首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of aflatoxin B1 (AFB1) on growth, physiological responses and histological changes were investigated in juvenile gibel carp (Carassius auratus gibelio). Triplicate groups of gibel carp (3.53 ± 0.02 g) were fed seven semipurified diets (Diet 1 to 7) containing 3.20, 5.37, 7.08, 9.55, 12.70, 17.90 and 28.60 μg AFB1 kg?1 diet for 3 months. The results showed fish weight gain fed Diet 6 was 112.6% of that of control group (Diet 1) after 3 months, but there was no significant difference of weight gain between fish fed Diet 7 and the control group. Alanine aminotransferase (ALT) of fish hepatopancreas fed Diet 7 was significantly higher than the control group (P < 0.05), but no significant difference was observed in ALT activities of the fish fed with more than 10 μg AFB1 kg?1 (Diet 4, 5, 6 and 7). No significant histological lesions were identified between the control and increasing AFB1 treatments. AFB1 accumulated in hepatopancreas was logarithmically related to the dietary AFB1 levels, and AFB1 also accumulated in muscles and ovaries of gibel carp fed Diet 3 to Diet 7. The present results indicated that fish fed with more than 10 μg AFB1 kg?1 diet showed impaired physiological responses and more AFB1 residue of muscles and ovaries above the safety limitation of European Union.  相似文献   

2.
Triplicate groups of one hundred Tra catfish (8 g?±?0.2) were fed seven test diets containing increasing levels of AFB1 (0, 50, 100, 250, 500, and 1000 μg AFB1 kg?1). Additionally Mycofix® Secure was added at 1.5% to one diet containing 500 μg AFB1 kg?1. Results showed that Tra catfish are sensitive to AFB1. Reduction in weight gain (P?<?0.05) was observed for fish fed 50 μg AFB1 kg?1 and declined further with increasing levels of AFB1 in the diets. Fish fed diets contaminated with 500 and 1000 μg AFB1 kg?1 showed increased (P?>?0.05) hepatosomatic index (HIS), while an increase in adipose somatic index (ASI) was observed in fish fed 50 μg AFB1 kg?1 and above when compared to the control and Mycofix® diets. After 12 weeks, blood serum analysis revealed higher alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in fish fed the 50, 100, and 250 μg AFB1 kg?1 suggesting occurrence of liver damage. Disease resistance of fish exposed to Edwardsiella ictaluri was also compromised by the presence of AFB1 in the feed and was directly related to the contamination level. Seven days after Edwardsiella ictaluri exposure, survival rates were 50, 41.7, 31.7, and 8.3% for fish fed control, 50, 100, and 250 μg AFB1 kg?1, respectively. This trial shows that AFB1 at a level of 50 μg AFB1 kg?1 and above can affect fish performance and disease resistance. Application of an effective mycotoxin management in the feed seems to be useful to prevent the negative effects of AFB1.  相似文献   

3.
The optimal concentration of a panel of individual and combined carotenoid sources on skin pigmentation in fancy carp was investigated by nine experimental diets that were formulated and supplemented with astaxanthin at 25 mg kg?1, lutein at 25 and 50 mg kg?1, β‐carotene at 25, 50 and 75 mg kg?1, and lutein combined with β‐carotene at 25 : 25 and 50 : 50 mg kg?1, while a diet without supplemented carotenoid served as a control. The results showed that serum TC of fish fed diets containing supplemented with lutein plus β‐carotene at 25 : 25; 50 : 50 mg kg?1 and lutein 50 mg kg?1 diet were higher than the other treatments (P ≤ 0.05). Serum TC of the respective treatments was 6.2 ± 2.0, 7.8 ± 3.3 and 7.3 ± 1.9 μg mL?1 serum, respectively. Fish fed diets combined with lutein and β‐carotene at 25 : 25, 50 : 50 mg kg?1 and lutein 50 mg kg?1 diet had serum astaxanthin concentrations similar to fish fed the diet with astaxanthin alone at 25 mg kg?1. Serum astaxanthin concentrations was 0.7 ± 0.01, 0.9 ± 0.01, 0.4 ± 0.02 and 1.7 ± 0.18 μg mL?1 serum, respectively. The chromaticity of fish body skin of red and white position was assessed by colourimetry using the CIE L*a*b (CIELAB) system. Pigmentation response of skin redness of fancy carp fed with diets combined with lutein and β‐carotene at 25 : 25, 50 : 50 mg kg?1 and lutein 50 mg kg?1 were higher than other treatments (P ≤ 0.05) but they were similar to fish fed with 25 mg kg?1 astaxanthin diet. The redness (a* values) of fish fed diets with diets combined with lutein and β‐carotene at 25 : 25, 50 : 50 mg kg?1 and lutein 50 mg kg?1 were 28.3 ± 0.53, 29.9 ± 1.38, 28.8 ± 3.95 and 28.5 ± 2.49, respectively. After 3 weeks of feeding the experimental diets, the fish fed on a diet without carotenoid supplement for one week demonstrated that the same three groups still retained their redness and had an overall tendency to improve skin colouring. Finally, concentrations 50 mg kg?1 of lutein, or the combination of lutein and β‐carotene at 25 : 25 mg kg?1 showed the highest efficiency for improving skin pigmentation and redness of skin.  相似文献   

