首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Twenty first century has witnessed remarkable achievements in green technology in material science through the development of biocomposites. Oil palm fiber (OPF) extracted from the empty fruit bunches is proven as a good raw material for biocomposites. The cellulose content of OPF is in the range of 43%–65% and lignin content is in the range of 13%–25%. A compilation of the morphology, chemical constituents and properties of OPF as reported by various researchers are collected and presented in this paper. The suitability of OPF in various polymeric matrices such as natural rubber, polypropylene, polyvinyl chloride, phenol formaldehyde, polyurethane, epoxy, polyester, etc. to form biocomposites as reported by various researchers in the recent past is compiled. The properties of these composites viz., physical, mechanical, water sorption, thermal, degradation, electrical properties, etc. are summerised. Oil palm fiber loading in some polymeric matrices improved the strength of the resulting composites whereas less strength was observed in some cases. The composites became more hydrophilic upon addition of OPF. However treatments on fiber surface improved the composite properties. Alkali treatment on OPF is preferred for improving the fiber–matrix adhesion compared to other treatments. The effect of various treatments on the properties of OPF and that of resulting composites reported by various researchers is compiled in this paper. The thermal stability, dielectric constant, electrical conductivity, etc. of the composites improved upon incorporation of OPF. The strength properties reduced upon weathering/degradation. Sisal fiber was reported as a good combination with OPF in hybrid composites.  相似文献   

2.
Chemical treatment of natural fibers is a well-defined means of mechanical property improvement in natural fiberreinforced composites. An understanding of mechanical and thermal properties in these media is essential for evaluating heat transfer, thermal degradation, and overall performance of these composites over their product lifetime. However, very little information is available illustrating the effect of such treatment on the thermal properties of kenaf composites. Also, no study to date has reported the thermal conductivity of individual kenaf fibers. This study reports the effects of fiber treatment (in 6 % NaOH) on thermal transport in unidirectionally oriented kenaf-epoxy composites and individual kenaf fibers. The effective thermal conductivities and thermal diffusivities of chemically treated fiber composites show a general increase over untreated fiber composites (0.210 to 0.232 W/m/K at 28 °C, 0.206 to 0.234 W/m/K at 200 °C). This improvement may be attributed to improved interfacial contact between the fibers and epoxy matrix shown in microstructural images after chemical treatment. The thermal conductivity of individual fibers was evaluated at room temperature using two techniques. Results from both techniques showed slight increases after chemical treatment (0.58±0.53 to 1.0±0.13 W/m/K and 1.2±0.54 to 1.6±0.28 W/m/K) but lacked statistical significance. Any improvement in surface crystallinity after chemical treatment does not appear to affect overall fiber thermal conductivity. A better understanding of thermal transport in kenaf fibers and composites enables better estimation of the performance of these composites in different applications. Moreover, the thermal conductivities of individual fibers are useful in understanding the fiber’s contribution to conduction in different fiber reinforcement configurations.  相似文献   

3.
Polyvinylpyrrolidone/date palm leaf fiber (PVP/DPL) biocomposites were prepared by melt mixing fabrication technique with different weight percentage of fibers. DPL fibers were chemically modified by acrylic acid in order to have better dispersion and compatibility with PVP matrix. The interaction of DPL fibers with PVP matrix was studied by Fourier transforms infrared spectroscopy (FTIR). Field emission scanning electron microscope (FESEM) was used for the study the morphology of chemically modified DPL fibers and PVP/DPL biocomposites. Mechanical properties were improved with fiber loading due to strong interfacial adhesion between PVP and DPL fibers. The storage modulus, loss modulus and tan delta values of PVA/DPL biocomposites were measured by DMTA. The rheological properties were investigated to study the shearing storage and loss modulii along with complex viscosity of biocomposites. The thermal and conducting properties of biocomposites were measured and compared with that of virgin PVP.  相似文献   

4.
The effects of hybridization of glass fibre on oil palm empty fruit bunch (EFB) and recycled polypropylene-based composites are described in this paper. The compounding process involved extrusion followed by injection moulding technique to prepare the samples for characterizations. Fibre loading were considered as 40 % of the total weight of the blends and EFB:glass fibre ratio was maintained as 30:70, 50:50, 70:30 and 90:10. Two types of coupling agents of maleic anhydride-grafted polypropylene such as polybond-3200 and fusabond P-613 of different molecular weight and maleic anhydride level were used to improve the interfacial adhesion between the fibres and the matrix. Composites were characterized by density, melt flow index, tensile, Izod impact and flexural testing. Morphological images of the fractured surfaces of the composites were examined by field-emission scanning electron microscopy. Samples were also characterized by thermal tests such as thermogravimetric analysis and differential scanning calorimetry to evaluate the thermal and crystalline properties, respectively. Optimization of hybridization of the fibres and effect of coupling agents were evaluated in terms of various properties of the samples. The composite prepared with EFB:glass fibre ratio of 70:30 showed better reinforcing properties than that of others.  相似文献   

