首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The objective of this study was to determine the effect of dietary vitamin E on gilthead seabream (Sparus aurata) growth and survival, at two different highly unsaturated fatty acids (HUFAs) levels. Eighteen days old gilthead seabream larvae were fed four formulated experimental diets combining two different dietary levels of HUFAs (M: medium 2.5 + 1.5, DHA + EPA, H: high 5 + 2.5 DHA + EPA g per 100 g) with two different levels of vitamin E (M: medium 540 mg kg?1, H: high 2900 mg kg?1): MM, MH, HM, HH (HUFA/vitamin E). After 2‐week feeding trial, the average survival rate was 52.6% and there were no significant differences found among treatments. Increase in vitamin E up to high level markedly improved larval growth, particularly when dietary HUFA levels were lower, suggesting a higher protection value when these fatty acids are more limiting. At medium dietary HUFA levels, increase in vitamin E from medium to high level enhanced larval growth performance in terms of total length. Moreover, increase in vit E enhanced HUFAs content in the larval polar lipids denoting the anti‐oxidative effect of vitamin E.  相似文献   

2.
This study was conducted to investigate the influence of dietary lipid source and n‐3 highly unsaturated fatty acids (n‐3 HUFA) level on growth, body composition and blood chemistry of juvenile fat cod. Triplicate groups of fish (13.2 ± 0.54 g) were fed the diets containing different n‐3 HUFA levels (0–30 g kg?1) adjusted by either lauric acid or different proportions of corn oil, linseed oil and squid liver oil at 100 g kg?1 of total lipid level. Survival was not affected by dietary fatty acids composition. Weight gain, feed efficiency and protein efficiency ratio (PER) of fish fed the diets containing squid liver oil were significantly (P < 0.05) higher than those fed the diets containing lauric acid, corn oil or linseed oil as the sole lipid source. Weight gain, feed efficiency and PER of fish increased with increasing dietary n‐3 HUFA level up to 12–16 g kg?1, but the values decreased in fish fed the diet containing 30 g kg?1 n‐3 HUFA. The result of second‐order polynomial regression showed that the maximum weight gain and feed efficiency could be attained at 17 g kg?1 n‐3 HUFA. Plasma protein, glucose and cholesterol contents were not affected by dietary fatty acids composition. However, plasma triglyceride content in fish fed the diet containing lauric acid as the sole lipid source was significantly (P < 0.05) lower than that of fish fed the other diets. Lipid content of fish fed the diets containing each of lauric acid or corn oil was lower than that of fish fed the diets containing linseed oil or squid liver oil only. Fatty acid composition of polar and neutral lipid fractions in the whole body of fat cod fed the diets containing various levels of n‐3 HUFA were reflected by dietary fatty acids compositions. The contents of n‐3 HUFA in polar and neutral lipids of fish increased with an increase in dietary n‐3 HUFA level. These results indicate that dietary n‐3 HUFA are essential and the diet containing 12–17 g kg?1 n‐3 HUFA is optimal for growth and efficient feed utilization of juvenile fat cod, however, excessive n‐3 HUFA supplement may impair the growth of fish.  相似文献   

3.
Five diets that contained fresh squid meat as the basic constituent and were supplemented with different amounts of highly unsaturated fatty acids (HUFA) and astaxanthin were fed to pond‐reared Penaeus monodon broodstock. Diet A was sole squid meat. Diets B and C were supplemented with astaxanthin 50 and 100 mg kg?1 respectively. Diets D and E were supplemented with HUFA 5 and 10 g kg?1 and astaxanthin 50 mg kg?1 respectively. The result showed that the group fed diet E had the best reproductive performance in all experimental groups. It had a higher proportion of spawns (71.5%), spawning rate (0.047), a shorter latency period (7.7±0.3 d), higher absolute fecundity (× 103) (361.6±5.5) and egg production/female (× 103) (597.0±18.0) than all the other experimental groups. The fatty acid composition in broodstock diets strongly affected the tissue and fecundity of broodstock. Good correlations between the content of 20:4n‐6 in eggs and the fecundity (r2=0.6109) and egg production (r2=0.9876) of broodstock were found. On the other hand, 22:6n‐3 and DHA/EPA ratio was negatively correlated with the fecundity of broodstock (r2=0.5362, 0.8702 respectively). The result also showed that the balance between n‐3 and n‐6 fatty acid families, total polyunsaturated fatty acids and total saturated fatty acid and 20:5n‐3 (EPA) and 22:6n‐3 (DHA) may play vital roles in maturation and reproductive performance of P. monodon broodstock.  相似文献   

