首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An 84‐day growth trial was designed to investigate effects of dietary replacements fish oil with pork lard (PL) or rapeseed oil (RO) on growth and quality of gibel carp (Carassius auratus gibelio var. CAS III) (initial body weight: 158.2 ± 0.2 g), and responses of the fish refed fish oil (FO) diet. Three isonitrogenous (crude protein: 30%) and isolipid (crude lipid: 10%) diets were formulated containing 7.73% FO, PL or RO. Five experimental treatments including FO group (FO), PL group (PL), RO group (RO), group fed PL for 42 days and refed FO for 42 days (PL+rFO), RO and refed FO group (RO+rFO) was tested. At the end of first 42 days, the fish fed PL and RO had higher mortality than that of the control (P > 0.05). At the end of whole experiment, fish fed PL and RO showed higher plasma cortisol than FO fish (P < 0.05). RO+rFO fish showed higher lysozyme activity than RO fish (P < 0.05). Fish growth and feed utilization, composition of whole body and muscle, free amino acids, texture, off‐flavour substances or sensory attributes were not affected by dietary treatments (P > 0.05). PL and RO diet decreased muscle EPA, DHA and n‐3/n‐6 ratio (P < 0.05), while FO‐refeeding had recovery effect. It can be concluded that the replacement of FO by PL and RO does not affect the growth, feed utilization or fish tasting quality in gibel carp. Fish muscle fatty acids modified by dietary PL and RO can be recovered by refeeding with FO diet.  相似文献   

2.
A 10‐week feeding trial was conducted to evaluate the effects of dietary lipid sources on the growth and immune responses of Chinese mitten crab Eriocheir sinensis. Six isonitrogenous and isoenergetic diets were formulated with fish oil (FO), linseed oil (LO), soybean oil (SO), rapeseed oil (RO), coconut oil (CO) and beef tallow (BT) as the sources of lipid with five replicates each. Thirty crabs (2.35 ± 0.14 g) were stocked into each tank and fed twice daily. Weight gain and specific growth rate of crab fed the FO diet were significantly lower than those fed other diets (P < 0.05), except for crabs fed LO diet (P < 0.05). Crab fed the SO diet weighed more than those fed FO diets (P < 0.05). Serum superoxide dismutase and malondialdehyde of crab fed the FO diet were significantly higher than in other groups (P < 0.05). Crab fed the FO diet had the highest activities of serum phenoloxidase, acid phosphatase, alkaline phosphatase and lysozyme (P < 0.05). The fatty acid composition in the liver of crab reflected the change in test diets. Our results indicate that the use of dietary vegetable or animal oils can achieve similar growth performance to the use of dietary FO in Chinese mitten crab, but non‐FOs may impair crab immunity. Soybean oil is recommended as a suitable replacer for FO in Chinese mitten crab diet.  相似文献   

3.
A feeding trial was conducted to investigate the complete substitution of either fish oil (FO) or squid liver oil (SLO) with crude palm oil (CPO), canola oil (CO) sunflower oil (SFO) or linseed oil (LO), as the sole added lipid source in diets fed to triplicate groups of giant freshwater prawn, Macrobrachium rosenbergii (initial weight = 0.42 ± 0.01 g) for 6 weeks. Prawns fed the CO or SLO diets showed significantly higher (< 0.05) specific growth rate than those fed the FO or CPO diets. The feed conversion ratio of the prawns was significantly better when fed the CO diet, compared with the FO, CPO, SFO and LO diets. The muscle eicosapentaenoic acid content of prawns fed the vegetable oil (VO) diets were not significantly different (P > 0.05) from those fed the FO diet, although all VO‐based diets led to a significantly lower docosahexaenoic acid content compared with prawns fed the FO or SLO diet. The whole‐body total carotenoid content was significantly lower for prawns fed the SLO diet compared with prawns on the CO or CPO diets. The successful use of VO instead of marine‐based oils in prawn diets will likely reduce feeding costs associated with M. rosenbergii aquaculture.  相似文献   