4.
This study was performed to investigate the effects of 17β‐estradiol (ES) and 17α‐methyltestosterone (MT) on growth, development, survival, sex ratio and colour change in the electric blue hap (Sciaenochromis ahli Trewavas, 1935). The hormones were not supplemented to the control feed, while six other feeds were prepared by adding 20, 40 and 60 mg kg?1 17β‐ES or 20, 40 and 60 mg kg?1 17α‐MT to each, resulting in seven different feed treatments. Average live weight of the fish supplemented with these diets was 0.42 ± 0.04 g. At the end of the study, the highest weight gain was observed in fish fed 60 mg kg?1 17α‐MT group (2.62 ± 0.11 g) and the difference with the groups fed with 17β‐ES was found to be significant. All fish fed 17α‐MT were male, while the rates of feminization in fish fed 17β‐ES at 20, 40, 60 mg kg?1 were 91.11%, 88.88% and 93.33% respectively. Survival rates were respectively determined as 80%, 95.56%, 84.44%, 93.33%, 77.78%, 84.44% and 84.44% for the control, 20, 40, 60 mg kg?1 17β‐ES and 20, 40, 60 mg kg?1 17α‐MT treatments. The best colouration was achieved in the 17α‐MT groups (P < 0.05). The L* values varied between 32.98 ± 4.44 and 61.35 ± 2.19, a* values between ?7.06 ± 0.22 and ?3.42 ± 0.11, and b* values between ?7.74 ± 0.10 and 11.65 ± 0.03, while Chroma (C*) and Hue (H°ab) angle values varied between 7.54 ± 0.22 and 13.60 ± 0.01 and between 119.76 ± 0.05 and 239.73 ± 4.86. In conclusion, the 17α‐MT feeding was found to have a greater effect on the growth, feed conversion ratio, masculunization and pigmentation of the electric blue haps than the 17β‐ES treatment.  相似文献   

5.
Columnaris disease is an important bacterial disease of commercially grown channel catfish, Ictalurus punctatus. Copper sulphate (CuSO4) has been shown to be therapeutic and prophylactic as a water treatment for columnaris disease. Copper is an essential dietary component in animal feeds and CuSO4 is typically included in base diets; a study was conducted to evaluate whether fish feed supplemented with additional CuSO4 at 0, 40 and 80 mg kg?1 of diet and fed at a daily rate of 3% body weight would affect survival to columnaris disease. Results indicate fish fed the copper‐supplemented diet for 2 weeks significantly increased survival following F. columnare challenge. This increase appeared to be dose‐dependent. The mean per cent survival (±SEM) for fish fed the base diet (unsupplemented) for 2 weeks and then challenged was 2.0% ± 1.1. Fish fed the base plus 40 mg CuSO4 kg?1 had a mean survival of 22.0% ± 11.0. Fish fed the base plus 80 mg CuSO4 kg?1 had a mean survival of 29.3% ± 13.4. The mean per cent survival for fish fed the base diet for 4 weeks and then challenged was 28.3% ± 9.0. Fish fed the base plus 40 mg CuSO4 kg?1 for 4 weeks had a mean survival of 12.5% ± 6.3. Fish fed the base plus 80 mg CuSO4 kg?1 for 4 weeks had a mean survival of 40.5% ± 8.1. There was a significant effect after 4 weeks with fish fed the base plus 80 mg CuSO4 kg?1 mg not with 40 mg kg?1.  相似文献   