4.
A feeding experiment was conducted to investigate the effects of high dietary intake of vitamin E (supplied as dl ‐α‐tocopheryl acetate) and n‐3 highly unsaturated fatty acid (n‐3 HUFA) on the non‐specific immune response and disease resistance in Japanese flounder Paralichthys olivaceus. Nine practical diets were formulated to contain one of three levels of vitamin E namely, 0, 80 or 200 mg kg?1 (the total α‐tocopherol contents in the diets were 21, 97 and 213 mg kg?1 based on analysis), and at each vitamin E level with one of three n‐3 HUFA levels i.e. 0.5%, 1.5% or 2.0%. Each diet was randomly assigned to triplicate groups of Japanese flounder (initial body weight: 40.5±1.0 g, mean±SD) in a re‐circulation rearing system. Fish were fed twice daily to apparent satiation at 07:00 and 18:00 hours for 12 weeks. During the experimental period, water temperature was maintained at 18±1°C, salinity 31–35 g L?1, and pH 7.8–8.2. Dissolved oxygen was not less than 6 mg L?1, and there were negligible levels of free ammonia and nitrite. The results showed that the increase in dietary n‐3 HUFA from 0.5% to 1.0% significantly decreased muscle α‐tocopherol contents in fish‐fed diets with 21 and 97 mg α‐tocopherol kg?1 diet (P<0.05). In 1.0% HUFA groups, alternative complement pathway activity (ACH50) of fish fed the diet containing the 213 mg α‐tocopherol kg?1 diet was significantly higher than noted for fish fed the diet containing 97 mg α‐tocopherol kg?1 diet (P<0.05). Fish fed the diet with 213 mg α‐tocopherol kg?1 and 2.0% n‐3 HUFA had the highest lysozyme activity (131.7 U mL?1) among all the dietary treatments. Fish fed the diets containing 97 and 213 mg α‐tocopherol kg?1 with 1.0% n‐3 HUFA had significantly higher respiratory burst activity than those fed the diets containing 21 mg α‐tocopherol kg?1 with 0.5 and 1.0% n‐3 HUFA (P<0.05). In the disease resistance experiment, high intake of dietary vitamin E with 213 mg α‐tocopherol kg?1 significantly decreased cumulative mortality and delayed the days to first mortality after a 7‐day Edwardsiella tarda challenge (P<0.05). In addition, under the experimental conditions, dietary vitamin E and n‐3 HUFA had a synergistic effect on the non‐specific immune responses and disease resistance in Japanese flounder (P<0.05).  相似文献   

5.
The objective of the present study was to compare the effectiveness of dietary marine phospholipids (MPL) obtained from krill and soybean lecithin (SBL) on the rearing performance and development of seabream (Sparus aurata) larvae. Larvae were fed from 16 to 44 day posthatching (dph) five formulated microdiets with three different levels (50, 70 and 90 g kg–1) of phospholipids (PL) obtained either from an MPL or from a SBL source. Larvae‐fed MPL show a higher survival, stress resistance and growth than those‐fed SBL, regardless the dietary PL level. Overall, the increase in MPL up to 70 g kg–1 total PL in diet was enough to improve larval gilthead seabream performance, whereas even the highest SBL inclusion level (90 g kg–1 PL) was not able to provide a similar success in larval growth or survival. Inclusion of SBL markedly increased the peroxidation risk as denoted by the higher TBARs in larvae, as well as a higher expression of CAT, GPX and SOD genes. Moreover, SBL tends to produce larvae with a lower number of mineralized vertebrae and a lower expression of osteocalcin, osteopontin and BMP4 genes. Finally, increasing dietary MPL or SBL lead to a better assimilation of polyunsaturated fatty acids in the larvae, n‐3HUFA (especially 20:5n‐3) or n‐6 fatty acids (especially 18:2n‐6), respectively. In conclusion, MPL had a higher effectiveness in promoting survival, growth and skeletal mineralization of gilthead seabream larvae in comparison with SBL.  相似文献   

