首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloris virgata is considered a useful grass species for grassland restoration in northern China. However, little information exists concerning the germination responses of this species to temperature and water potential caused by stress conditions. Experiments were conducted in growth chambers to assess the effect of temperature, salinity, alkalinity, drought and the interactions of temperature and stress on seed germination. Seeds were germinated at three diurnal temperature regimes, with four water potentials in NaCl, NaHCO3 and PEG solutions. Results showed that optimal germination under stress occurred at 15–25 °C, and germination percentages and rates were inhibited by either an increase or decrease in temperature from the optimal temperature. The inhibitory effects of the low water potential caused by salinity and drought on germination were greater at 25–35 °C, but seeds were subjected to more stress despite the relatively higher water potential because of the alkalinity at this temperature. The recovery percentage under salinity was highest at ?1·2 MPa at 15–25 °C, and more than 80% of seeds also germinated at this water potential after they were transferred from drought stress. However, seeds lost their viability in higher alkalinities under all temperatures, and at 25–35 °C, there was lower recovery percentage under stress. Results suggest that salinity, alkalinity and drought stress have different impacts on seed germination, and the tolerance to stress of C. virgata seeds is affected by the interactions of temperature and water potential caused by salinity, alkalinity and drought. Chloris virgata shows potential utility as a promising grass species in salinity–alkalinity and drought‐stressed environments.  相似文献   

2.
The effects of plant growth regulators (PGRs) and nitrogenous compounds on alleviating salinity stress on seed germination of Leymus chinensis in light (12 h light/12 h dark) and dark (24 h dark) conditions were determined in a laboratory experiment. Seed germination was compared at various combinations of salinity and germination‐promoting compounds. Seed germination percentages were 57 and 74% under non‐saline conditions in light and dark, respectively, suggesting that germination was light‐inhibited. Germination decreased significantly with increasing salinity level in both light and dark conditions, and the reduction was greater in light than in dark at each salinity level. Seed germination percentage decreased to 22 and 7% in light but only to 51 and 27% in dark, in 100 and 200 mm NaCl solutions respectively. The influence of PGRs and nitrogenous compounds in alleviating salinity stress varied with light and salinity condition; e.g., gibberellins (GA4 + 7) significantly increased germination percentages from 22%, 7% and 0·3% to 47%, 23% and 15% in light at 100, 200 and 300 mm NaCl, respectively, while they showed no effect on germination in darkness. In contrast, sodium nitroprusside and cytokinin significantly increased germination percentage in darkness at all salinity levels, but showed no effect on germination in light at 200 and 300 mm NaCl. Fluridone was very effective in alleviating salinity stress on germination in both light and dark; however, it was lethal to seedlings. Thiourea had no effect in alleviating salinity stress in either light or dark. Thus, alleviation of salinity stress on seed germination of L. chinensis by germination‐promoting compounds is strongly dependent on chemicals and light conditions.  相似文献   

3.
Grasses on the Pakistani coast are moderately to highly salt tolerant and have potential for utilization as a cash crop. This study was designed to determine whether seed germination of three halophytic grasses (Phragmites karka, Dichanthium annulatum and Eragrostis ciliaris) could be improved by exogenous application of ascorbic acid (AsA) under saline conditions. Seeds of P. karka were germinated in varying concentrations of NaCl and AsA under different temperature regimes, and seeds of Dichanthium annulatum and Eragrostis ciliaris were germinated at optimal temperatures only. In P. karka, concentrations of AsA (5 and 10 mM) alleviated the salinity effects better at cooler and moderate thermo‐periods, whereas higher concentrations (20 mM of AsA) failed to improve germination under all temperature regimes. AsA was ineffective at a warmer thermo‐period (25/35°C). The rate of germination also increased at all thermo‐periods with the application of AsA except at 25/35°C under saline conditions. Application of AsA improved the germination of E. ciliaris seeds under saline conditions but was inhibitory for D. annulatum in comparison with the untreated control. The rate of germination followed the similar pattern as that of seed germination. Results indicate that AsA has the ability to partially alleviate the effect of salinity on seed germination of some grass species under optimal temperature regime.  相似文献   