4.
A nutrition trial with meagre, Argyrosomus regius was assessed to determine the effect of dietary replacement of fish oil (FO) by soybean oil (SO) on the growth, feed utilization, body composition, fatty acid composition and basic haematological parameters. Six isonitrogenous (47% crude protein) and isoenergetic (gross energy 22 kJ/g) experimental diets were formulated by replacing 0 (FO), 20 (S20), 40 (S40), 60 (S60), 80 (S80) and 100 (S100) % of the FO with SO. Fish were fed three times daily to near satiation for 14 weeks. The specific growth rate (SGR) of fish fed S100 diet was significantly lower than the other treatments, except SO80 diet. The fish fed SO100 diet displayed significantly higher feed conversion ratio than that of other diets (P < 0.05). It was observed that fish fed the SO100 and SO80 diets displayed haemoglobin (HGB) levels significantly lower (P < 0.05) than fish fed the SO20 diet. Packed cell volume (PCV) of fish fed SO20 diet was significantly higher compared to SO100. The white blood cell (WBC) and red blood cell (RBC) remained unaffected by dietary treatment. The docosahexaenoic acid (22:6n‐3, DHA) and eicosapentaenoic acid (20:5n‐3, EPA) levels of meagre were significantly reduced by the substituting of dietary SO by FO at the end of the feeding period. The level of linoleic acid (18:2n‐6, LA) and linolenic acid (18:3n‐3, LNA) significantly raised in fish fed with SO diets (P < 0.05). The results of this study showed that SO could be replaced FO up to 80% in meagre diet without negative effect on growth performance and basic haematological parameters. Furthermore, the maximum level of FO replacement with SO determined by second order polynomial regression analysis, was 30.1% on the basis of maximum SGR.  相似文献   

5.
Triplicate groups of European sea bass (Dicentrarchus labrax L.), of initial weight 90 g, were fed four practical‐type diets in which the added oil was 1000 g kg?1 fish oil (FO) (control diet), 600 g kg?1 rapeseed oil (RO) and 400 g kg?1 FO, 600 g kg?1 linseed oil (LO) and 400 g kg?1 FO, and 600 g kg?1 olive oil (OO) and 400 g kg?1 FO for 34 weeks. After sampling, the remaining fish were switched to the 1000 g kg?1 FO diet for a further 14 weeks. Fatty acid composition of flesh total lipid was influenced by dietary fatty acid input but specific fatty acids were selectively retained or utilized. There was selective deposition and retention of docosahexaenoic acid (DHA; 22:6n‐3). Eicosapentaenoic acid (EPA; 20:5n‐3) and DHA were significantly reduced and linolenic (LNA; 18:3n‐3), linoleic (LA; 18:2n‐6) and oleic (OA; 18:1n‐9) acids significantly increased in flesh lipids following the inclusion of 600 g kg?1 RO, LO and OO in the diets. No significant differences were found among different treatments on plasma concentrations of prostaglandin E2 and prostaglandin F2α. Evaluation of non‐specific immune function, showed that the number of circulating leucocytes was significantly affected (P < 0.001), as was macrophage respiratory burst activity (P < 0.006) in fish fed vegetable oil diets. Accumulation of large amounts of lipid droplets were observed within the hepatocytes in relation to decreased levels of dietary n‐3 HUFA, although no signs of cellular necrosis was evident. After feeding a FO finishing diet for 14 weeks, DHA and total n‐3 HUFA levels were restored to values in control fish although EPA remained 18% higher in control than in the other treatments. This study suggests that vegetable oils such as RO, LO and OO can potentially be used as partial substitutes for dietary FO in European sea bass culture, during the grow out phase, without compromising growth rates but may alter some immune parameters.  相似文献   

