/- 0.2 h and the drug was eliminated with an elimination half-life (t(1/2el)) of 2.06 +/- 0.11 h. The systemic bioavailability (F) after i.m. administration of cefepime was 86.8 +/- 7.5%. The extent of plasma protein binding measured in vitro was 14.8 +/- 0.54%. The drug was detected in urine for 36 h postadministration by both routes.  相似文献   

17.
The aim of this work was to determine the pharmacokinetics of intravenous (i.v.) and intramuscular (i.m.) ceftazidime administered to lactating (LTG; n=6) and non-lactating (NLTG; n=6) healthy Creole goats in 2 trials (T1 and T2). During T1 and T2, goats randomly received a single dose of i.m. or i.v. ceftazidime (10 mg/kg). Serum concentration of iv ceftazidime in NLTG and LTG goats is best described by 2 and 3 compartment models, respectively. The pharmacokinetic parameters of iv and im ceftazidime administered to LTG and NLTG showed statistically significant differences (P < 0.05) in the constants (lamda(z), T1 vs. T2 [i.v.] 0.5 +/- 0.1 vs. 0.3 +/- 0.1/h; T1 vs. T2 [i.m.] 0.5 +/- 0.2 vs. 0.3 +/- 0.1/h) and in the mean times (t(1/2), T1 vs. T2 [i.v.] 1.6 +/- 0.3 vs. 2.3 +/- 0.6 h; T1 vs. T2 [i.m.] 1.6 +/- 0.7 vs. 2.6 +/- 0.9 h) of elimination. The bioavailability of ceftazidime in LTG and NLTG was 113.0 +/- 17.8 and 96.0 +/- 18.0%, respectively. Ceftazidime concentration in milk at 2 h was: i.v. = 1.9 +/- 0.2 and i.m. = 2.4 +/- 0.5 microg/ml; the penetration in milk was i.v. = 18.3 +/- 13.5 and im = 14.3 +/- 10.6%. Ninety-six hours after i.v. and i.m. administration, residues of the drug were not found in milk. In conclusion, ceftazidime, when administered to goats, showed high concentration times in serum, good penetration into milk and a bioavailability that makes it suitable to be used by the i.m. route.  相似文献   

18.
OBJECTIVE: To determine pharmacokinetics of buprenorphine in dogs after i.v. administration. ANIMALS: 6 healthy adult dogs. PROCEDURES: 6 dogs received buprenorphine at 0.015 mg/kg, i.v. Blood samples were collected at time 0 prior to drug administration and at 2, 5, 10, 15, 20, 30, 40, 60, 90, 120, 180, 240, 360, 540, 720, 1,080, and 1,440 minutes after drug administration. Serum buprenorphine concentrations were determined by use of double-antibody radioimmunoassay. Data were subjected to noncompartmental analysis with area under the time-concentration curve to infinity (AUC) and area under the first moment curve calculated to infinity by use of a log-linear trapezoidal model. Other kinetic variables included terminal rate constant (k(el)) and elimination half-life (t(1/2)), plasma clearance (Cl), volume of distribution at steady state (Vd(ss)), and mean residence time (MRT). Time to maximal concentration (T(max)) and maximal serum concentration (C(max)) were measured. RESULTS: Median (range) values for T(max) and MRT were 2 minutes (2 to 5 minutes) and 264 minutes (199 to 600 minutes), respectively. Harmonic mean and pseudo SD for t(1/2) were 270+/-130 minutes; mean +/- SD values for remaining pharmacokinetic variables were as follows: C(max), 14+/-2.6 ng/mL; AUC, 3,082+/-1,047 ng x min/mL; Vd(ss), 1.59+/-0.285 L/kg; Cl, 5.4+/-1.9 mL/min/kg; and, k(el), 0.0026+/-0.0,012. CONCLUSIONS AND CLINICAL RELEVANCE: Pharmacokinetic variables of buprenorphine reported here differed from those previously reported for dogs. Wide variations in individual t(1/2) values suggested that dosing intervals be based on assessment of pain status rather than prescribed dosing intervals.  相似文献   

19.
The pharmacokinetic properties of difloxacin following intravenous (i.v.) and intramuscular (i.m.) administration in goats were investigated. Difloxacin was administered in a single dose of 5 mg/kg body weight for both routes and was assayed in biological fluids (serum and urine) to determine its concentrations, kinetic behaviour and systemic availability. Following a single i.v. injection, the serum difloxacin level was best approximated to follow a two-compartment open model using weighted non-linear regression analysis. The elimination half-life (t1/2 beta) was 6.3 +/- 0.11 h. The volume of distribution at steady-state (Vdss) was 1.1 +/- 0.012 L/kg and the total body clearance (Cltot) was 0.13 +/- 0.001 L/kg/h. Following a single i.m. administration, difloxacin was rapidly absorbed and the mean peak serum concentration (4.1 +/- 0.23 micrograms/ml) was achieved 1 h post administration. The extent of serum protein binding of difloxacin in goats was 13.79 +/- 1.02% and the systemic availability was 95.4 +/- 1.17%. Following i.m. injection of difloxacin at a dose rate of 5 mg/kg b.wt for 5 consecutive days, the drug could not be detected in serum and urine at 4th day from the last injection.  相似文献   

20.
Pharmacokinetics of mequindox and one of its major metabolites (M) was determined in chickens after intravenous (i.v.), intramuscular (i.m.) and oral administration of mequindox at a single dose of 10 (i.v. and i.m.) or 20 mg/kg b.w. (oral). Plasma concentration profiles were analyzed by a non-compartmental pharmacokinetic method. Following i.v., i.m. and oral administration, the areas under the plasma concentration-time curve (AUC(0-∞)) were 0.71±0.15, 0.67±0.21, 0.25±0.10 μg h/mL (mequindox) and 37.24±7.98, 36.40±9.16, 86.39±16.01 μg h/mL (M), respectively. The terminal elimination half-lives (t(1/2λz)) were determined to be 0.15±0.06, 0.21±0.09, 0.49±0.23 h (mequindox) and 5.36±0.86, 5.39±0.52, 5.22±0.35 h (M), respectively. The bioavailabilities (F) of mequindox were 89.4% and 16.6% for i.m. and oral administration. Steady-state distribution volume (V(ss)) of 1.20±0.34 L/kg and total body clearance (Cl(B)) of 13.57±2.16 L/kg h were determined for mequindox after i.v. dosing. After single i.m. and oral administration, peak plasma concentrations (C(max)) of 3.04±1.32, 0.36±0.13 μg/mL (mequindox) and 3.81±0.92, 5.99±1.16 μg/mL (M) were observed at t(max) of 0.08±0.02, 0.32±0.12 h (mequindox) and 0.66±0.19, 6.67±1.03 h (M), respectively. The results showed that mequindox was rapidly absorbed after i.m. or p.o. administration and most of mequindox was transformed to metabolites in chickens, with much higher C(max)s and AUCs of metabolite (M) than those of mequindox in plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号