4.
Salinization is an increasing land degradation issue in the Songnen Grassland of northern China. Effects of salinity and temperature on seed germination and seedling growth of Chloris virgata, a promising halophyte, and Digitaria sanguinalis, a widespread glycophyte were examined in six soil solutions (0, 50, 100, 150, 200 and 250 mm NaCl) and four temperatures (15, 20, 25 and 30°C). Germination percentages and rates of both species decreased significantly at higher salinities, but ungerminated seeds can recover germination upon supply of distilled water. Radicle length, seedling height and the total dry weight of both species generally decreased in a concentration‐dependent manner at 20°C and above as the salinity increased. However, at 15°C, the salt‐treated seedlings showed decreases with a similar magnitude for different salinities. Low salinities seem to stimulate germination and seedling growth of C. virgata compared with the control treatment. Both species were more sensitive to salinity during the seedling stage than the germination stage. Digitaria sanguinalis from the saline Songnen Grassland region seems to develop a halophyte‐like adaptive strategy to some extent. However, C. virgata may still dominate most hyperhaline areas due to its higher salt tolerance.  相似文献   

5.
《Plant Production Science》2013,16(3):232-237
abstract

The effects of various constant temperatures (4, 9, 14, 19, 24, 29, 34, and 38°C) on the germination of winter wheat seed ( Triticum aestivum L. cv. ‘Koyuki’) in a dark condition were studied. The maximum germination percentage was 98% at 24°C. The speed of germination was fastest at 29°G. These results indicate that the most suitable temperature for germination was in the range of 24 to 29°G. α-Amylase expression during germination was also high at higher temperature, and maximum expression occurred at 29°C, although a high temperature of 38°C prevented the synthesis of α-amylase. The close correlation between germination and α-amylase activity at various temperatures indicates that α-amylase is an essential factor for the temperature-dependent germination of wheat seed. In contrast, accumulation of proline increased at a lower temperature, and was the highest at 4°G. We also studied the effects of gibberellin (GA3) and proline, a compatible osmotica in alleviating the effect of low and high temperature stresses. Pre-soaking treatment with GA3 and proline was effective in promoting germination and increasing α-amylase expression at a low (4°C) and high (38°C) temperature. These results suggest that GA3 and proline exhibit positive effects on stress alleviation through the stimulation of α-amylase expression.  相似文献   

6.
The grasses Lasiurus scindicus and Panicum turgidum are among the most important forage species of the Arabian deserts. Both are ‘glycophytic’ or salt‐intolerant species, where seed germination becomes reduced by salinity effects. Here, we report experimental effects of light/darkness, temperature and NaCl salinity on seed germination and ‘recovery’ germination in these two species, after seeds had been transferred from saline solution to distilled water. Seeds were germinated in a range of salinities and incubated at a range of temperatures, in both light and darkness. Seeds of P. turgidum germinated significantly more in darkness than in light at temperatures 15–25°C, but the reverse was true at higher temperatures. Seeds of L. scindicus germinated well across a wide range of temperatures and in both light and darkness. In both species, germination decreased with the increase in salt concentration, and in P. turgidum germination was almost completely inhibited at a concentration of 200 mm . In saline solution, germination in darkness was significantly greater than in light at all the temperatures. Seeds of both species ‘recovered’ their germination capacity after transfer from saline solutions to distilled water. Germination recovery depended on both light and temperature of incubation in both species.  相似文献   