6.
To induce synchronized ovulation, migrating wild Caspian brown trout (Salmo trutta caspius) females were treated with two interperitoneal injections of Des‐Gly10, d ‐Ala6 LHRH (LHRHa), given 3 days apart. Two injections of 100 μg kg?1 body weight of this hormone effectively induced ovulation. Within 27 days from the second injection, all fish injected with 100 μg kg?1 LHRHa had ovulated compared with 54.5% of the controls. The mean time to ovulation was reduced significantly (P<0.05) from 31.67±4.84 days in control fish and 28.83±7.31 days in sham‐treated fish to 16.36±1.61 days in fish injected with 100 μg kg?1 LHRHa. The fertilization rate in 50 and 100 μg kg?1 LHRHa‐injected fish was significantly lower than that in the control fish (P<0.05). In fish injected with 50 and 100 μg kg?1 LHRHa, significant (P<0.05) changes in testosterone (T) and 17α‐hydroxyprogestrone (OHP) levels were observed. After the second LHRHa injection, the fish injected with 100 μg kg?1 showed the highest serum levels of testosterone and OHP. These results demonstrate that the use of LHRHa can effectively reduce the mean time to ovulation and induce synchronized ovulation in Caspian brown trout.  相似文献   

7.
A 30‐day feeding experiment was conducted in blue tanks (70 × 50 × 60 cm, water volume 180 L) to determine the effects of dietary lipid levels on the survival, growth and body composition of large yellow croaker (Pseudosciaena crocea) larvae (12 days after hatchery, with initial average weight 1.93 ± 0.11 mg). Five practical microdiets, containing 83 g kg?1 (Diet 1), 126 g kg?1 (Diet 2), 164 g kg?1 (Diet 3), 204 g kg?1 (Diet 4) and 248 g kg?1 lipid (Diet 5), were formulated. Live feeds (Artemia sinicia nauplii and live copepods) were used as the control diet (Diet 6). Each diet was randomly assigned to triplicate groups of tanks, and each tank was stocked with 3500 larvae. During the experiment, water temperature was maintained at 23(±1) °C, pH 8.0 (±0.2) and salinity 25 (±2) g L?1. The results showed that dietary lipid significantly influenced the survival and growth of large yellow croaker larvae. Survival increased with the increase of dietary lipid from 83 to 164 g kg?1, and then decreased. The survival of larvae fed the diet with 83 g kg?1 lipid (16.1%) was significantly lower than that of larvae fed other diets. However, the survival in larvae fed the diet with 16.4 g kg?1 lipid was the highest compared with other artificial microdiets. Specific growth rate (SGR) significantly increased with increasing dietary lipid level from 83 to 164 g kg?1 (P < 0.05), and then decreased. The SGR in larvae fed the diet with 164 g kg?1 lipid (10.0% per day) was comparable with 204 g kg?1 lipid (9.6% per day), but were significantly higher than other microdiets (P < 0.05). On the basis of survival and SGR, the optimum dietary lipid level was estimated to be 172 and 177 g kg?1 of diet using second‐order polynomial regression analysis respectively.  相似文献   

8.
A 6‐month trial was conducted to evaluate the effects of dietary cottonseed meal (CSM) and free gossypol (FG) on allogynogenetic silver crucian carp, Carassius auratus gibelio♀ × Cyprinus carpio♂ with 4 replicates of each treatment. Isonitrogenous and isocaloric diets were formulated with the 0 g kg?1 (control), 200 g kg?1, 400 g kg?1, and 560 g kg?1 CSM. Diets with FG were made by supplementing batches of control diet with 214 mg kg?1, 428 mg kg?1, and 642 mg kg?1. Weight gain, specific growth rate, and protein efficiency ratio increased significantly up to an inclusion level of CSM of 400 g kg?1 in the diet, with a significant decrease in food conversion ratio. Further increase in CSM to 560 g kg?1 did not cause further changes in fish performance. Free gossypol did not affect fish performance significantly at any inclusion level. Neither CSM nor FG caused significant effects in any of the other evaluated parameters such as whole body composition, haemoglobin concentration, activities of serum lysozyme, superoxide dismutase, alanine aminotransferase and aspartate aminotransferase, and histology of hepatic tissues and midgut. Our results suggested that crucian carp can tolerate at least 642 mg kg?1 FG and that it is safe to including 400 g kg?1 CSM in crucian carp feed.  相似文献   