6.
A feeding experiment was conducted on gilthead seabream (Sparus aurata) broodstock to investigate the incidence of n-3 highly unsaturated fatty acids (n-3 HUFA) dietary deficiencies on the lipid composition of female liver, gonads and eggs, in relation to spawning quality. Broodstock were fed a control (C) diet or a n-3 HUFA deficient (D) but linolenic acid rich diet. After 20 weeks of feeding, the results showed that levels of total neutral (TNL) and total polar (TPL) lipids of female gonads and eggs were independent of diet. However the fatty acid composition of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI) of female liver, gonads and eggs in the two groups of fish showed marked differences, reflecting the influence of fatty acid levels in the broodstock diets. This influence was even higher in TNL than in the phospholipid classes examined. In fish fed n-3 HUFA deficient diet, fatty acid composition of TNL of female gonads and eggs reflected the diet more than liver. A higher egg production in broodstock fed C diet (1.8% n-3 HUFA in diet) was extended to spawning quality such as percentages of fertilised and hatched eggs.  相似文献   

7.
A 12‐week growth trial was conducted with gibel carp Carassius auratus gibelio (initial weight: 2.69 g) to evaluate the effects of dietary n‐3 highly unsaturated fatty acids (n‐3 HUFA) on growth performance and tissue fatty acid composition. Five diets of different n‐3 HUFA levels from 0 to 17 g kg?1 diet were supplemented at 80 g kg?1 dietary lipid by including fish oil (FO) at 0, 25, 50, 75 and 100% of supplemental lipid. The remainder was coconut oil. The results showed that fish fed FO25 and FO50 obtained highest specific growth rate and lowest with FO0. Feed efficiency was highest at FO100 and lowest at FO0. Apparent digestibility coefficient of lipid increased with increasing dietary n‐3 HUFA. The fish fed FO0 diet had the lowest thiobarbituric acid reactive substance in serum and muscle and highest moisture and lowest lipid content in viscera. Fatty acid compositions of muscle and liver were correlated with dietary fatty acids. Fish muscle concentration of 20:5n‐3 increased with increasing dietary n‐3 HUFA while the concentration of 22:6n‐3 was distinctly reduced in FO0 group. It suggested that 4 g kg?1 n‐3 HUFA in diet could permit gibel carp normal growth performance and provide considerable n‐3 HUFA in fish muscle. Excessive n‐3 HUFA showed impact on growth performance of gibel carp.  相似文献   

8.
Despite the interest of meagre (Argyrosomus regius) as a fast‐growing candidate for Mediterranean aquaculture diversification, there is a lack of information on nutrition along larval development. Importance of highly unsaturated fatty acids (HUFA) and the antioxidant vitamins E and vitamin C has not been investigated yet in this species. Six diets with two levels of HUFA (0.4% and 3% dw), two of vitamin E (1500 and 3000 mg kg?1) and two of vitamin C (1800 and 3600 mg kg?1) were fed to 15 dah meagre larvae. Larval growth in total length and dry body weight was significantly lowest in larvae fed diet 0.4/150/180 and showed few lipid droplets in enterocytes and hepatocytes and lower HUFA contents than the initial larvae. Increase in dietary HUFA up to 3%, significantly improved larval growth and lipid absorption and deposition. Besides, among fish fed 3% HUFA, increase in vitamin E and vitamin C significantly improved body weight, as well as total lipid, 22:6n‐3 and n‐3 fatty acids contents in the larvae. Thus, the results showed that 0.4% dietary HUFA is not enough to cover the essential fatty acid requirements of larval meagre and a high HUFA requirement in weaning diets is foreseen for this species. Besides, the results also pointed out the importance of dietary vitamin E and C to protect these essential fatty acids from oxidation, increase their contents in the larvae and promote growth, suggesting high vitamin E and C requirements in meagre larvae (higher than 1500 and 1800 mg kg?1 for vitamin E and vitamin C respectively).  相似文献   