6.
In this study, the feasibility of using pomegranate seed oil, rich in conjugated linolenic acid and its partial replacement for fish oil in fish diet were investigated. Common carp, Cyprinus carpio, juveniles (1.8 ± 0.1 g) were fed four isonitrogenous and isolipidic diets with similar basal composition but different oil mixture containing 100% fish oil (A), 50% fish oil +50% sunflower oil (B), 50% fish oil +25% sunflower oil +25% pomegranate seed oil (C) and 50% fish oil +50% pomegranate seed oil (D) for 8 weeks. The highest weight gain was observed in fish fed diet D (p < 0.05). Test diets had no significant effect (p > 0.05) on saturated and monounsaturated fatty acid contents of fish muscle. Docosahexaenoic acid (22:6n‐3; DHA) was significantly lower in the muscle of fish fed diet B (p < 0.05) compared to those fed diet A. However, there was no significant difference in the muscle DHA content of fish fed diets A, C, or D. No specific hepatocyte damage associated to dietary pomegranate seed oil was found in this study. This study showed a 50‐50 combination of fish oil and pomegranate seed oil could be used as dietary lipid source for common carp without any adverse effect on growth performance or muscle n‐3 content while accumulated punicic acid in the muscle could be considered as added value for the final human consumer.  相似文献   

7.
This study was conducted to evaluate the dietary use of vegetable oil sources in grass carp (Ctenopharyngodon idella). Fish were fed diets having the same lipid level from fish oil (FO), palm oil (PO), rapeseed oil (RO), soybean oil (SO) or linseed oil (LO). The results showed that dietary vegetable oils significantly decreased the feed utilization and a significantly lower growth was observed in SO group, while palm oil showed no effect on the growth performance. Dietary vegetable oils suppressed intestinal digestion by inhibiting the activities of digestive enzymes. Vegetable oils significantly elevated the activities of lipase, hepatic lipase and total lipase in liver, and a phenomenon of intense lipid accumulation emerged in liver of PO and SO groups. Furthermore, linseed oil significantly decreased plasma antioxidant capacity, whereas no significant difference was found between RO and FO groups. Dietary vegetable oils caused a significantly lower EPA and DHA in muscle, and further influenced fillet quality through an increase in cohesiveness, gumminess, chewiness and/or springiness, together with a decrease in hardness. Overall, our results indicated that rapeseed oil may be a suitable alternative oil source for grass carp from a point of growth, feed conversion ratio, antioxidative capacity and hepatic histology.  相似文献   

8.
Three diets were formulated to be iso‐nitrogenous (450 g kg?1), iso‐lipidic (65 g kg?1) and iso‐energetic (18.5 KJ g?1), varying only in their lipid sources and designated as 100% fish oil (FO), 100% crude palm oil (CPO) and 100% palm fatty acid distillate (PFAD). Feed were hand fed to homogenous groups of 12 Channa striatus fingerlings (mean weight 3.5 ± 0.3 g) per tank in triplicate for 12 weeks, in a recirculation system. The growth performance and feed intake in the CPO and PFAD treatments were significantly (P<0.05) higher than those in the fish fed the control diet (FO), respectively, whereas the feed conversion ratio was better in PFAD than that in the other treatments respectively. The biological indices monitored (hepatosomatic index and viscerosomatic index) as well as carcass yield did not vary significantly among all the treatments respectively. The muscle fatty acid (FA) profile of fish was influenced by the composition of the diets fed, whereas no differences were recorded in the activities of the hepatic lipogenic enzymes monitored (fatty acid synthetase, citrate cleavage enzyme and malic enzyme). Whole‐body proximate composition analysis revealed that PFAD treatment, compared with others, contained significantly higher protein and ash, but lower lipid contents, although the muscle content of these nutrients was similar among all the treatments. Based on the results of this trial, CPO and PFAD could be used to partially substitute FO in the diet for C. striatus fingerling, to achieve good growth performance without any negative effects or compromising the muscle n‐3 FA composition (especially in the docosa hexaenoic acid and eicosa pentaenoic acid content).  相似文献   

9.
The replacement of fish oil (FO) in Eriocheir sinensis can significantly reduce the cost of E. sinensis cultivation, while several studies have indicated that replacing FO with soybean oil (SO) could significantly reduce the resistance of E. sinensis to disease. However, the molecular mechanisms underlying these effects remain poorly understood. In this study, crabs were fed two diets containing FO or SO, following which a label‐free quantification proteomic analysis was employed. And the activity of enzymes involved in the nonspecific immune response was also measured. Growth performance was undifferentiated between the crabs fed with FO and SO. A total of 519 proteins were identified, and 70 proteins were significantly altered between the crabs fed the two different diets. Five proteins related to the immune response were identified to be differently expressed. C‐type lectin, haemocyanin subunit 6 and cryptocyanin were significantly downregulated, while fatty acid‐binding protein and catalase were highly expressed in the crabs fed SO. The activities of acid phosphatase, alkaline phosphatase, superoxide dismutase and phenoloxidase were all significantly changed in crab fed with different diets. These findings will provide novel insight into the molecular mechanism regarding the replacement of FO on the immune response of E. sinensis and provide evidences for the relationship between nutrition and immunity in E. sinensis.  相似文献   

