首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of different arachidonic acid (ARA) dietary contents at several dietary eicosapentaenoic acid (EPA) levels on the growth, survival and biochemical composition of gilthead seabream larvae was studied to better define the importance of this fatty acid as a function of EPA. Larvae of 18 days were fed one of the five isonitrogenous and isolipidic microdiets with three different EPA (0.3%, 2% and 4%) and ARA amounts (0.1%, 0.6% and 1.2%). Although a dietary increase in either ARA or EPA alone did not improve survival significantly, the increase in both fatty acids significantly enhanced growth and survival, suggesting an optimum dietary value of EPA:ARA close to 4:1.2. Dietary ARA was more efficiently incorporated into larval tissues than EPA. Increased dietary EPA or ARA contents reduced the incorporation of ARA or EPA into larval lipids, indicating their competition as substrates for different enzymes. The possible negative effect of further elevation of dietary ARA and its competition with EPA for phospholipids synthesis deserves further studies in marine fish larvae.  相似文献   

2.
We examined the effect of dietary eicosapentaenoic acid (EPA, 20:5n‐3) on growth, survival, pigmentation and fatty acid composition of Senegal sole larvae. From 3 to 40 days post‐hatch (dph), larvae were fed live food that had been enriched using one of four experimental emulsions containing graduated concentrations of EPA and constant docosahexaenoic acid (DHA, 22:6n‐3) and arachidonic acid (ARA, 20:4n‐6). Final proportions of EPA in the enriched Artemia nauplii were described as ‘nil’ (EPA‐N, 0.5% total fatty acids, TFA), ‘low’ (EPA‐L, 10.7% TFA), ‘medium’ (EPA‐M, 20.3% TFA) or ‘high’ (EPA‐H, 29.5% TFA). Significant differences among dietary treatments in larval length were observed at 25, 30 and 40 dph, and in dry weight at 30 and 40 dph, although no significant correlation could be found between dietary EPA content and growth. Eye migration at 17 and 25 dph was affected by dietary levels of EPA. Significantly lower survival was observed in fish fed EPA‐H diet. Lower percentage of fish fed EPA‐N (82.7%) and EPA‐L (82.9%) diets were normally pigmented compared with the fish fed EPA‐M (98.1%) and EPA‐H (99.4%) enriched nauplii. Tissue fatty acid concentrations reflected the corresponding dietary composition. ARA and DHA levels in all the tissues examined were inversely related to dietary EPA. This work concluded that Senegal sole larvae have a very low EPA requirement during the live feeding period.  相似文献   

3.
This study examined the dietary requirement of arachidonic acid (ARA) when that of linoleic acid (LOA), the natural precursor to ARA, was also satisfied with linolenic acid (LNA) and also with and without the other key dietary highly unsaturated fatty acids (HUFA). Growth by prawns fed diets supplemented with ARA was poorer than in diets where it was not present. Supplementation of ARA to diets with either optimized HUFA or just optimised poly unsaurated fatty acids (PUFA) (i.e. LOA, LNA) resulted in poorer growth. Growth was poorest by prawns (215 ± 13%) fed diets with ARA supplemented at 20% of the total fatty acids but including 7% LOA, 21% LNA and 4% of both eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Growth was best in prawns fed diets devoid of ARA but with 7% LOA and 21% LNA (350 ± 19%). Prawns fed the reference diet (348 ± 21%) and the other diet devoid of ARA but containing about 7% LOA, 21% LNA and 4% of both EPA and DHA (345 ± 18%) had similar growth. The growth responses were not effects of altered lipid or fatty acid digestibilities. Indeed supplementation of ARA to the diet marginally improved the digestibility of the total neutral lipid in the diet and the digestibilities of some other dietary fatty acids. The amount of lipid in the digestive glands of prawns fed with the diets was reduced by the inclusion of ARA in the dietary lipids. Composition of the lipids in the digestive gland (DG) of the prawns was almost directly related to the composition of their dietary lipids. The proportion of ARA in the total fatty acids increased with level of supplementation of dietary ARA. An increased level of dietary ARA reduced the proportion of EPA, DHA in the DG lipid and also the total n‐3 and n‐6 fatty acids in the DG lipid. The results of this study support that addition of ARA to the diet of Penaues monodon when the other key essential fatty acids (EFA) have been optimized, does not improve their growth performance. It is suggested that key cause for this response may lie in the importance of the balance of the n‐3 to n‐6 fatty acids in the diet of these animals.  相似文献   

