首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The reproductive migration of anadromous salmonids through estuarine waters is one of the most challenging stages of their life cycle, yet little is known about the environmental and physiological conditions that influence migratory behaviour. We captured, sampled tissues, tagged and released 365 sockeye salmon (Oncorhynchus nerka) homing through inner coastal waters towards the Fraser River, British Columbia, Canada. Biotelemetry was used to assess the behaviour of individual sockeye salmon approaching estuarine waters and at river entry, which were related to both fish physiological condition at release and to prevailing environmental conditions. Sockeye salmon tended to stay close to the shore, migrated during the day, and movements were related to tide. Sockeye salmon migration rate was linked to wind‐induced currents, salinity and an individual's physiological state, but these factors were specific to location and stock. We propose that wind‐induced currents exposed sockeye salmon entering the estuary to stronger olfactory cues associated with Fraser River water, which in turn resulted in faster migration rates presumably due to either an increased ability for olfactory navigation and/or advanced reproductive schedule through a neuroendocrine response to olfactory cues. However, once the migration had progressed further into more concentrated freshwater of the river plume, sockeye salmon presumably used wind‐induced currents to aid in movements towards the river, which may be associated with energy conservation. Results from this study improve our biological understanding of the movements of Fraser River sockeye salmon and are also broadly relevant to other anadromous salmonids homing in marine environments.  相似文献   

2.
We examined spatial correlations for three coastal variables [upwelling index, sea surface temperature (SST), and sea surface salinity (SSS)] that might affect juvenile salmon ( Oncorhynchus spp.) during their early marine life. Observed correlation patterns in environmental variables were compared with those in survival rates of pink ( O. gorbuscha ), chum ( O. keta ), and sockeye ( O. nerka ) salmon stocks to help identify appropriate variables to include in models of salmon productivity. Both the upwelling index and coastal SST were characterized by strong positive correlations at short distances, which declined slowly with distance in the winter months, but much more rapidly in the summer. The SSS had much weaker and more variable correlations at all distances throughout the year. The distance at which stations were no longer correlated (spatial decorrelation scale) was largest for the upwelling index (> 1000 km), intermediate for SST (400–800 km in summer), and shortest for SSS (< 400 km). Survival rate indices of salmon showed moderate positive correlations among adjacent stocks that decreased to zero at larger distances. Spatial decorrelation scales ranged from approximately 500 km for sockeye salmon to approximately 1000 km for chum salmon. We conclude that variability in the coastal marine environment during summer, as well as variability in salmon survival rates, are dominated by regional scale variability of several hundred to 1000 km. The correlation scale for SST in the summer most closely matched the observed correlation scales for survival rates of salmon, suggesting that regional-scale variations in coastal SST can help explain the observed regional-scale covariation in survival rates among salmon stocks.  相似文献   

3.
Late-spawning Fraser River sockeye salmon, Oncorhynchus nerka , stocks have suffered significant prespawn mortality associated with an unusually early freshwater migration pattern and the myxosporean parasite Parvicapsula minibicornis . Surveys of migrating adult salmon from several spawning populations were conducted in 1999 and 2000 to determine the extent of infection with P. minibicornis , when and where the parasite first becomes detectable during migration, and whether early migrating stocks might be used as sentinels to assess risk of infection in late-spawning stocks. Posterior kidney, preserved in 95% ethanol, was examined for P. minibicornis in stained histological sections and using a polymerase chain reaction (PCR) test. The prevalence of this parasite in all Fraser River sockeye salmon stocks examined was high (range 47–100% infected). In contrast, P. minibicornis was not detected in the fish tested from the two sockeye salmon stocks outside the Fraser River drainage in either 1999 or 2000. The parasite was also not detected histologically or by PCR in the kidney tissue of the fish from the Fraser River that were sampled in salt water or early during their freshwater migration up the river. These findings and the progression in the prevalence and intensity of infection as the fish from three stocks (early Stuart, Weaver Creek and Cultus Lake) were monitored over time, suggest salmon acquired the parasite either in the lower Strait of Georgia or in the lower Fraser River before the confluence of the Harrison River. In both 1999 and 2000 the parasite was present in all Fraser River sockeye salmon stocks sampled, which suggests that early Stuart salmon may be valuable as a sentinel stock for the presence of the parasite in later-spawning stocks.  相似文献   