10.
Changes in fatty acid metabolism in Atlantic salmon (Salmo salar) induced by vegetable oil (VO) replacement of fish oil (FO) and high dietary oil in aquaculture diets can have negative impacts on the nutritional quality of the product for the human consumer, including altered flesh fatty acid composition and lipid content. A dietary trial was designed to investigate the twin problems of FO replacement and high energy diets in salmon throughout the entire production cycle. Salmon were grown from first feeding to around 2 kg on diets in which FO was completely replaced by a 1:1 blend of linseed and rapeseed oils at low (14–17%) and high (25–35%) dietary oil levels. This paper reports specifically on the influence of diet on various aspects of fatty acid metabolism. Fatty acid compositions of liver, intestinal tissue and gill were altered by the diets with increased proportions of C18 polyunsaturated fatty acids and decreased proportions of n-3 highly unsaturated fatty acids (HUFA) in fish fed VO compared to fish fed FO. HUFA synthesis in hepatocytes and enterocytes was significantly higher in fish fed VO, whereas β-oxidation was unaltered by either dietary oil content or type. Over the entire production cycle, HUFA synthesis in hepatocytes showed a decreasing trend with age interrupted by a large peak in activity at seawater transfer. Gill cell prostaglandin (PG) production showed a possible seasonal trend, with peak activities in winter and low activities in summer and at seawater transfer. PG production in seawater was lower in fish fed the high oil diets with the lowest PG production generally observed in fish fed high VO. The changes in fatty acid metabolism induced by high dietary oil and VO replacement contribute to altered flesh lipid content and fatty acid compositions, and so merit continued investigation to minimize any negative impacts that sustainable, environmentally-friendly and cost-effective aquaculture diets could have in the future. Abbreviations: FO - fish oil; HUFA - highly unsaturated fatty acids acids (carbon chain length ≥C 20 with ≥3 double bonds); LO - linseed oil; RO - rapeseed oil; VO - vegetable oil. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
In order to investigate the effects of dietary fish oil replacement, the turtles (Mauremys sinensis) were fed four experimental diets for 10 months: FO (100% fish oil), FSO (70% fish oil and 30% soybean oil), SFO (30% fish oil and 70% soybean oil) and SO (100% soybean oil), sampled at pre‐vitellogenesis, vitellogenesis and post‐vitellogenesis. The results showed that plasma gonadotropin‐releasing hormone (GnRH) levels were the highest at pre‐vitellogenesis, which promoted the secretion of gonadotropin and sex steroids. Therefore, plasma luteinizing hormone (LH) and estrogen (E2) levels were significantly increased at post‐vitellogenesis (< 0.05), while follicle‐stimulating hormone (FSH) levels increased at vitellogenesis (< 0.05). The FO and FSO groups had significantly higher GnRH and E2 levels than the other two groups (< 0.05). In addition, plasma vitellogenin (Vtg) levels significantly increased at vitellogenesis and post‐vitellogenesis (< 0.05), which were significantly higher in the groups of FO and FSO than SO (< 0.05). Moreover, the expression levels of hepatic estrogen receptor α (Erα) mRNA were significantly increased at vitellogenesis and post‐vitellogenesis while ovarian Cyp19α1α mRNA were significantly increased at post‐vitellogenesis (< 0.05), and both were the lowest in SO. Taken together, the replacement of fish oil with 66.7% soybean oil is feasible.  相似文献   