4.
The importance of dietary 20:5n‐3 (EPA), 22:6n‐3 (DHA) and 20:4n‐6 (ARA) for growth, survival and fatty acid composition of juvenile cockles (Cerastoderma edule) was investigated. Cockles of 6.24 ± 0.04 mm and 66.14 ± 0.34 mg (live weight) were distributed into three treatments where live microalgae diets were fed constantly below the pseudofaeces production threshold, for three weeks. Diets had distinct fatty acid profiles: high EPA (53% Chaetoceros muelleri + 47% Pyramimonas parkeae), no DHA (47% Brachiomonas submarina + 53% Tetraselmis suecica) and low ARA concentrations (73% P. parkeae + 27% Phaeodactylum tricornutum). Growth was positively affected by high EPA and low ARA diets, whereas no significant growth was observed for the no DHA diet. High mortality of cockles fed no DHA diet raises questions about its suitability for cockles. In balanced diets with EPA and DHA, lower concentrations of ARA do not limit growth. The impact of dietary fatty acids was evident in the fatty acids of neutral and polar lipids of cockles. In polar lipids of all cockles, there was a decrease in EPA, in contrast to an increase in DHA. The combination of EPA and DHA in a live microalgae diet was beneficial for the growth and survival of juvenile cockles.  相似文献   

5.
Mangrove red snapper fed advanced broodstock diets containing squid meal and squid oil exhibited higher hatching rates, cumulative survival and survival activity index than those fed a basal diet or a basal diet supplemented with mixture of antioxidants. On the other hand, fatty acid analyses of ovaries and fry of wild fish and eggs and larvae of broodstock fed raw fish revealed high arachidonic acid (ARA) and docosahexaenoic acid (DHA) levels and relatively lower eicosapentaenoic acid (EPA) levels consequently showing high ARA/EPA and DHA/EPA ratios compared to cold water species. This suggests that ARA may be nutritionally more important for egg and larval development and survival in tropical marine fish and its supplementation in broodstock diets may enhance reproductive performance of mangrove red snapper.  相似文献   

6.
Evidence confirms that polyunsaturated fatty acids (PUFAs), arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid, DHA are involved in growth as well in pigmentation of marine fish larvae.In the present study we examined the performance of common sole larvae reared on Artemia enriched with 10 formulated emulsions, differing in inclusions of ARA, EPA, and DHA. The specific growth rate of the sole larvae until late metamorphosis, 21 days after hatching (dah) was 20 to 27% d− 1. Even though the relative tissue essential fatty acid (EFA) concentrations significantly reflected dietary composition, neither standard growth nor larval survival were significantly related to the absolute concentrations of ARA, EPA and DHA or their ratios. This suggests low requirements for essential polyunsaturated fatty acids (PUFAs) in common sole. Malpigmentation was significantly related to increased dietary ARA content. However, pigmentation was not affected by inclusion levels of EPA or DHA when ARA was high. This, and no relation between DHA: EPA or ARA: EPA ratios and pigmentation and only a weak relation to ARA: DHA ratio, advocate for that it is the absolute concentration of ARA in larval tissues, that is responsible for malpigmentation rather than the relative concentration to other PUFAs.Within malpigmentation, the trait “albinism” was characterised by an abnormal incomplete eye migration, but this trait is suggested not to be related to dietary ARA. Furthermore, albinism resulted in a lower growth rate, which suggests that visual aberrations affected prey capture.  相似文献   