9.
An 11‐week growth trial was conducted to determine dietary myo‐inositol (MI) requirement for juvenile gibel carp (Carassius auratus gibelio). Myo‐inositol was supplemented to the basal diet to formulate six purified diets containing 1, 56, 107, 146, 194 and 247 mg MI kg?1 diet, respectively. Each diet was fed to triplicate groups of juvenile gibel carp (initial body weight 3.38 ± 0.27 g, mean ± SD) in a flow‐through system. The diets were randomly assigned to different fish tanks. Fish fed ≥ 107 mg MI kg?1 diet had significantly higher weight gain (WG), feed efficiency (FE) and protein efficiency ratio than those fed 1 mg MI kg?1 diet. Fish fed ≥ 56 mg MI kg?1 diet had higher feeding rate and survival compared with fish fed 1 mg MI kg?1 diet. Dietary supplemental inositol did not affect fish liver inositol concentration. Fish fed ≥ 56 mg MI kg?1 diet had higher body dry matter, crude protein and gross energy and lower hepatosomatic index than fish fed 1 mg MI kg?1 diet. Dietary inositol supplementation decreased fish body ash. Quadratic regression of weight gain indicated that the myo‐inositol requirement to maximum growth for juvenile gibel carp was 165.3 mg MI kg?1 diet.  相似文献   

10.
Protein requirement of silver barb, Puntius gonionotus fingerlings   总被引:2,自引:0,他引:2  
Five iso‐energetic (15.05 MJ kg?1) semi‐purified diets with graded levels of crude protein, i.e. 200 (D‐1), 250 (D‐2), 300 (D‐3), 350 (D‐4) and 400 (D‐5) g kg?1 diet were fed to Puntius gonionotus fingerlings (average weight 0.88 ± 0.03 g) in triplicate groups (15 healthy fish per replicate) for a period of 90 days to determine the optimum protein requirement of the fish. Fifteen flow‐through cement tanks of 100‐L capacity with a flow rate of 0.5 L min?1 were used for rearing the fish. Specific growth rate (SGR), food conversion (food gain) ratio (FCR), nutrient digestibility and retention, digestive enzyme activity, RNA : DNA ratio and tissue composition were used as response parameters with respect to dietary protein levels and feed intake. The mean weight gains of fish after 90 days were 10.84 ± 0.27, 11.07 ± 0.12, 14.09 ± 0.20, 11.27 ± 0.12 and 10.91 ± 0.25 g for D‐1, D‐2, D‐3, D‐4 and D‐5, respectively. Maximum SGR (3.13 ± 0.02% per day), RNA : DNA ratio (10.09 ± 0.09), tissue protein content (160 ± 0.1 g kg?1 wet weight), protease activity (25.27 ± 0.47 μg of leucine liberated mg tissue per protein h?1 at 37 °C) and minimum FCR (1.60 ± 0.02) was found in D‐3 group fed with 300 g kg?1 protein level. All these parameters were negatively affected with the further increase in protein level in the diet. Digestibility of protein, lipid and energy was not affected because of variation in dietary protein levels and nitrogen intake of fish. Maximum energy retention (27.68 ± 0.12%) was recorded at 300 g kg?1 dietary crude protein fed group. However, using broken line regression analysis, the maximum growth was found to be at 317.7 g kg?1 dietary protein. Hence, it may be concluded that the protein requirement of P. gonionotus fingerling is 317.7 g kg?1 diet with a resultant P/E ratio of 21.1 g protein MJ?1.  相似文献   

11.
Basal diet containing 0.5, 1.0, 1.5 and 2.0 g kg?1 mixture of inosine monophosphate (IMP), adenosine monophosphate (AMP), guanosine monophosphate (GMP), uridine monophosphate (UMP) and cytidine monophosphate (CMP) (1 : 1 : 1 : 1 : 1) (mixed‐NT; Experiment 1) and 1.5 g kg?1 from each nucleotides and mixed‐nucleotides (NT; Experiment 2) were fed to triplicate groups of grouper for 8 weeks. Basal diet without NT was used as control in both Experiments. In Experiment 1, fish fed the diet with 1.5 g mixed‐NT kg?1 had higher (P < 0.05) weight gain (WG) than the control group. The superoxide anion (O2?) production ratio was higher in fish fed diets with 1.0–1.5 g mixed‐NT kg?1 than the fish fed diets with ≤0.5 g mixed‐NT kg?1. In Experiment 2, fish fed diets with nucleotides had higher WG than the control group. The O2? production ratio was higher in fish fed the diet with 1.5 g AMP kg?1, followed by fish fed diets with 1.5 g UMP and mixed‐NT kg?1, and lowest in the control group. These results suggest that growth and immune responses were enhanced in grouper fed diet with 1.5 g mixed‐NT kg?1 diet. Diet with 1.5 g kg?1 of AMP seems to be more beneficial on the immune responses in fish than other nucleotides.  相似文献   