12.
The aim of this study was to determine the effects of replacing fish oil (FO) with laurel seed oil (LSO), as an alternative plant lipid source in diets on the growth and fatty acid composition of rainbow trout (Oncorhynchus mykiss; 111.47 ± 0.2 g mean individual weight). At the end of the feeding trial, survival was 100% in all treatments. No significant differences were seen in growth between the dietary groups (P > 0.05). The protein, lipid and ash contents were not significantly different among the groups (P > 0.05); however, there was a significant difference in protein and ash content between the treatment groups and the initial, and between the 50LSO group and the initial group, respectively (P < 0.05). The viscerosomatic index (VSI) and hepatosomatic index (HSI) values were not affected by increasing LSO percentages in the diets. The n‐6 polyunsaturated fatty acid (PUFA) concentration increased with increasing LSO levels in the diets. In contrast, the n‐3 PUFA levels decreased with increasing LSO levels in the diets. The liver and muscle were used for the analysis of fatty acids. The highest level of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) concentrations was recorded in fillet of fish fed the FO diet and the lowest in those fed the 50LSO diet. However, EPA and DHA ratios in the liver of fish fed the 75LSO diet were higher than those in fillet of fish fed the FO and 50LSO diets. No significant differences were seen in fatty acid composition between the dietary groups (P > 0.05). Based on the results of growth performance and fatty acid composition of the experimental fish in this study, it can be concluded that the 75% concentration of laurel seed oil performed best among the diets tested in the experiment.  相似文献   

13.
The effect of different dietary oil sources on the innate immunity and resistance of Nile tilapia, Oreochromis niloticus, to Streptococcus agalactiae infection were evaluated. Fish were fed with diets containing different lipid sources (soybean oil [SO], corn oil, linseed oil [LO], fish oil [FO], and olive oil [OO]). Fish fed SO presented the highest (P < 0.05) hematocrit and serum protein. LO and FO diets increased (P < 0.05) the erythrocyte resistance to osmotic lysis in comparison with other treatments. Fish fed OO showed the highest (P < 0.05) iron‐binding capacity and the lowest serum lysozyme and bactericidal activities (P < 0.05). No difference (P > 0.05) was found between diets in alternative complement activity. Fish fed the SO diet had the highest (P < 0.05) survival rate against S. agalactiae challenge. In conclusion, diets with LO oil and FO, rich in ω‐3 fatty acids, and OO, rich in ω‐9 fatty acids, have an immunomodulatory effect in Nile tilapia juveniles. The use of SO in the Nile tilapia diet improved immune function and resistance against S. agalactiae.  相似文献   

14.
ABSTRACT

This experiment was conducted to determine the effect of dietary lipid sources on growth performance, body proximate composition, hematology, immune response and resistance of Nile tilapia, Oreochromis niloticus, to Streptococcus iniae infection. Six isocaloric (3.2 kcal/g) and isonitrogenous (34% crude protein) semi-purified diets were supplemented with 7% of various sources of lipid, namely, corn oil (CO), beef tallow (BT), menhaden fish oil (FO), linseed oil (LO), and equal combinations of FO+CO+BT or LO+CO+BT. Diets were fed to tilapia in quadruplicate aquaria to apparent satiation, twice daily for 12 weeks. Fish fed the BT-diet exhibited significantly lowest weight gain, diet intake, feed and protein efficiency ratios, apparent protein utilization, and survival. Whole-body protein and ash were significantly (P < 0.05) lowest and highest, respectively, for fish fed the beef tallow-diet, but the values of these parameters did not differ among fish fed other diets. No significant differences (P > 0.05) were found among hematological values, except for fish fed the FO-diet which had abnormally high red and white blood cell counts. Serum protein concentration, lysozyme activity, and natural hemolytic complement activity were significantly (P < 0.05) reduced in fish fed the BT-diet. The values of these parameters did not differ among fish fed other diets. Post-challenge antibody titer was not influenced by dietary lipid sources. Cumulative mortality 15 days post-challenge with S. iniae was significantly lower (P < 0.05) for fish fed the BT diet compared with those fed FO or FO+CO+BT diets. No significant differences were observed in fish fed other dietary lipid sources.  相似文献   