7.
《Plant Production Science》2013,16(2):110-116
Abstract

Germination percentages of wheat grains sampled at 3 grain-filling stages : yellow-ripe stage (water content 45-50%), dough-ripe stage (35-40%), and full-ripe stage (25-30%), and imbibed in water at 12°C and 20°C were examined in relation to the activities of α-amylase and endoprotease. Wheat varieties studied were Chihoku-komugi, which is susceptible to pre-harvest sprouting, and Satanta, which is resistant. Germination percentage was higher at 12°C than at 20°C in all grains sampled at all stages in both varieties, and was higher in Chihoku-komugi than in Satanta at 20°C. The activity of α-amylase in the grains at the yellow-ripe stage was higher at 12°C than at 20°C in both varieties, but that at the other 2 stages was higher only in Satanta. Endoprotease increased rapidly from 7 to 10 days after the start of imbibition, and exceeded 12 units only at 12°C in Chihoku-komugi grains at the dough and full-ripe stages. The results showed that α-amylase activity was lower than the value equivalent to 300 brabender unit (BU) in amylography when the germination percentage was 0%. Endoprotease activity exceeded 6 units when the germination percentage exceeded 90%.  相似文献   

8.
Alkaline and saline–alkaline soils impose severe restrictions on plant growth. Panicum coloratum var. coloratum is a perennial C4 forage grass widely used in tropical and subtropical environments. Published information on its responses to alkaline soil conditions is scarce. The objectives of this study were (i) to characterize the effects of alkaline substrates on germination and initial growth in this species, (ii) to assess the influence of high pH in combination with reduced availability of either nutrients or oxygen and salinity, on plant growth and (iii) to evaluate some physiological traits potentially responsible for growth restrictions under alkaline soil conditions. Trials were conducted in a greenhouse. Germination and early plant survival were not affected by alkalinity. To isolate the effects of high pH, reduced nutrient and oxygen availability on growth, plants were grown either in neutral or alkaline soil, in hydroponics, in neutralized alkaline soil (with or without supplementary fertilization), or were flooded to induce hypoxia. Alkalinity effects on growth in hydroponics were milder than in soil. Growth in alkaline soil with nutrient supplement was still significantly lower (by 40%) than in neutral soil. Both alkalinity and hypoxia reduced growth non‐synergistically. These results show that studies of plant response to alkaline substrates carried out in aerated nutrient solutions can only partially address the complexity of this stress. Photosynthesis and PSII activity were among the physiological mechanisms negatively affected by alkalinity and may be partially responsible for the growth limitations observed in P. coloratum under alkaline conditions.  相似文献   

9.
Germination of annual pasture species was studied under controlled‐environment conditions in south‐western Australia at temperatures in the range from 4°C to 35°C. Subterranean clover (Trifolium subterraneum) and Wimmera ryegrass (Lolium rigidum) had a germination of 90% between 12°C and 29°C, whereas capeweed (Arctotheca calendula) had a high germination percentage in a much narrower temperature range with an optimum of 25°C. Growth of subterranean clover, capeweed and Wimmera ryegrass between 28 and 49 days after sowing (DAS) was also studied at two photon flux densities, 13 and 30 mol m?2 d?1, and at diel temperatures in the range from 15/10°C to 33/28°C. Pasture species grown at a density of 1000 plants m?2 accumulated at least twice the amount of shoot dry matter when subjected to temperatures of 21/16°C and 27/22°C, compared with a lower temperature of 15/10°C and a higher temperature of 33/28°C. Except at the highest temperature and at high photon flux density, capeweed had lower green area indices (GAI) than the other two species at 28 DAS. Crop growth rates between 28 and 49 DAS were higher in Wimmera ryegrass than in the other two species, whereas subterranean clover had a lower relative growth rate than the other two species at all temperatures and both photon flux densities. Subterranean clover and capeweed intercepted a greater proportion of the incident radiation compared with Wimmera ryegrass. The values of radiation interception and GAI were used to estimate the number of DAS to reach 75% radiation interception [f(0·75)]. The number of days to reach f(0·75) decreased with increasing temperature from 15/10°C to reach a minimum at 27/22°C. The time taken to achieve f(0·75) was always shorter by about 10 d when the photon flux density was 30 mol m?2 d?1 in the autumn compared with 13 mol m?2 d?1 in the winter. These results are discussed in relation to the early growth of annual pasture in the field.  相似文献   