9.
A feeding experiment was carried out to determine the effect of a diet lacking n-3 and n-6 highly unsaturated fatty acids (HUFA) on lipid and fatty acid content in intestine and gills of male gilthead seabream (Sparus aurata L.) broodstock at different stages of the reproductive cycle: November (pre-spermatogenesis), March (spermatogenesis), and June (post-spermatogenesis). For this purpose, gilthead seabream broodstock were fed either a control diet (C) or an n-3 and n-6 HUFA-deficient diet (D). The results showed no changes in fatty acid content of polar lipids of intestine and gills from fish fed diet C at different stages of the reproductive cycle. However, significant changes were observed in the fatty acid content of neutral lipids in intestine but not in gills in this group. Thus, between November and March, saturates and n-3 HUFA decreased while monoenes increased. In June, the contents of these fatty acids had returned to their initial values (November). Moreover, in fish fed diet D, the fatty acid content of neutral lipid changed in both intestine and gills. In intestine NL, a decrease in saturates and n-3 HUFA and an increment in monoenes were observed from November to June. In gills, a decrease was also observed in n-3 HUFA from NL along the cycle. Nevertheless, n-6 HUFA content remained unchanged. These results show both tissue specificity in seasonal mobilization of fatty acids linked to reproductive processes and the influence of dietary fatty acids on body composition.  相似文献   

10.
The aim of the present study was to determine the optimum dietary levels of krill phospholipids (KPL) for sea bream (Sparus aurata) larvae, and its influence on larval development and digestive enzymes activity. Larvae were fed five formulated microdiets with five different levels of KPL. Complete replacement of live preys with the experimental microdiets for seabream larvae produced high survival and growth rates, particularly in fish fed the highest levels of KPL. In the present study, increase in dietary KPL up to 120 g kg?1 (100 g kg?1 total PL) significantly improved larval survival and growth, whereas further increase did not improve those parameters. An increase in alkaline phosphatase, trypsin and lipase activity with the elevation of KPL up to 120 g kg?1 was also found denoting a better functioning of digestive system. Besides, there was a linear substrate stimulatory effect of dietary KPL on phospholipase A2 activity. Finally, increasing dietary KPL lead to better assimilation of n‐3 HUFA especially eicosapentaenoic acid, reflected in the higher content of these fatty acids in both neutral and polar lipids of the larvae. In summary, KPL were found to be an excellent source of lipids for seabream larvae. Optimum inclusion levels of this ingredient in microdiets to completely substitute live preys at this larval age were found to be 120 g kg?1 KPL.  相似文献   

11.
The dietary lysine requirement of juvenile gilthead seabream was determined by the growth response of duplicate groups of fish (3.5 g initial weight) fed on six isonitrogenous (427 g kg?1) and isolipidic (135 g kg?1) diets containing graded levels of crystalline l ‐lysine HCl, with dietary lysine content ranging from 36.3 to 79.7 g kg?1 of protein. The final indispensable amino acid profile of the diets except for lysine was formulated so as to resemble that of wild seabream whole body. Except for the reduced growth performance of fish groups fed the lysine‐deficient diets no other deficiency signs were apparent. Survival observed throughout the feeding period of 6 weeks was excellent. Weight gain (in %), specific growth rate, feed efficiency and daily protein deposition (DPD) were significantly improved in response to the increasing levels of dietary lysine up to 52.7 g kg?1 of protein and remained nearly constant thereafter. Whole‐body protein content followed a similar pattern as growth parameters in relation to dietary lysine level. Non‐linear regression analysis of DPD against dietary lysine level using the four‐parameter saturation kinetic model indicated a lysine requirement of 50.4 g kg?1 of protein for this species to support growth.  相似文献   