5.
Microwave-absorptive polymer composite materials provide protection against interference to communication systems caused by microwave-inducing devices. Microwave-absorptive polymer composites were prepared from polylactic acid (PLA) biocomposite blended with oil palm empty fruit bunch (OPEFB) fiber and commercial Iron oxide (Fe2O3) as filler using the melt-blending method. The composites characterization was carried out using the scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. The coefficient of reflection S11 and coefficient of transmission S21 of the composites for various Fe2O3 filler percentages were determined using a rectangular waveguide in connection with microwave vector network analyser (HP/Agilent model PNA N5227). These coefficients were then used to calculate microwave-absorption properties (in decibels). XRD analysis showed that increasing amounts of reinforced material (Fe2O3) reduces the crystallinity of the composites. SEM data indicated that Fe2O3 filler ratio increased in the composites, and adhesion to the cellulose fiber grew gradually until the highest percentage of filler was added. The complex relative permittivity and relative permeability were obtained within the broad frequency range of 8–12 GHz at room temperature for various percentages of filler and were measured by the transmission/reflection method using a vector network analyser. Fe2O3 embedment in OPEFB/PLA was observed to have resulted in enhancing the dielectric and magnetic properties. The values of permittivity and permeability increased with increasing Fe2O3 filler content. Theoretical simulation studied the relation between ε′ and ε″ of the relative complex permittivity in terms of Cole-Cole dispersion law. The result indicated that the processes of Debye relaxation in Fe2O3/OPEFB/PLA, the unique dielectric characteristics of Fe2O3 cannot be accounted for by both the Debye dipolar relaxation and natural resonance. Results further showed that the material transmission, reflection, and absorption properties could be controlled by changing the percentage of Fe2O3 filler in the composites.  相似文献   

6.
Abstact  The thermal and mechanical properties of castor oil/polycaprolactone-based polyurethane (CPU) films and polyurethane biocomposites reinforced with hemp fibers (HCPU) were investigated. Although similar films can be synthesized from petroleum, the main interest in studying these biomass-based composites is based on the fact that both fiber and matrix are derived from renewable resources. In this study, castor oil was used as a polyol for polyurethane films and hemp fiber was used to reinforce the biocomposites. To control the mechanical properties of CPU and HCPU, polycaprolactone diol (PCL) was added to the polyol mixture. Varying the mixing ratio of castor oil and PCL, the thermal and mechanical properties of the CPU and HCPU samples were investigated by using FT-IR, DSC, DMTA, Minimat, and SEM. In an attempt to improve interfacial adhesion between the fiber and matrix biocomposites, hemp fiber was reacted with MDI. FE-SEM micrographs showed that the surface of the hemp fiber became smoother after reaction with MDI. Urethane bonding formation was confirmed by FT-IR.  相似文献   

7.
Poly(lactic acid) (PLA)/jute fiber biocomposites with: i) untreated jute fiber, ii) NaOH treated jute fiber, and iii) (NaOH+silane) treated jute fibers were prepared by melt extrusion process. Microcellular foaming of the injection molded samples was carried out by using single stage batch process. The effects of jute fiber content as well as that of matrix-fiber phase adhesion, in composites with surface treated jute fibers, on the foam microstructure were studied. Further, water absorption, thickness swelling, and biodegradation behavior of the foamed biocomposites were studied and correlated with their foam microstructures. It was observed that on increasing jute fiber content in PLA/JFU biocomposites, cell density increased from 6.5×107 to 8.1×107, while the cell size and expansion ratio decreased from 40 to 23 μm and 2.41 to 1.45, respectively. Again, on increasing the extent of the jute fiber surface treatment in the biocomposites, cell size and expansion ratio increased from 40 to 78 μm and 2.41 to 2.80 respectively. This study also revealed that the rate of biodegradation accelerated with increase in the jute fiber content in the biocomposites while the same retarded with increase in the extent of jute fiber surface treatment.  相似文献   