10.
Grafting tomato (Solanum lycopersicum L.) onto introgression lines (ILs) derived from S. habrochaites with introgression of a quantitative trait locus (QTL), stm9, for shoot turgor maintainer located on chromosome 9 has been suggested for improving yield under abiotic stresses. However, the physiological and agronomic responses of grafts with IL rootstocks to low root-zone temperature (RZT) and drought stresses are not yet clearly understood. Therefore, recurrent parent (RP) grafted onto IL and donor (D) rootstocks, and self-grafted IL and RP were examined at different combinations of optimal (20°–26°C RZT and well-watered) and suboptimal (10°C RZT and well-watered, and 20°–26°C RZT and cyclic drought) temperatures. Graft combinations were compared with self-grafted controls for dry weights, stomatal conductance (gs), leaf parameters, osmotic adjustment, and stress tolerance index. The RP grafted onto IL rootstocks regulated gs efficiently, retained the green trait, and produced higher biomass than the self-grafted RP. The IL rootstocks improved tolerance of the scion to drought and low RZT. Potential of IL rootstocks for improving tomato production under stressed conditions is discussed.  相似文献   

11.
复合盐胁迫对小麦萌发的影响及耐盐阈值的筛选   总被引:2,自引:0,他引:2  
为了解Na2SO4和NaCl组成的复合盐对小麦萌发期的胁迫效应,选择5个耐盐性不同的春小麦品种进行复合盐胁迫处理,研究在不同浓度复合盐胁迫下,春小麦品种在发芽势、发芽率、苗高、根数、主根长和苗鲜重等指标上的差异,并采用多重比较和回归分析筛选最适复合盐萌发期处理浓度。结果表明,随着复合盐各盐分浓度升高,小麦萌发期各指标的相对耐盐系数急剧下降,且发芽势、发芽率、苗高、主根长和苗鲜重在不同浓度处理间差异极显著;但复合盐对小麦根数的影响较小,在低盐浓度下差异不显著。在Na2SO4浓度为0.05mol.L-1、NaCl浓度为0.1mol.L-1时,5个品种的发芽率、苗鲜重、苗高的相对耐盐系数在50%左右,发芽势和主根长趋近于30%,同时种子保持较高的活力,可以作为小麦萌发期耐盐鉴定的适宜复合盐胁迫浓度。  相似文献   

12.
Cuphea (Cuphea viscosissima Jacq. × C. lanceolata W.T. Aiton; PSR23) is a potential new oilseed crop. Its oil is high in medium-chain fatty acids that are suitable for detergent/cleaner applications and also for cosmetics. The objective of this study was to determine the critical temperatures for cuphea seed germination. To determine the base, maximum, and optimum temperatures for seed germination, mature cuphea seeds were harvested from plants grown at Prosper, ND, in 2004, 2005, and 2006. Seeds were germinated on a temperature-gradient bar varying between 5 and 35 °C. Cumulative germination was calculated for each temperature treatment. Base temperature (Tb) and optimum temperature (To) were estimated from the third-order polynomial temperature-response functions for each year. In addition, germination rate per day was used in a linear model to estimate the base temperature below which germination rate was equal to zero (Tb), and the maximum temperature above which germination was equal to zero (Tm). The optimum temperature (To) was calculated as the intercept of sub-optimal and supra-optimal temperature-response functions. Through the third-order polynomial temperature-response functions and the sub-optimal/super-optimal intercept approaches, we were able to generate six estimates for each critical value. Estimates of the base temperature for cuphea seed germination ranged between 3.3 and 11 °C, with the most reliable estimates between 6 and 10 °C, similar to many warm-season crops such as corn (Zea mays L.) and sorghum (Sorghum bicolor L.). The optimum temperature for cuphea seed germination ranged between 18.5 and 24 °C with a mean value of 21 °C. The maximum temperature for seed germination ranged 33–38 °C. On this basis, a cuphea planting date after 20 May is recommended for east-central North Dakota.  相似文献   