12.
Herbivorous grass carp (Ctenopharyngodon idella) has been reported to exhibit low capacity to utilize high dietary lipid, but different lipid sources might affect this limited capacity. In order to compare the effects of different lipid sources with different lipid levels, juvenile grass carp were fed one of nine diets containing three oils [lard, plant oil mixed by maize and linseed oil, and n‐3 high unsaturated fatty acid‐enriched (HUFA‐enriched) fish oil] at three lipid levels (20, 60 and 100 g kg?1 dry diet) for 8 weeks. Decreased feed intake, poor growth performance, hepatic pathology and higher blood lipid peroxidation were found in 60 and 100 g kg?1 fish oil groups. Conversely, in lard and plant oil groups, even at 100 g kg?1 dietary lipid level, feed intake and growth performance did not decrease, despite histological observation revealed hepatic pathology in these groups. Plasma triglyceride and cholesterol contents increased significantly in all 100 g kg?1 dietary lipid groups. In the comparison of hepatic FA β‐oxidation among three oil groups at 60 g kg?1 dietary lipid level, impaired mitochondrial and peroxisomal FA oxidation capacity was observed in fish oil group. The results confirmed the relatively low capacity of grass carp to utilize high dietary lipid, and furthermore excess HUFA intake will result in more serious adverse effects than other FA.  相似文献   

13.
This study was conducted to determine the effects of dietary highly unsaturated fatty acids (HUFA) on flame angelfish (Centropyge loriculus) reproduction, and egg and larval quality. In the experiment, formulated diets containing 1.8, 2.9 or 3.6% n‐3 HUFA were fed to flame angelfish broodstock (n = 4) for 5 months. Mean fecundity (daily egg production), egg fertilization rates and embryo viability were used as indicators of egg quality. In addition, mean egg diameter, oil globule diameter, per cent hatch, larval size at hatch, per cent survival to yolk exhaustion and larval size at yolk exhaustion were recorded for each treatment. Flame angelfish fed the diet containing 3.6% n‐3 HUFA exhibited significantly increased fecundity, fertilization rates and embryo viability than fish that were fed the other two formulated diets. Egg diameter, egg oil globule diameter, larval size at hatch, larval survival to yolk exhaustion and larval size at yolk exhaustion from the 3.6% n‐3 HUFA broodstock treatment group were not significantly different from those derived from the Control broodstock treatment. These data revealed that flame angelfish egg quality could respond rapidly (within weeks) to maternal dietary changes. Results from this study further support that dietary HUFA composition can significantly affect broodstock reproductive performance as well as subsequent performance of eggs and larvae.  相似文献   

14.
The influence of broodstock dietary lipids on egg quality and egg fatty acid composition throughout the spawning season of gilthead seabream was investigated. For this purpose, the fish were fed for 7 months either a control diet (diet C) or a diet deficient in n−3 highly unsaturated fatty acids (n−3 HUFA) but rich in both oleic (18:1n−9) and linolenic (18:3n−3) acids (diet D). Eggs spawned by both groups of fish were sampled at the beginning, middle and end of the spawning season and the fatty acid composition of their neutral (NL) and polar lipids (PL) determined. In the early season, percentages of fertilized and hatched eggs, relative proportions of NL and PL as well as their fatty acid compositions, were not affected by the lipid composition of the broodstock diet. However, the eggs spawned during the middle and late seasons showed marked differences among the two groups of fish, clearly reflecting the influence of dietary fatty acids. This influence was more evident in the neutral lipid fraction than in the polar lipids. No correlation was found between the number of buoyant eggs and eicosapentaenoic (20:5n−3, EPA), docosahexaenoic (22:6n−3, DHA) fatty acids or total n−3 HUFA contents in egg phospholipids. However, a negative correlation was detected when percentages of fertilized eggs were compared with the levels of 18:1n−9, 18:3n−3 and with the ratio 18:1n−9/n−3 HUFA present in the phospholipids. Our results indicate the importance of maintaining not only the level of n−3 HUFA in egg membrane phospholipids, but also the balance between n−3 HUFA and other fatty acids such as 18:1n−9 and 18:3n−3, in order to obtain a high spawning quality.  相似文献   