12.
Elvers and glass eels of Anguilla anguilla were fed diets containing two types of feeding stimulants (FS) that were based on processed marine (MBFS) and yeast proteins (YBFS). Elvers (1.5 ± 0.3 g) were fed seven diets (MBFS and YBFS diets at 20 g kg?1, 40 g kg?1 and 60 g kg?1 plus control) for 60 days. Glass eels (250 ± 100 mg) were weaned to 60 g kg?1 MBFS, 60 g kg?1 YBFS and control diets for 30 days. Diets containing 60 g kg?1 FS had a beneficial effect in terms of growth, homogenous size distribution and feed intake in elvers. Elvers fed 60 g kg?1 MBFS and YBFS diets grew 11.9% and 5.6% faster than the control group. No differences in growth and size distribution were detected in glass eels fed 60 g kg?1 MBFS and YBFS diets. However, FS affected the digestive system maturation; fish fed the 60 g kg?1 MBFS and YBFS diets showed higher and intermediate values in the specific enzyme activities in comparison with the control group. This study revealed that the incorporation of FS into a pelleted diet was beneficial on the overall performance of European glass eels and elvers. However, the observed results were different depending on the eel’s stage of development, as well as the type and inclusion level of the FS.  相似文献   

13.
Six isonitrogenous (390 g kg?1) and isoenergetic (16.2 kJ g?1) diets with varying carbohydrate : lipid (CHO : L) ratios (202.5–1.74), were fed to triplicate groups of 25 fish in indoor recirculation system. Over 8‐week‐growth trial, best weight gain (WG), specific growth rate, feed conversion ratio, protein efficiency ratio and protein production value (P < 0.05) were observed in fish‐fed diets with CHO : L ratio of 7.5. Fish fed either the lowest (1.7) or highest (202.5) CHO : L ratio tended to produce lower (P < 0.05) growth and feed conversion efficiencies. The values of viscerosomatic index, hepatosomatic index and intraperitoneal fat ratio increased as dietary CHO : L ratios decreased. There were no significant differences in whole body and liver crude protein among dietary treatments. Whole body and liver lipid increased as CHO : L ratios decreased. Plasma cholesterol and triacylglyceride levels increased linearly as dietary CHO : L ratios decreased. Activities of glucokinase and pyruvate kinase were stimulated by elevated levels of dietary carbohydrate; however, activities of lipase (LPS) and alkaline phosphatase were stimulated by elevated levels of dietary lipid. Based on a second‐order polynomial regression analysis of WG against dietary carbohydrate and lipid levels, 275 g kg?1 of carbohydrate and 59 g kg?1 of lipid, corresponding to a CHO : L ratio of 4.7, in a diet holding 390 g kg?1 of crude protein and 16.3 kJ g?1 of gross energy, proved to be optimal for grass carp. These results indicated that utilization of dietary lipid and carbohydrate was moderate in grass carp, but the fish were a little more capable of utilizing lipid compared with carbohydrate.  相似文献   

14.
Two feeding experiments were conducted to quantify the total sulphur amino acid (TSAA) requirement and replacement value of cystine for methionine for fingerling Labeo rohita. In Experiment I, isonitrogenous (380 g kg?1 CP) and isocaloric (17.90 kJ g?1 GE) amino acid test diets with graded levels of methionine (4, 6, 8, 10, 12, 14 g kg?1 dry diet) and 0.4 g kg?1 cystine were fed to fish (4.62 ± 0.2 cm; 0.66 ± 0.1 g) and methionine requirement determined by analysing absolute weight gain (AWG) (5.48), feed conversion ratio (FCR) (1.26), protein retention efficiency (PRE%) (39%) and energy retention efficiency (ERE%) (85%) data which were best at 10 g kg?1 methionine of dry diet. In Experiment II, six diets with different ratios of L‐cystine and L‐methionine on equimolar sulphur basis were fed to fish (4.71 ± 0.1 cm; 0.69 ± 0.2 g) under identical conditions. Maximum AWG (5.58), best FCR (1.24), PRE (41%) and ERE (86%) in fish fed Diet IV indicated cystine replacement value to be 40%. On the basis of the broken‐line and second‐degree polynomial regression analyses of results obtained in Experiments I and II, it is concluded that inclusion of TSAA in the range of 25.2–31.31 g kg?1 of protein is optimum of which 33–39% could be spared by cystine.  相似文献   