7.
The role of dietary ratios of docosahexaenoic acid (DHA, 22:6n−3), eicosapentaenoic acid (EPA, 20:5n−3) and arachidonic acid (AA, 20:4n−6) on early growth, survival, lipid composition, and pigmentation of yellowtail flounder was studied. Rotifers were enriched with lipid emulsions containing high DHA (43.3% of total fatty acids), DHA+EPA (37.4% and 14.2%, respectively), DHA+AA (36.0% and 8.9%), or a control emulsion containing only olive oil (no DHA, EPA, or AA). Larvae were fed differently enriched rotifers for 4 weeks post-hatch. At week 4, yellowtail larvae fed the high DHA diet were significantly larger (9.7±0.2 mm, P<0.05) and had higher survival (22.1±0.4%), while larvae fed the control diet were significantly smaller (7.3±0.2 mm, P<0.05) and showed lower survival (5.2±1.9%). Larval lipid class and fatty acid profiles differed significantly among treatments with larvae fed high polyunsaturated fatty acid (PUFA) diets having higher relative amounts of triacylglycerols (18–21% of total lipid) than larvae in the control diet (11%). Larval fatty acids reflected dietary levels of DHA, EPA and AA while larvae fed the control diet had reduced amounts of monounsaturated fatty acids (MUFA) and increased levels of PUFA relative to dietary levels. A strong relationship was observed between the DHA/EPA ratio in the diet and larval size (r2=0.75, P=0.005) and survival (r2=0.86, P=0.001). Following metamorphosis, the incidence of malpigmentation was higher in the DHA+AA diet (92%) than in all other treatments (50%). Results suggest that yellowtail larvae require a high level of dietary DHA for maximal growth and survival while diets containing elevated AA exert negative effects on larval pigmentation.  相似文献   

8.
Turbot larvae were fed live-prey enriched with different levels of arachidonic (ARA) and eicosapentaenoic (EPA) acids to study the effects of these fatty acids on body composition and pigmentation success. Significantly reduced pigmentation was obtained in those fish fed medium and high ARA diets for 43 days. Growth and survival were the same for all groups. The incorporation of ARA and EPA in fish eyes, brains, livers and carcasses reflected the percentage of these fatty acids in the diets. ARA accumulation was similar in all tissues, but brain accumulated EPA was less efficient than the other tissues examined. A highly significant, negative correlation was found between the %ARA in turbot juvenile brain total lipids and pigmentation success. A weaker, positive correlation was found between brain EPA and pigmentation. Increasing dietary ARA affected the fatty acid composition of turbot brain phosphoglycerides more than increasing dietary EPA, especially in phosphatidylinositol (PI) and phosphatidylethanolamine (PE). A negative relationship was found between percentage normal pigmentation and ARA levels in brain phosphatidylcholine (PC), PE and phosphatidylserine (PS). Elevated levels of ARA in PI also resulted in malpigmented juveniles, but EPA:ARA ratios ≥1 in PI were associated with normal pigmentation. We conclude that, given a sufficiency of dietary docosahexaenoic acid (DHA), the optimum dietary level of EPA is not a function of DHA, but of dietary ARA.  相似文献   

9.
Cultivated Atlantic cod (Gadus morhua) entering their first year of gamete maturation were fed diets with different levels of arachidonic acid (ARA) and eicosapentaenoic acid (EPA) for 6.5 months prior to commencement of spawning. Gravid females were stripped three times: at the beginning, peak and end of spawning. Lipid composition and egg and larval quality of 34 family crosses were investigated. Results indicated that ARA uptake into eggs from broodstock diet was highly efficient achieving proportions of ARA up to 84% higher in eggs than in the diet. EPA was 42–76% higher, and DHA was 155–173% higher in eggs than in diets. Cod fed the diet with the lowest EPA/ARA ratio had the greatest egg production. Eggs from fish on a diet with high ARA level had significantly higher fertilization and hatching success than those fed low levels of ARA. This diet produced on average 71 viable eggs g?1 female compared with 32.5 and 4 eggs in diet B and C, respectively. Furthermore, larval survival until 8 days posthatch was higher in diets with lower ARA levels. The combined results showed that ARA dietary supplementation and low EPA/ARA ratio yielded a greater number of viable larvae kg?1 female.  相似文献   