13.
The potential of chestnut shell and eucalyptus bark extracts as phenol substitutes in the formulation of adhesives, as chrome substitutes in leather tanning and as a source of antioxidants compounds has been studied. The influence of extraction conditions, type and concentration of alkaline compounds (NaOH, Na2SO3 and Na2CO3) and temperature, on extraction yield and on extract characteristics: Stiasny number, tannin content, total phenols content, FRAP (ferric reducing/antioxidant power) antioxidant capacity and molecular weight distribution was analysed. Chestnut shell extracts had much better properties than eucalyptus bark extracts and significantly higher extraction yields were obtained. The increase of temperature from 70 to 90 °C not only increased the extraction yield but also improved the quality of the extracts. For both materials, the 2.5% Na2SO3–90 °C extract, together with the 2.5% NaOH–2.5% Na2SO3–90 °C extract for chestnut shell, showed high extraction yields and the best properties for all the applications proposed.  相似文献   

14.
《Plant Production Science》2013,16(3):215-218
Abstract

Distribution of Na+ along the root axis under salinity stress was analyzed in two rice (Oryza sativa L.) cultivars with different salt resistance (salt-sensitive IR 24 and salt-resistant Pokkali). Rice plants were grown hydroponically and NaCl was applied with nutrient solution at concentrations of 0, 25 and 50 mM for 7 d after germination. The distribution of Na+ in roots under salinity was analyzed by the cryo time-of-flight secondary ion mass spectrometry (cryo TOF-SIMS). The Na+ content in the root was higher in salt-sensitive IR 24 than in salt-resistant Pokkali under NaCl stress. The content was highest at the root tip and was decreased basipetally along the root axis. The difference in Na+ content between the cultivars was apparent in all regions from the root tip.  相似文献   

15.
Longevity, developmental time and offspring survival of parasitoid wasps are decisive in their effective performance as biocontrol agents. Optimum temperature range determines parasitoid survival, development and reproduction. Thus, controlling this abiotic factor is a key to the success of pest management programs. Adult longevity, developmental time from egg to adult and survival of immatures of Aganaspis daci were assessed in the laboratory under different constant temperatures; adult longevity without hosts, but with the provision of water and honey, and developmental time and survival of immatures from host pupae, whose larvae had been exposed to parasitoids. Results showed that longevity depended on temperature decreasing in the range 15–20 °C (36 – 25 days), but was lower in the range 25–35 °C (10 – 7 days). Regarding developmental time from egg to adult and survival of immatures, our results showed that 20 and 25 °C are the most suitable temperatures. At 15 and 30 °C mortality of the immature stages was very high (>90%) or developmental time to adult was very slow (>3 months). Immatures did not survive at 35 °C. We found no significant differences in developmental time to adult or survival of immatures between 20 and 25 °C. The sex ratio of parasitoid progeny was female biased at 25 °C; the proportion of females increased at all cases with temperature. The to and K for total development were 8.5 °C and 500 DD, respectively. Our findings provide some guidance for future inundative or inoculative field releases of this parasitoid for the management of Ceratitis capitata in Spain.  相似文献   

16.
玉米自交系耐盐种质的筛选及耐盐性评价   总被引:1,自引:1,他引:0  
在0+0、2.5+2.5、5+5和7.5+7.5 mmol/L(Na2CO3+NaHCO3)盐浓度胁迫下,对118份玉米自交系芽期、苗期的耐盐性差异进行比较,以主要农艺性状综合表现为依据筛选耐盐种质。各指标受盐害影响程度大小顺序为株高>芽势>叶长>根长>地上含水量>地下含水量>叶宽>芽率>须根数>根冠比>茎粗>根粗;当盐胁迫溶液为7.5 mmol/LNa2CO3+7.5 mmol/L NaHCO3时,对玉米自交系影响差异显著。综合各个指标的盐害率对118份玉米自交系进行评价和排序,5个耐盐性强的自交系品种为DL、A71、PHB1M、A92和WM33;对盐敏感的5个品种为06NY-25、Mo17、郑32、南引26和农M1。  相似文献   