8.
Jute fibers have immense potential to be used as natural fillers in polymeric matrices to prepare biocomposites. In the present study jute fibers were surface treated using two methods: i) alkali (NaOH) and ii) alkali followed by silane (NaOH+Silane) separately. Effects of surface treatments on jute fibers surface were characterized using fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) analyses. Further, the effects of surface treatments on jute fibers properties such as crystallinity index, thermal stability, and tensile properties were analyzed by X-ray diffraction method (XRD), thermo gravimetric analysis (TGA), and single fiber tensile test respectively. The effects of surface treatment of jute fibers on interphase adhesion between of poly(lactic acid) (PLA) and jute fibers were analyzed by performing single fiber pull-out test and was examined in terms of interfacial shear strength (IFSS) and critical fiber length.  相似文献   

9.
Untreated oil palm empty fruit bunch (REFB), alkali treated EFB (AEFB), ultrasound treated EFB (UEFB) and simultaneous ultrasound-alkali treated EFB (UAEFB) short fibers were incorporated in poly(lactic acid) (PLA) for fabricating bio-composites. The REFB fiber-PLA (REPC) and treated EFB (TEFB) fiber-PLA (TEPC) composites were prepared and characterized. Glass transition temperature, crystal melting temperature, decomposition temperature, melt flow index, density and mechanical properties (tensile strength, tensile modulus and impact strength) of TEPC are found to be higher than those of REPC. The observed crystallization temperature of TEPC is lower than that of REPC. Among all samples, TEPC prepared from UAEFB fiber shows better performances than other samples fabricated by REFB and AEFB fibers. Scanning electron microscopy, Fourier transform infrared spectroscopy and XRD analyses well support all the observed results.  相似文献   

10.
Unsaturated polyester (UP) resin has been blended with phenolic resin (PF) resole type at various ratios to obtain a homogeneous blend with improved flame resistance compared to its parent polymers. The polymer blend was reinforced with 20 wt% kenaf using hand lay out technique. Fourier transform infrared spectroscopy (FT-IR) was used to characterize changes in the chemical structure of the synthesized composites. The thermal properties of the composites were investigated using thermogravimetric analysis (TGA). The thermal stability of UP/PF kenaf composites co-varies with the PF content, as shown by the degradation temperature at 50 % weight loss. The char yield of the composites increases linearly with PF content as shown by the TGA results. The flammability properties of the composites were determined using the limiting oxygen index (LOI) and UL-94 fire tests. The LOI increased with the PF content while the composites exhibit improved flame retardancy as demonstrated by UL-94 test. The mechanical and morphological properties of the composites were determined by tensile test and scanning electron microscopy (SEM), respectively. The tensile strength and the Young’s modulus of the blend/composites slightly decreased with increasing PF content albeit higher than PF/kenaf fiber composites.  相似文献   

11.
Sugar palm fiber is one of the most abundant natural fibers used in biocomposites. However, prediction of the mechanical properties of such natural fiber reinforced composites is still challenging. Most of the theoretical modelings are based the micromechanical method. There have been little studies involving statistical approach for prediction of mechanical properties of natural fiber reinforced composites. In this study, the tensile properties of short sugar palm fiber-reinforced high impact polystyrene (SPF-HIPS) composites obtained by means of statistical approach were investigated and compared with the experimental observations and with micromechanical models available in the literature. Statistical approach was used to predict the performance of the composite part with different fiber loadings. A two-parameter Weibull distribution function was used to model the fiber length distribution in the composite. For the experimental validation, the composites were prepared by hot compression technique for different fiber loadings (10 %, 20 %, 30 %, 40 % and 50 % by weight). Tensile testing of the composites was carried out according to ASTM D638 to obtain the composites tensile strength and modulus of elasticity. Experimental results showed that the tensile strength of the composite reduced due to the addition of sugar palm fibers, whereas the elastic modulus increased by a factor of up to 1.34. The current statistical model predicted the tensile properties of SPF-HIPS composite close to the experimental values. It was found that statistical approach with standard micromechanical models can be used to predict the mechanical properties of sugar palm fiber reinforced HIPS composites. Hence, this study could assist in decisions regarding the design of natural fiber reinforced composite products.  相似文献   

12.
Composites were prepared with 13, 23 30 and 40 % fiber and evaluated the mechanical performance in tensile, flexural and impact. The mechanical properties of these composites were also evaluated function of time at 110 °C thermal exposure. Caroa fibers were characterized by techniques such as thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the best mechanical properties were achieved for composites containing 23 to 30 % fiber. The incorporation of 23 % fiber caroa increased both the modulus of elasticity in the tensile test as the flexural strength and impact, the composite with 30 % fiber caroa showed higher tensile strength. The results show that the tensile and flexural strength of the composite decreased with time of thermal exposure. The thermal aging at 110 °C caused a decrease in tensile properties of the composites.  相似文献   