10.
Two experiments were carried out to investigate the effects of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (ARA) levels in rotifers (Brachionus plicatilis) and Artemia on the survival, development and metamorphosis of mud crab Scylla paramamosain larvae. Five different lipid emulsions, varying in the level of total n‐3 and n‐6 highly unsaturated fatty acids (HUFA), DHA, EPA and ARA were used to manipulate the fatty acid profile of the live food. Fatty acid profiles of the live food and crab larvae at zoea one, three and five stages were analysed to study the HUFA uptake by the larvae. The fatty acid content of the live food affected the fatty acid profiles of the crab larvae. In both experiments, the survival rate in the zoeal stages was not statistically different among treatments. However, larval development rate and metamorphosis success were affected by the dietary treatments. In this respect, the DHA/EPA ratio in the live food seems to be a key factor. Enrichment emulsions with a very high (50%) total HUFA content but a low DHA/EPA ratio (0.6), or zero total HUFA content caused developmental retardation and/or metamorphosis failure. An emulsion with a moderate total HUFA (30%) and a high DHA/EPA ratio (4) was the best in terms of larval development during the zoeal stages and resulted in improved metamorphosis. Dietary ARA seemed to improve first metamorphosis, but its exact role needs further clarification. For the larval rearing of S. paramamosain, an enrichment medium containing about 30% total n‐3 HUFA with a minimum DHA/EPA ratio of 1 is recommended. Further investigation is needed on the total HUFA and optimum DHA/EPA ratio requirements for each crab larval stage.  相似文献   

11.
Results from three larval Senegalese sole (Solea senegalensis) feeding trials using non-enriched Artemia and Artemia enriched with Super HUFA®, Arasco®, sunflower oil and microalgae are presented and the effects on larval survival, growth and fatty acid (FA) composition are reported. The FA profile of Senegalese sole eggs was analysed to gather information about the nutritional requirements of the early larval stages and a quite high DHA/EPA ratio (4.3) was found. However, there was no evidence of a high dietary demand for DHA or EPA, given that no relationship was found between dietary HUFA concentration and larval growth and survival. When larvae were fed non-enriched Artemia a significantly better growth and comparable survival were obtained than with Artemia enriched with Super HUFA® (containing the highest HUFA level and DHA/EPA ratio). The FA profiles of the larvae generally reflected those of their diets. DHA was an exception, as it was present in high proportions, even in larvae fed DHA-deficient prey. Total FAME concentration decreased during larval development, with SFA, MUFA and PUFA being equally consumed; HUFA appeared to be less used, with its relative concentration being either kept constant (particularly EPA and ARA) or increased (DHA). A specific requirement for ARA in the first larval stages could not be confirmed but it was always present in considerable amounts, even in larvae fed an ARA poor diet.  相似文献   

12.
The objective of the present study was to investigate the combined effect of several dietary contents of vitamin E and polyunsaturated fatty acids (PUFA), mainly docosahexaenoic acid (DHA), on growth, survival, biochemical composition and tissue morphology of sea bass along early development. A feeding experiment was conducted in sea bass larvae using five different diets with the same proximate composition and different ratios of DHA concentrated fish oil [10, 30 and 50 g kg?1 dry weight (DW)] and vitamin E (α‐tocopherol acetate) (1500 and 3000 mg kg?1 DW). DHA was readily deposited in fish tissues and associated with higher sea bass mortalities probably because of increased peroxidation risks. Besides, the elevation of dietary DHA contents up to 5% severely increased the incidence of muscular lesions and the presence of ceroid pigment within hepatocytes. However, elevation of dietary vitamin E levels markedly reduced the incidence of these symptoms in sea bass, increasing the tissue content in several PUFA and improving growth and stress resistance. Moreover, when sea bass was fed diets containing high vitamin E levels, fish showed a significant improvement in growth when dietary DHA was raised from 1% to 3%. Therefore, in sea bass larvae, a ratio of 30 g kg?1 DHA and 3000 mg kg?1 vitamin E seems to be adequate to achieve a good larval performance and to avoid muscular lesions.  相似文献   