15.
Three groups of juvenile golden pompano, Trachinotus ovatus (54.75 ± 0.25 g), were each fed one of three diets containing different lipid sources: fish oil (FO), soybean oil (SO) and lard oil (LO). Fish were reared in sea cages for 8 weeks, and the fish fed the FO diet had significantly higher specific growth rate (SGR) but lower condition factor (CF) than the other treatments. The fatty acid (FA) composition of whole‐body lipids was closely correlated with those in the diets. Although no differences can be found in hepatic fatty acid synthase (fasn) activity, the carnitine palmitoyl transferase 1 (cpt1) activity in fish fed the FO diet was significantly higher compared with other treatments. In addition, the relative gene expression of lipid metabolism‐related enzymes, such as cpt1, fas, apolipoprotein B100 (apoB100), delta‐6 fatty acyl desaturase (fadsd6) and fatty acid‐binding protein 1 (fabp1), was also influenced by the different dietary lipid sources. Serum triglyceride (TG) and glucose content in fish fed the LO and FO diets were significantly higher than those in the SO group. Accordingly, it can be concluded that FO could not be completely replaced by SO or LO in golden pompano diets. The lipid sources of a diet could impose significant influence on body condition factor and hepatic lipid metabolism of golden pompano.  相似文献   

16.
An 8‐week growth trial was conducted to evaluate effects of dietary oil sources on growth, enzymes activity and genes expression levels related to lipid metabolism of hybrid grouper (♀Epinephelus fuscoguttatus × ♂E. lanceolatu) juveniles. Seven iso‐lipid (97 g/kg of dry matter) and iso‐protein (503.5 g/kg of dry matter) experimental diets were formulated containing 50 g/kg fish oil (FO; acting as controls) or various vegetable oils (VOs): corn oil (CO), sunflower oil (SO), tea oil (TO), olive oil (OO), rice oil (RO) and mixed oil (MO; comprising equal amounts of these oils). Each diet was fed to triplicate groups of 40 fish for per repetition (15.09 ± 0.01 g) for 56 days. The results show that (a) alternative dietary oils had no significant effects on final weight compared with control group (p > .05); (b) compared with FO group, VOs significantly changed the contents of serum lipoproteins, cholesterol, triglycerides and the activity of liver lipid‐metabolizing enzymes (p < .05); (c) CO group had the least effect on the serum lipoproteins, triglycerides and cholesterol of grouper compared with control; the activity of liver lipid‐metabolizing enzymes in RO and control group was the closest; (d) the mRNA levels of Δ6 Fatty acid desaturase (Δ6Fad), hormone‐sensitive lipase (HSL) and lipoprotein lipase (LPL) were not significantly effected by lipid sources, but CO, TO, OO and MO significantly down‐regulated the expression of fatty acid synthetase (FAS) mRNA level in liver, while RO opposite (p < .05); (e) vegetable oil significantly up‐regulated peroxisome proliferator‐activated receptor α (PPARα) and peroxisome proliferator‐activated receptor β (PPARβ) mRNA levels, while TO and RO down‐regulated peroxisome proliferator‐activated receptor γ (PPARγ) mRNA levels (p < .05); and 6) MO significantly increased the mRNA levels of heart‐type fatty acid‐binding protein (H‐FABP) and adipocyte‐type fatty acid‐binding protein (A‐FABP) (p < .05), while other VOs had no effect on them (p > .05). In conclusion, dietary substitution of FO by VO in diet affected lipid metabolism of grouper, which may be regulated by PPARs.  相似文献   

17.
To investigate the impact of different dietary lipid sources on fillet composition and lipid transport, we conducted a feeding trial and evaluated the proximate composition of muscle tissue, fatty acid profiles, total cholesterol (in muscle and plasma), triglycerides, and lipoprotein concentrations in Nile tilapia, Oreochromis niloticus. Five semi‐purified diets, containing different oils (soybean – SO, corn – CO, linseed – LO, fish – FO, and olive – OO), were supplied to tilapia for 160 d. Fish fed with LO and FO diets had a lower percentage of total lipids in muscle compared with the others (P < 0.05). The highest percentage of protein was found in fish fed with FO diet (P < 0.05). The muscle fatty acid profile was influenced differently by diets (P < 0.05). The group supplemented with SO and CO had a higher concentration of 18:2n‐6, whereas the fish fed with LO diet had a higher level of 18:3n‐3 and those that received the FO diet had more 22:6n‐3 in comparison with those supplemented with vegetable oils. Plasma lipid transport was also affected by the diets: the fish fed with FO diet had higher total cholesterol and high‐density lipoprotein and lower very‐low‐density lipoprotein concentrations (P < 0.05).  相似文献   