13.
Recently, carbon fiber composites have been widely used as structural reinforcement materials of buildings, replacing reinforcing bars or concrete. And the increase in use of super fibers such as aramid and high strength PE, which is aimed at improving the reinforcement properties, has resulted in a demand for a resin system with excellent mechanical and thermal properties. In this research, a fiber-reinforced composite has been produced by using the super fibers such as carbon fiber or aramid fiber, reinforcement resin and the silica hybrid compound containing epoxy group. This study was carried out to confirm the effect of the silica hybrid on mechanical properties, heat resistance and adhesion strength of a fiber-reinforced epoxy composite, which was produced by blending silica or introducing silica hybrid through covalent bonds. And the silica hybrid containing epoxy group, which may be introduced to the structure of fiber-reinforced epoxy composite through covalent bonds caused by reaction with a hardener, has been used, so that the heat resistance and adhesion strength could be improved.  相似文献   

14.
The chemical and morphological properties of ramie fibers treated by chemical surface modification were examined with Fourier transform infrared (FT-IR) spectroscopy. The mechanical and thermal decomposition properties were evaluated with respect to tensile strength, tensile modulus and thermogravimetric analysis (TGA). Surface morphological changes were investigated with scanning electron microscopy (SEM). Finally, the capabilities of composites reinforced with various chemically treated fibers were analyzed by investigating tensile and impact strengths. Additionally, the thermal mechanical properties of the composites were investigated with thermal mechanical analysis (TMA). Based on the results of these analyses, we concluded that pectin, lignin and hemicellulose were removed and thermal stability was increased with chemical treatments. The composites reinforced with ramie fiber showed better properties compared with pure PLA matrix with respect to tensile and impact strengths. The peroxide-treated fiber composite had the smallest thermal expansion.  相似文献   

15.
The ultrafine composite fibers consisting of lauric acid (LA) and polyamide 6 (PA6) as form-stable phase change materials (PCMs), were prepared successfully by electrospinning. The effect of carbon nanotubes (CNTs) on the structural morphology, phase change behaviors, thermal stability, flammability and thermal conductivity properties of electrospun LA/PA6 composite fibers was investigated by field-emission scanning electron microscopy (FE-SEM), differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), microscale combustion calorimeter (MCC) and melting/freezing times measurements, respectively. SEM observations indicated that the LA/PA6 and LA/PA6/CNTs composite fibers possessed flat and ribbon-shaped morphologies, but the neat PA6 fibers had cylindrical shape with smooth surface; and the average fiber diameters for LA/PA6 composite fibers decreased generally with the addition of CNTs. DSC measurements indicated that the heat enthalpies of the composite fibers were lower that that of neat LA powders, while the amounts of CNTs had no appreciable effect on the phase change temperatures and heat enthalpies of the composite fibers. TGA results showed that the addition of CNTs increased the onset thermal degradation temperature, maximum weight loss temperature and charred residue at 700 °C of the composite fibers, attributed to the improved thermal stability properties. It could be found from MCC tests that there were two-step combustion processes for composite fibers, and corresponded respectively to combustion of LA and polymer chains (PA6) in composite fibers. The addition of CNTs reduced the peak of heat release rate (PHRR) of electrospun composite fibers, contributing to the decreased flammability properties. The improved thermal conductivity performances of LA/PA6/CNTs composite fibers was also confirmed by comparing the melting/freezing times of LA/PA6 composite fibers with that of neat LA powders. The results from the SEM observation showed that the composite fibers had no appreciable variations in shape and diameter after heating/cooling processes.  相似文献   