13.
Oily emulsions containing constant levels of total fatty acids (FAs) and varying eicosapentaenoic acid (EPA) and arachidonic acid (ARA) levels were used to enrich rotifers. Common dentex larval survival and growth were compared between groups fed different enriched live prey. Growth, survival rate, and lipid composition of larvae suggest that feeding common dentex in the first 15 days posthatching with 2.5–3% EPA, 6–8% docosahexaenoic acid (DHA), and DHA/EPA ratio of 2.0–2.5 is sufficient to fulfill their EPA requirements. Higher amounts of dietary EPA did not result in any significant improvement in growth or survival. EPA requirement during this period of larval development does not seem to be as critical as other FAs during the first 15 days of common dentex larval development, but it does not exclude its essentiality later in development. In the case of ARA, nutritional requirements are low compared to other marine finfish species, with the upper limit of this essential FA being around 2% of total FAs provided in the live prey composition.  相似文献   

14.
The objectives of this study were to determine the effects of the dietary docosahexaenoic acid (DHA) to arachidonic acid (ARA) ratio on the survival, growth, hypersaline stress resistance and tissue composition of black sea bass larvae raised from first feeding to metamorphic stages. Larvae were fed enriched rotifers Brachionus rotundiformis and Artemia nauplii containing two levels of DHA (0% and 10% total fatty acids=TFA) in conjunction with three levels of ARA (0%, 3% and 6% TFA). On d24ph, larvae fed the 10:6 (DHA:ARA) treatment showed significantly (P<0.05) higher survival (62.3%) than larvae fed 0:0 (DHA:ARA) (27.4%). Notochord length and dry weight were also significantly (P<0.05) greater in the 10:6 (DHA:ARA) treatment (8.65 mm, 2.14 mg) than in the 0:0 (DHA:ARA) (7.7 mm, 1.65 mg) treatment. During hypersaline (65 g L−1) challenge, no significant differences (P>0.05) were observed in the median survival time (ST50) between larvae fed 10% DHA (ST50=25.6 min) and larvae fed 0% DHA (ST50=18.2 min). The results suggested that black sea bass larvae fed prey containing 10% DHA with increasing ARA within the range of 0–6% showed improved growth and survival from first feeding through metamorphic stages.  相似文献   

15.
A study with varying dietary inclusion levels (1, 5, 10, 15 and 20 g kg?1) of docosahexaenoic acid (DHA; 22:6n-3) was conducted with post-smolt (111 ± 2.6 g; mean ± S.) Atlantic salmon (Salmo salar) over a 9-week period. In addition to the series of DHA inclusion levels, the study included further diets that had DHA at 10 g kg?1 in combination with either eicosapentaenoic acid (EPA; 20:5n-3) or arachidonic acid (ARA; 20:4n-6), both also included at 10 g kg?1. An additional treatment with both EPA and DHA included at 5 g kg?1 (total of 10 g kg?1 long-chain polyunsaturated fatty acids, LC-PUFA) was also included. After a 9-week feeding period, fish were weighed, and carcass, blood and tissue samples collected. A minor improvement in growth was seen with increasing inclusion of DHA. However, the addition of EPA further improved growth response while addition of ARA had no effect on growth. As with most lipid studies, the fatty acid composition of the whole body lipids generally reflected that of the diets. However, there were notable exceptions to this, and these implicate some interactions among the different LC-PUFA in terms of the fatty acid biochemistry in this species. At very low inclusion levels, DHA retention was substantially higher (~250 %) than that at all other inclusion levels (31–58 %). The inclusion of EPA in the diet also had a positive effect on the retention efficiency of DHA. However, EPA retention was highly variable and at low DHA inclusion levels there was a net loss of EPA as this fatty acid was most likely elongated to produce DHA, consistent with increased DHA retention with additional EPA in the diet. Retention of DPA (22:5n-3) was high at low levels of DHA, but diminished with increasing DHA inclusion, similar to that seen with DHA retention. The addition of EPA to the diet resulted in a substantial increase in the efficiency of DPA retention; the inclusion of ARA had the opposite effect. Retention of ARA was unaffected by DHA inclusion, but the addition of either EPA or ARA to the diet resulted in a substantial reduction in the efficiency of ARA retention. No effects of dietary treatment were noted on the retention of either linolenic (18:3n-3) or linoleic (18:2n-6) acids. When the total n-3 LC-PUFA content of the diet was the same but consisted of either DHA alone or as a combination of EPA plus DHA, the performance effects were similar.  相似文献   