18.
This study investigated the effect of two lipid sources on reproduction performance and growth in pearl gourami. For this purpose, 180 fish (3.32 ± 0.25 g) were fed with three isoenergetic (19.80) and isonitrogenous diets (480 g/kg protein) including FO (80 g/kg fish oil), FS (40 g/kg fish oil and 40 g/kg soybean oil) and SO (80 g/kg soybean oil) for 10 weeks before maturation. At the end of the trial, there was no significant difference in weight gain, feed conversation ratio and body composition between fish fed FO and FS diets. Individuals fed dietary FO had significantly higher levels of n‐3 long‐chain polyunsaturated fatty acids in the muscle (130.5 g/kg lipid) and ovary (140.4 g/kg lipid) as compared with those fed SO diet (64.5, 103.6 g/kg, respectively) (p < .05). Feeding pearl gourami with FO and FS diets enhanced regarding absolute fecundity, relative fecundity, the fertilization rate, larvae total length and survival at 3 day posthatch (p < .05). Also, 17 beta‐estradiol in plasma of fish fed dietary FO (6.2 ng/L) was higher than those fed SO diet (1.7 ng/L) (p < .05). In conclusion, we suggest FS diet for broodstock nutrition of pearl gourami as a model for asynchronous multi‐batch spawning fish.  相似文献   

19.
This study evaluates the effects of dietary mannan oligosaccharides (MOS) on growth, tissue composition, fatty acid profiles and liver morphology of European sea bass (Dicentrarchus labrax) fed diets containing either soybean oil (SBO; SBOMOS) or fish oil (FO; FOMOS) as unique oil source for 8 weeks. Results showed that MOS supplementation enhanced specific growth rate, regardless of the oil source used, and that dietary oil source reduced fish length, regardless of dietary MOS supplementation. Dietary MOS favoured lipid accumulation in muscle and anterior intestine when supplemented in FO‐based diets compared to fish fed SBO diet and reduces it in liver in relation to lower hepatocyte area, particularly in fish fed SBOMOS diet. Dietary MOS favoured liver and not muscular ∑n‐3 PUFA, DHA, EPA and ARA deposition, when combined with FO but not when included in SBO‐based diets. Thus, MOS dietary supplementation favours fish performance and helps to minimize the side effects derived from high dietary SBO supplementation on liver lipid accumulation and hepatocyte vacuolization, which could be of especial interest on long‐term feeding trials; however, the effects on favoured deposition ∑n‐3 PUFA are limited to FO‐based diets.  相似文献   

20.
Adult Atlantic salmon (Salmo salar; approximately 800 g start weight) were fed diets with a high replacement of fish meal (FM) with plant proteins (70% replacement), and either fish oil (FO) or 80% of the FO replaced by olive oil (OO), rapeseed oil (RO) or soybean oil (SO) during 28 weeks in triplicate. Varying the lipid source only gave non‐significant effects on growth and final weight. However, a significantly reduced feed intake was observed in the SO fed fish, and both feed utilization and lipid digestibility were significantly reduced in the FO fed fish. Limited levels of dietary 18:3n‐3, precursor to EPA and DHA, resulted in no net production of EPA and DHA despite increased mRNA expression of delta‐5‐desaturase and delta‐6‐desaturase in all vegetable oil fed fish. Net production of marine protein, but not of marine omega‐3 fatty acids, is thus possible in Atlantic salmon fed 80% dietary vegetable oil and 70% plant proteins resulting in an estimated net production of 1.3 kg Atlantic salmon protein from 1 kg of FM protein. Production of one 1 kg of Atlantic salmon on this diet required only 800 g of wild fish resources (Fish in ‐ Fish out < 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号