15.
A feeding experiment was conducted over 9 weeks with seven groups of 30 (fish per group) unpigmented gilthead seabream, Sparus aurata (L. 1875) (initial mean weight = 145.2 ± 12.3 g). Three experimental diets were prepared by adding to a basal diet free of carotenoid (final pigment content of around 40 mg per kg feed): (i) a biomass of the carotenogenic Chlorella vulgaris (Chlorophyta, Volvocales); (ii) a synthetic astaxanthin; and (iii) a mixture (1:1) of microalgal biomass and synthetic astaxanthin. At 3‐week intervals, five fish were sampled from each tank for total carotenoids analysis in skin and muscle. The carotenoid pigments (total amount = 0.4%) identified in the carotenogenic alga were lutein (0.3%), β‐carotene (1.2%), canthaxanthin (36.2%), astaxanthin, free and esterified forms (55.0%), and other pigments (7.3%). Carotenoid pigments were significantly deposited in the four skin zones studied during the feeding trial: the forefront between the eyes, the opercule, along the dorsal fin and in the abdominal area. In the muscle, regardless of the astaxanthin source, the amount of carotenoids measured was very low (less than 1 mg kg?1) and differences not significant. Moreover, no muscle pigmentation was evident, and there was no variation in the amount of carotenoid analysed in skin tissue, through the trial, for each treatment. It was concluded that supplementing the feed with C. vulgaris would be an acceptable practice in aquaculture to improve the market appeal of the gilthead seabream.  相似文献   

16.
The efficacy of using cottonseed oil (CSO) as a fish oil (FO) substitute in gilthead seabream (Sparus aurata) juveniles feed was evaluated. Fish (BWi 4.0 ± 2.9 g) were fed one of four isoproteic (~48% CP) and isolipidic (~18% L) diets for 9 weeks. Added oil was either FO (control diet, CTRL) or CSO, replacing 50% (CSO50 diet), 60% (CSO60 diet) and 70% (CSO70 diet) of dietary FO. Results indicated that FO replacement by CSO up to 60% level had no detrimental effects on growth or nutritive utilization and composition in fish muscles. Higher CSO intake (CSO70 diet, 56 g kg?1) led to a 16% reduction in weight gain, 14% in feed utilization (FCR) and 57% in muscle n‐3 long‐chain polyunsaturated fatty acids (lc PUFA) as compared with CTRL and to abundant accumulation of lipid within the hepatocytes. Use of CSO altered fatty acid (FA) profiles of muscle and liver. Data suggested utilization of linoleic acid (LOA) by fish and retain of docosahexaenoic acid (DHA) in muscles. Therefore, limits of CSO inclusion as the main source of supplementary dietary lipid, with no negative effects on fish performance or nutritive composition and utilization in muscles, are: 40–48 g kg?1 feed for gilthead seabream juveniles.  相似文献   

17.
We investigated the effect of high levels of n−3 highly unsaturated fatty acids (n−3 HUFA) in broodstock diet on egg quality and chemical composition of eggs of Japanese flounder. The broodstock were fed diets containing three levels of n−3 HUFA (2.1%, 4.8% or 6.2%) 2 months before and during the spawning period. No significant difference was found for weight gain of broodstock among the treatments. Egg production was highest in fish fed the highest level of n−3 HUFA. However, egg quality parameters, such as percentage of buoyant eggs, hatching rate and percentage of normal larvae, were significantly higher in the group fed the lowest n−3 HUFA diet. The fatty acid composition of eggs was influenced more markedly in the neutral lipid fraction than in the polar lipid fraction by dietary n−3 HUFA levels. Arachidonic acid (AA; 20:4n−6) and egg quality parameters both decreased with increasing dietary n−3 HUFA levels. The results suggest that a high level of n−3 HUFA in broodstock diet negatively affects egg quality of Japanese flounder.  相似文献   