16.
We examined the effect of dietary arachidonic acid (ARA) and eicosapentaenoic acid (EPA) on the production of embryos and hatched larvae in the European eel, Anguilla anguilla. Two diets with high and intermediate levels of ARA and low and intermediate levels of EPA (Feed 1: ARA 1.9%, EPA 4.2%; Feed 2: ARA 1.2%, EPA 5.1% of total fatty acids) were tested against a commercial diet (DE: ARA: 0.5%, EPA: 8.2% of total fatty acids). After 24 weeks of feeding, ARA levels in the muscles and ovaries increased to 0.9% and 1.3% of total fatty acids, respectively, in Feed 1 and were significantly higher than in Feed 2 and DE. Female broodstock was not fed during hormonal treatment to induce vitellogenesis and ovulation. EPA levels in females fed the test diets decreased in the both muscle and ovary and were significantly lower in eggs from females fed Feed 1. The highest percentage of stripped females, producing viable eggs and larvae, were those females fed the highest dietary ARA levels (Feed 1). The level of lipid peroxidation products in eggs was similar among treatment, indicating that the lowest dietary levels of vitamin C and vitamin E were sufficient. In the unfertilized eggs, ARA levels were also highest (1.1% of total fatty acids) in the diet with highest ARA levels (Feed 1).  相似文献   

17.
Sea urchin eggs and larvae have been suggested as potential live prey for marine fish larval feeding. This study evaluated the fatty acid composition of Paracentrotus lividus eggs, prisms and four-armed plutei, obtained from wild and captive broodstocks fed on raw diets: maize, seaweed and a combination of maize and seaweed. Amounts of essential fatty acids (EFA) for marine fish larvae [arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA)] were determined in eggs and endotrophic larvae. ARA ranged from 3.93% in eggs from combination to 18.7% in plutei from maize diets. In any developmental stage, EPA amounts were always lower than 5% for the raw diets, and DHA showed null or trace amounts including the wild diet. Thus, broodstock-prepared diets had to be formulated based on different lipid sources (Algamac, linseed oil, cod liver oil and olive oil) in order to test eggs and larvae EFA enhancement. EFA improvement was possible for all tested prepared diets. Algamac diet lead to superior EFA enhancement mainly in DHA (7.24%, 4.92% and 6.09% for eggs, prisms and plutei, respectively) followed by cod liver oil diet. Only these two lipid sources should be considered for prepared broodstock diets in order to obtain suitable live prey for fish larval feeding.  相似文献   