16.
Woven Kenaf/Kevlar Hybrid Yarn is the combination of natural and synthetic fibers in the form of thread or yarn. The yarn is weaved to form a fabric type of fiber reinforced material. Then, the fabric is fabricated with epoxy as the resin to form a hybrid composite. For composite fabrication, woven fabric Kenaf/Kevlar hybrid yarn composite was prepared with vacuum bagging hand lay-up method. Woven fabric Kenaf/Kevlar hybrid yarn composite was fabricated with total fiber content of 40 % and 60 % of Epoxy as the matrix. The fiber ratios of Kenaf/Kevlar hybrid yarn were varied in weight fraction of 30/70, 50/50 and 70/30 respectively. The composites of woven fabric Kenaf/Epoxy and woven fabric Kevlar/Epoxy were also fabricated for comparison. The mechanical properties of five (5) samples composites were tested accordingly. Result has shown that of value of strength and modulus woven fabric Kenaf/Kevlar Hybrid Yarn composite was increased when the Kevlar fiber content increased. Therefore, among the hybrid composite samples result showed the woven fabric Kenaf/Kevlar Hybrid Yarn composites with the composition of 30/70 ratio has exhibited the highest energy absorption with 148.8 J which 28 % lower than Kevlar 100 % sample. The finding indicated there is a potential combination of natural fiber with synthetic fiber that can be fabricated as the composite material for the application of high performance product.  相似文献   

17.
Natural fiber reinforced polypropylene (PP) biocomposites were fabricated by blending long-and-discontinuous (LD) natural fibers (NF) with LD PP fibers. Firstly, random fiber mats were prepared by mixing NFs and PP fibers using a carding process. Then, heat and pressure were applied to the mats, such that the PP fibers dispersed in the mats melted and flowed out, resulting in the formation of consolidated sheets upon subsequent cooling. The effect of the fiber volume fraction on the mechanical properties of the bio-composites was scrutinized by carrying out tensile and flexural tests and observing the interface between the fiber and matrix. It was observed that the natural LD fiber content needs to be maintained at less than the nominal fiber fraction of 40 % by weight for the composites fabricated using the current method, which is quite low compared to that of continuous or short fiber reinforced composites. The limited fiber fraction can be explained by the void content in the biocomposites, which may be caused by the non-uniform packing or the deficiency of the matrix PP fibers.  相似文献   

18.
Composites based on pure Basalt and Basalt/Jute fabrics were fabricated. The mechanical properties of the composites such as flexural modulus, tensile modulus and impact strength were measured depending upon weave, fiber contents and resin. Dynamic mechanical analysis of all composites were done. From the results it is found that pure basalt fiber combination maintains higher values in all mechanical tests. Thermo-gravimetric (TG/DTG) composites showed that thermal degradation temperatures of composites shifted to higher temperature regions compared to pure jute fabrics. Addition of basalt fiber improved the thermal stability of the composite considerably. Scanning electron microscopic images of tensile fractured composite samples illustrated that better fiber-matrix interfacial interaction occurred in hybrid composites. The thermal conductivity of composites are also investigated and thermal model is used to check their correlation.  相似文献   

19.
Nowadays, automotive, packaging and sport equipment industries are using natural fibre based composite materials as they are cheap, abundantly available and having a lot of ecological advantages. The main objective of this paper is to introduce a new concept of fibre twisting and to investigate the effect of twisting and the fibre orientation on the mechanical properties of bio degradable green composites. Here, the composites are fabricated by vacuum assisted compression molding technique in which the problems of hand lay process are eliminated. Here, two fibers namely twisted neem and twisted kenaf are sandwiched between layers of glass fibres to enhance the stiffness and strength of the laminates. Initially, the fibers are alkalized to increase the mechanical properties. The result shows that there is a significant improvement in mechanical properties of composites due to the presence of twisted fibers. It also shows the influence of fiber orientation on mechanical properties.  相似文献   

20.
Natural rubber and styrene butadiene rubber (NR/SBR) reinforced with both short nylon fibers and nanoclay (Cloisite 15A) nanocomposites were prepared in an internal and a two roll-mill mixer by a three-step mixing process. The effects of fiber loading and different loading of nanoclay (1, 3 and 5 wt. %) were studied on the microstructure and mechanical properties of the nanocomposites. The adhesion between the fiber and the matrix was improved by the addition of a dry bonding system consisting of resorcinol, hexamethylene tetramine and hydrated silica (HRH). This silicate clay layers was used in place of hydrated silica in a HRH bonding system for SBR/NR-short nylon fiber composite. Nanoclay was also used as a reinforcing filler in the matrix-short fiber hybrid composite. The cure and scorch times of the composites decreased while cure rate increased when the short fiber and nanoclay were added. The mechanical properties of the composites showed improvement in both longitudinal and transverse directions with increasing short fiber and nanoclay content. The structure of the nanocomposites was characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM). X-ray diffraction results of nanocomposites indicated that the interlayer distance of silicate layers increased. The mechanical properties of nanocomposites (tensile, hardness and tear strength) are examined and the outcome of these results is discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号