15.
This work evaluated the performance of Litopenaeus vannamei to low fish meal diets supplemented with 2‐hydroxy‐4‐(methylthio)butanoic acid (HMTBa). A basal diet with 150.0 g kg?1 of anchovy fish meal was designed. Two positive control diets were formulated to reduce fish meal at 50% and 100% with 1.0 and 2.0 g kg?1 of MERA? MetCa (calcium salt with 84% HMTBa activity), respectively. Two nearly equivalent diets acted as negative controls, without HMTBa supplementation. A total of 50 clear‐water tanks of 500 L were stocked with 2.22 ± 0.19 g shrimp under 70 animals m?2. Shrimp survival (92.3 ± 5.1% and 81.4 ± 8.0%), yield (808 ± 12 and 946 ± 17 g m?2) and FCR (2.17 ± 0.19 and 3.12 ± 0.37) showed no differences among diets after 72 or 96 days, respectively. A significantly higher shrimp body weight and weekly growth were observed for those fed with the basal diet or diets supplemented with HMTBa compared with non‐supplemented ones. This study has shown that L. vannamei growth, body weight, survival, yield and FCR were supported by HMTBa supplementation when 150.0 g kg?1 of fish meal was replaced by soybean meal and other ingredients, at 50% and 100%.  相似文献   

16.
A 12 weeks of feeding trial was conducted to evaluate the effects of different levels of dietary yellow loess as an antibiotic (oxytetracycline) replacer in rainbow trout, Oncorhynchus mykiss. Five experimental diets were formulated to contain no antibiotics or yellow loess (control/CON), three graded levels of yellow loess 5 (YL5), 10 (YL10) and 20 g YL kg?1 diet (YL20) and oxytetracycline at 5 g OTC kg?1 diet. Forty‐five fish averaging 39.4 ± 1.6 g (mean ± SD) were randomly distributed in to 15 aquaria. Triplicate groups of fish were fed one of the experimental diets at 1.5 ~ 1.9% of wet body weight per day. At the end of the feeding trial, average weight gain (WG) and specific growth rate (SGR) from fish fed CON diet were significantly lower than those from fish fed YL10, YL20 or OTC diets (< 0.05). Lysozyme activity from fish fed YL20 was detected to be significantly higher than that from fish fed CON diet (< 0.05). While, superoxide dismutase (SOD) activity from fish fed YL10 and YL20 was recorded to be significantly higher than that from fish fed CON diet (< 0.05). Fourteen days of challenge test with bacteria A. salmonicida showed significantly lower survival rate for CON than those of fish fed other experimental diets. Therefore, these results indicated that dietary yellow loess at 10–20 g kg?1 could be a promising alternative of oxytetracycline in rainbow trout.  相似文献   

17.
Rainbow trout (initial body weight 4.16 ± 0.25 g) were fed diets [crude protein 420 g kg?1; gross energy 18.7 MJ kg?1 dry matter (DM); crude fat 110 g kg?1] containing graded levels of either a canola meal (crude protein 350 g kg?1 DM) supplemented with DL‐methionine as partial fish meal protein. A growth trial was conducted over 16 weeks at a water temperature of 12 ± 1 °C. At the end of the growth trial, in addition to body composition analyses, plasma tri‐iodothyronine (T3) and thyroxine (T4), cholesterol and liver fatty acid composition were measured. Replacement of fish meal with canola meal (100–570 g kg?1 replacement) did not affect on growth performance. At 16th week, plasma cholesterol levels were reduced in fish fed all diets in comparison with 8th week. Plasma T4 levels were significantly higher in the canola meal‐fed fish sampled after 16 weeks, but no significant differences in T3 levels were obtained (P > 0.05). Proximate compositions were affected by dietary treatments. The liver fatty acid composition reflected that of the diet with a higher level of polyunsaturated (n‐6) fatty acids in fish fed diet canola meal and a higher content in n‐3/n‐6 ratio in fish fed diet without canola meal. These studies show that canola meal has potential to replace substantial levels of fish meal in diets for carnivorous fish without compromising performance.  相似文献   