18.
The aim of this study was to determine if algal products rich in DHA or ARA are able to completely replace fish oil in microdiets for marine fish larvae, gilthead seabream and if extra supplementation with EPA may further enhance larval performance. For that purpose, 20 day‐old gilthead seabream larvae of 5.97 ± 0.4 mm mean total length and 0.12 ± 0.001 mg mean dry body weight were fed with five microdiets tested by triplicate: a control diet based on sardine oil; a diet containing AquaGrow® DHA (diet DHA) to completely substitute the sardine oil; a diet containing AquaGrow® ARA (diet ARA); a diet containing both products, AquaGrow® DHA and AquaGrow® ARA to completely substitute the fish oil; and, a diet containing both products, AquaGrow® DHA and AquaGrow® ARA, together with an EPA source. Temperature, air and salinity activity tests were also performed to detect larval resistance to stress. At the end of the experiment, final survivals did not differ among groups. The microorganism produced DHA was able to completely replace fish oil in weaning diets for gilthead seabream without affecting survival, growth or stress resistance, whereas the inclusion of microorganism produced ARA did not improve larval performance. Moreover, addition of EPA to diets with total replacement of fish oil by microorganism produced DHA and ARA, significantly improved growth in terms of body weight and total length. The results of this study denoted the good nutritional value of microorganisms produced DHA as a replacement of fish oil in weaning diets for gilthead seabream, without a complementary addition of ARA. However, dietary supplementation of EPA seems to be necessary to further promote larval performance.  相似文献   

19.
The effects of feeding different sources of brine shrimp nauplii with different fatty acid compositions on growth, survival, and fatty acid composition of striped bass, Morone saxarilis and palmetto bass (M. saxatilis x M. chrysops) were determined. The sources of brine shrimp were Chinese (CH), with a high percentage of 20:5(n-3), eicosapentaenoic acid (EPA), and Colombian (COL), San Francisco Bay (SFB), and Great Salt Lake (GSL), with low percentages of EPA but high percentages of 18:3(n-3), linoienic acid. None of the brine shrimp sources contained a measurable amount of 22:6(n-3), docosahexaenoic acid (DHA). After enrichment with menhaden oil to increase the content of EPA and DHA, the GSL brine shrimp nauplii were also fed to hybrid striped bass.Growth and survival of fish larvae fed brine shrimp nauplii with high percentages of EPA and DHA (CH and GSLE) were higher (P < 0.05) than those of fish fed brine shrimp with a low percentage of EPA (COL, SFB, and GSL). The ratio of 20:3(n-9) eicosatrienoic acid (ETA), to DHA in polar lipids (phospholipids) of fish, traditionally used as an indicator of essential fatty acid (EFA) sufficiency of the diet, was not a reliable indicator of essential fatty acid sufficiency of diets for larval striped bass and hybrid striped bass. However, the ratio of ETA to EPA appears to be an appropriate indicator. An ETA-to-EPA ratio in phospholipids of less than 0.10 is consistent with an EFA sufficient diet.  相似文献   

20.
The effects of dietary n-3 highly unsaturated fatty acid (n-3 HUFA) on eggs and larval quality were investigated in the Chilean flounder Paralichthys adspersus . Broodstock were fed with three formulated diets with similar proximate compositions but different n-3 HUFA (2.1%, 3.1% or 4.1%) estimated levels from 5 months before and during the spawning period. The diet with an intermediate n-3 HUFA level resulted in a significantly higher ( P <0.05) percentage of buoyant eggs (68.2 ± 2.9%), fertilization (92.8 ± 3.9%), normal cell cleavages (93.5 ± 1.9%), hatching rate (87.7 ± 4.1%) and normal larvae (76.3 ± 3.7%) compared with the other two diets. In contrast, high levels of n-3 HUFA produced larvae with a higher survival capacity when subjected to fasting. The diet with the lowest content of n-3 HUFA produces lower quality eggs and larvae. The n-3 HUFA level in eggs increased with an increase in the dietary level, and the n-3/n-6 ratios were 1:1, 2:1 and 3:1. The DHA/EPA and EPA/ARA ratios of 2 and 4 in eggs, respectively, were associated with improved egg and larval quality and were similar to the ratios found in eggs from wild broodstock. Attainment of optimal fatty acid contents in broodstock diets is one of the key factors for producing the high-quality spawning required for managed culture of this flounder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号