18.
The aim of this study was to evaluate the effects of dietary phospholipids (PL) sources (fish gonad G‐PL and soybean lecithin S‐PL) and levels (50 and 90 g kg?1 dry matter) on the performances and fatty acid (FA) composition of pikeperch larvae. From day 10 to day 34 posthatching (p.h.), larvae were fed with three isoproteic and isolipidic microdiets. The best results of growth and skeletal development were related to a high phospholipid level regardless of their origin and FA profile. Jaw deformities seemed associated with high dietary highly unsaturated FA (HUFA) level. The optimal level of eicosapentaenoic acid and docosahexaenoic acid (EPA + DHA) for pikeperch larvae appeared to be around 12 g kg?1 (dry matter) associated with a PL level around 90 g kg?1. FA composition of diets and larvae revealed a better incorporation of arachidonic acid, EPA and DHA into PL fraction especially in larvae fed with soybean PL. Moreover, 34‐day‐old pikeperch larvae may have capability of converting 18 carbon n‐3 FA into the n‐3 HUFA. Hence, for pikeperch larvae, PL from plant origin were as efficient as those from marine fish origin.  相似文献   

19.
Triplicate groups of European sea bass (Dicentrarchus labrax L.), of initial weight 90 g, were fed four practical‐type diets in which the added oil was 1000 g kg?1 fish oil (FO) (control diet), 600 g kg?1 rapeseed oil (RO) and 400 g kg?1 FO, 600 g kg?1 linseed oil (LO) and 400 g kg?1 FO, and 600 g kg?1 olive oil (OO) and 400 g kg?1 FO for 34 weeks. After sampling, the remaining fish were switched to the 1000 g kg?1 FO diet for a further 14 weeks. Fatty acid composition of flesh total lipid was influenced by dietary fatty acid input but specific fatty acids were selectively retained or utilized. There was selective deposition and retention of docosahexaenoic acid (DHA; 22:6n‐3). Eicosapentaenoic acid (EPA; 20:5n‐3) and DHA were significantly reduced and linolenic (LNA; 18:3n‐3), linoleic (LA; 18:2n‐6) and oleic (OA; 18:1n‐9) acids significantly increased in flesh lipids following the inclusion of 600 g kg?1 RO, LO and OO in the diets. No significant differences were found among different treatments on plasma concentrations of prostaglandin E2 and prostaglandin F2α. Evaluation of non‐specific immune function, showed that the number of circulating leucocytes was significantly affected (P < 0.001), as was macrophage respiratory burst activity (P < 0.006) in fish fed vegetable oil diets. Accumulation of large amounts of lipid droplets were observed within the hepatocytes in relation to decreased levels of dietary n‐3 HUFA, although no signs of cellular necrosis was evident. After feeding a FO finishing diet for 14 weeks, DHA and total n‐3 HUFA levels were restored to values in control fish although EPA remained 18% higher in control than in the other treatments. This study suggests that vegetable oils such as RO, LO and OO can potentially be used as partial substitutes for dietary FO in European sea bass culture, during the grow out phase, without compromising growth rates but may alter some immune parameters.  相似文献   

20.
Dietary supplementation of phospholipids seems to be extremely important to promote growth and survival in fish larvae. Several studies also suggest the importance of n-3 highly unsaturated fatty acids (HUFA) rich phospholipids to further enhance larval performance. In the present study, four different diets were formulated in order to compare the effect of total dietary polar lipid contents, of soya bean lecithin supplementation and of feeding n-3 HUFA in the form of neutral or polar lipids on ingestion and incorporation of labelled fatty acids in gilthead seabream larvae. These diets were prepared including radiolabelled fatty acids from palmitoyl phosphatidylcholine, glycerol trioleate, free oleic acid (FOA) and free eicosapentaenoic acid (FEPA) and were fed to 25 day-old larvae. The results of these experiments showed that the elevation of the dietary polar lipid levels significantly improved microdiet ingestion, regardless of the origins of the polar lipids. This effect caused an improved incorporation of phosphatidylcholine fatty acids to the larval polar and total lipids (TL) as the dietary polar lipids increased. Nevertheless, a better incorporation of fatty acids from dietary polar lipids in comparison with that of fatty acids from dietary triglycerides into larval lipids was found in gilthead seabream, whereas a better utilization of dietary triglycerides fatty acids than dietary free fatty acids could also be observed. Besides, the presence of n-3 HUFA rich neutral lipids (NL) significanlty increased the absorption efficiency of labelled oleic acid from dietary triglycerides, but the presence of n-3 HUFA rich polar lipids, particularly improved the incorporation of FEPA. This fatty acid was preferentially incorporated into larval polar lipids in comparison with FOA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号