17.
This study aimed to determine the appropriate steam treatment conditions, using a steam nursery cabinet, to break the dormancy of Japanese rice cultivar seeds exhibiting various dormancy levels. The influence of the temperature and duration of the steam treatments on the germination percentage and germination rate was investigated. In highly dormant ‘Takanari’ seeds, the steam treatment at 40 °C for 7 d increased the germination percentage and decreased the 50% germination time (T50S; based on seed number); this treatment was as effective as the dry heat treatment at 50 °C for 7 d. For the medium dormant ‘Moeminori’ and ‘Hitomebore’ seeds, the steam treatment at 40 °C for 5 d decreased T50S sufficiently and more effectively than did the dry heat treatment at 50 °C for 7 d. For the slightly dormant ‘Moeminori’ seeds, the steam treatment at temperatures ranging from 24 °C to 40 °C for 7 d decreased T50S without a corresponding decrease in germination percentage to <90%. For the non-dormant ‘Moeminori’ and ‘Takanari’ seeds, the same steam treatments had no, or a little if any, useful effect on the germination percentage and T50S. Therefore, we concluded that, for the highly dormant seeds, steam treatment at 40 °C for 7 d was appropriate. Moreover, for less dormant seeds, steam treatment at 40 °C for 5 d was appropriate, and the steam treatment was not necessary for the non-dormant seeds.  相似文献   

18.
小黑麦萌发期耐盐性评价   总被引:2,自引:0,他引:2  
为了解不同基因型小黑麦萌发期的耐盐能力,以87份小黑麦品种(系)为材料,分析了不同浓度NaCl溶液(100~250mmol·L-1)处理后小黑麦种子萌发的变化。结果表明,200~250mmol·L-1 NaCl对小黑麦种子萌发影响显著。在200mmol·L-1 NaCl胁迫下,可以鉴别不同小黑麦材料的耐盐性差异。利用200mmol·L-1 NaCl胁迫下的发芽势、发芽率、发芽指数、活力指数及幼苗干重的耐盐系数进行聚类分析,87份材料中,耐盐性较强的材料有32份,中间型有14份,盐敏感型41份。  相似文献   

19.
20.
Although kiwifruit is considered as a crop with few phytopathological problems, new diseases have been identified in the last few years. This study is the first report of a shoot blight and canker disease of kiwifruit in Greece caused by the fungus Diaporthe neotheicola. The fungal species was identified based on fungal morphology and the analyses of the nuclear rDNA internal transcribed spacer (ITS), and the translation elongation factor 1-alpha (TEF-1α) gene regions.The pathogen caused distinct cankers on shoots of kiwifruit, while pycnidia were observed on the blighted shoots. The rate of development of D. neotheicola in vitro was reduced as temperatures increased from 25 to 30 °C, decreased from 20 to 10 °C, and was totally inhibited at 35 and 2–4 °C. The rate of conidial germination and the length of germ tube in vitro were reduced as temperatures increased from 25 to 30 °C, decreased from 25 to 10 °C, and was totally inhibited at 35 and 2–4 °C. A preliminary study on the effectiveness of the fungicides thiophanate methyl, carbendazim and tebuconazole against the development and germination of conidia of D. neotheicola and the disease symptoms was conducted. All fungicides were effective against the fungus in vitro. In addition, no canker was observed on artificially inoculated shoots treated with the fungicides. In general, the disease could be a threat for kiwifruit in Greece and its management should be investigated in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号