18.
The study was conducted to investigate the effects of soybean meal (SBM), raffinose and stachyose on juvenile crucian carp (Carassius auratus gibelio♀ × Cyprinus carpio♂). The experimental diets consisted of one control diet based on fish meal (FM), one diet containing 300 g kg?1 SBM and four FM‐based diets with the addition of either 6.7 g kg?1 raffinose (Raf), 33.9 g kg?1 stachyose (Sta), a combination of raffinose and stachyose (Raf?Sta) and finally a Raf?Sta diet supplemented with 2.5 g kg?1 saponins (Raf?Sta?Sap). After 3 weeks of feeding, the relative gut lengths of SBM‐fed fish and the fish fed stachyose‐containing diets were shorter than those of the FM‐fed fish; further, more SBM‐fed fish showed fissures on the tips of the intestinal folds. After 8 weeks of feeding, the growth of SBM‐fed fish was significantly lower than that of FM‐fed fish (P<0.05). The fish fed Raf?Sta?Sap had a low relative gut length (P<0.05). In comparison with the other fish, the SBM‐fed fish had a higher number of large‐sized homogeneous vacuoles in the cytoplasm of epithelial cells and shorter microvilli. No significant difference was observed in body composition or intestinal microflora. The results indicated that raffinose and stachyose played no or only minor roles in the development of soybean‐induced growth reduction.  相似文献   

19.
A 60‐day feeding trial to determine the nutritional value of marine by‐product meals in diets for longfin yellowtail Seriola rivoliana juveniles (48.1 ± 0.6 g initial weight) was conducted. Five diets were evaluated: a reference diet (RD; 500 g kg?1 CP, 130 g kg?1 L), containing 500 g kg?1 of fish meal (FM); three experimental diets with 125 g kg?1 of shrimp head (SM), Catarina scallop viscera (CM) or Pen shell viscera (PM) meals; and one diet (SCP) containing 125 g kg?1 of each of the experimental meals, to partially replace FM. Survival was not significantly affected by any treatment. Individual weight gain per day was high for the PM (5.3 ± 0.51 g d?1) and SM (4.7 ± 0.32 g d?1) diets, being significantly higher than the RD (3.5 ± 0.23 g d?1) and the other treatments (<1.2 g d?1). Feed intake was high in PM and SM diets, and very low in SCP and CM diets. Biochemical and haematological parameters were similar among treatments RD, PM and SM, while fish fed CM and SCP exhibited lower levels of total protein, cholesterol, haematocrit and haemoglobin. The results indicate that SM or PM can be used to partially replace FM in diets for yellowtail juveniles.  相似文献   

20.
A growth study was conducted to determine the dietary niacin requirement of the Indian catfish, Heteropneustes fossilis (Bloch), fingerlings (Mean weight 9.41 ± 0.18 g). Semi‐purified diets with five levels (0, 5, 10, 20 and 40 mg kg?1 diet) of supplemental niacin were fed to H. fossilis for 15 weeks. Each diet was fed to three replicate groups of fish. Results indicated that the highest (P < 0.05) weight gain was for the fish fed the diet supplemented with 20 mg niacin kg?1, followed by fish fed the diets with 40, 10 and 5 mg niacin kg?1, and the lowest in fish fed the unsupplemented control diet. Patterns of specific growth rate (SGR) and protein efficiency ratio (PER) were similar to those of the weight gain. Survival of fish fed the control diet and niacin‐supplemented diet was 58% and 91–100% respectively. Niacin deficiency signs such as anaemia, anorexia, lethargy and skin haemorrhage were observed in fish fed the control diet. The haematocrit values (Ht) were higher (P < 0.05) in fish fed the diets supplemented with niacin than in fish fed the control diet. The hepatosomatic indexes (HSI) of fish fed with or without niacin‐supplemented diets were not significantly (P > 0.05) different from each other. Both body protein and lipid content were higher (P < 0.05) in fish fed the diet supplemented with 20 and 40 mg niacin kg?1, respectively, than those fish fed other diets. The niacin content in liver significantly (P < 0.05) reflected the supplementation level in the diet and ranged from 29.11 to 40.31 mg g?1 tissue. The associated liver niacin content for growth was about 47 μg g?1 tissue. Quadratic regression analysis showed that the dietary niacin requirement for maximal growth of H. fossilis under these experimental conditions was about 25 mg kg?1 diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号