4.
Horizontal ocean transport can influence the dynamics of higher‐trophic‐level species in coastal ecosystems by altering either physical oceanographic conditions or the advection of food resources into coastal areas. In this study, we investigated whether variability in two North Pacific Current (NPC) indices was associated with changes in productivity of North American Pacific salmon stocks. Specifically, we used Bayesian hierarchical models to estimate the effects of the north‐south location of the NPC bifurcation (BI) and the NPC strength, indexed by the North Pacific Gyre Oscillation (NPGO), on the productivity of 163 pink, chum, and sockeye salmon stocks. We found that for salmon stocks located in Washington (WA) and British Columbia (BC), both the BI and NPGO had significant positive effects on productivity, indicating that a northward‐shifted bifurcation and a stronger NPC are associated with increased salmon productivity. For the WA and BC regions, the estimated NPGO effect was over two times larger than the BI effect for pink and chum salmon, whereas for sockeye salmon the BI effect was 2.4 times higher than the NPGO. In contrast to WA and BC stocks, we found weak effects of both horizontal ocean transport processes on the productivity of salmon stocks in Alaska. Our results indicated that horizontal transport pathways might strongly influence population dynamics of Pacific salmon in the southern part of their North American ranges, but not the northern part, suggesting that different environmental pathways may underlie changes in salmon productivity in northern and southern areas for the species under consideration.  相似文献   

5.
Using path analyses, we investigated relationships between size at release from hatcheries, the early marine growth of juveniles, and adult return rates for chum salmon from five river stocks of Hokkaido, Japan, in relation to sea surface temperature during ocean residence. Marine growth was estimated using scales collected from 11 760 adults of age 0.3 (1980–2004). The growth and survival of each stock appeared to have a different suite of regulatory processes. Interannual variability in return rates was mainly regulated by size at release in two stocks from the Sea of Okhotsk. A similar relationship was found in one stock from the Sea of Japan, but growth during coastal residency also affected their return rates. In two stocks from the Pacific coast of Hokkaido, variability in return rates was not related to size at release or to the coastal growth of juveniles, but with offshore growth in the Sea of Okhotsk, the nursery area for juveniles after leaving Japanese coastal waters. Whereas coastal growth tended to be negatively correlated with size at release in some stocks, offshore growth was positively associated with the August–November sea surface temperature in all stocks. This study confirmed that mortality of juvenile salmon occurred in two phases, during the coastal residency and the late period of the growing season, but the relative importance of both phases varied by stock and region, which probably regulated year‐class strength of Hokkaido chum salmon.  相似文献   

6.
Computer simulations were used to investigate whether compass orientation is a sufficient guidance mechanism for sockeye salmon migrating to the Fraser River from their ocean foraging grounds in the north-east Pacific Ocean. Daily surface ocean currents, simulated by the ocean surface current simulations (OSCURS) model, were used to test the influence of currents on the return oceanic migration of Fraser River sockeye salmon. High seas tagging and coastal recover data of Fraser River sockeye salmon were used for the migration simulations. Surface currents were shown to increase the speed of the homeward-migrating sockeye salmon, as well as to deflect the fish in a north-eastward direction. In spite of ocean currents, all Fraser River sockeye salmon were able to reach their destination with a fixed direction and bioenergetically efficient swimming speed when migration was delayed until the last month at sea. Compass orientation alone was shown to be a sufficient direction-finding mechanism for Fraser River sockeye salmon.  相似文献   

7.
We examined somatic energy patterns in two stocks (Chilko and Early Stuart) of adult Fraser River (British Columbia, Canada) sockeye salmon (Oncorhynchus nerka), collected at the end of their ocean residency, spanning years across different climate regimes. Both stocks had high levels of somatic energy in years with high open ocean productivity (1956, 1957, 2001 and 2002), and relatively low levels in years with poor open ocean productivity (1999 and 2000). For Early Stuart sockeye, energy levels in 1999 and 2000 were approximately 15% lower (~1.5 MJ kg?1) than that in the 1950s, an amount of energy equivalent to that necessary for migrating 600 km upriver. In recent years (2001 and 2002), energy levels have increased by about 9% for both stocks. Low energy levels at the onset of upriver migration, particularly in years of energetically demanding in‐river conditions, such as high flows or temperatures, are likely to contribute to prespawning and en route mortality in Fraser sockeye.  相似文献   

8.
In August 2008 the Kasatoshi volcano in the Aleutian archipelago erupted. Prevailing winds carried volcanic ash to the Gulf of Alaska, where its soluble iron dissolved and initiated a widespread phytoplankton bloom. Two years later, the abundance of sockeye salmon (Oncorhynchus nerka) returning to spawn in the Fraser River was larger than any observed since 1913. Kasatoshi's influence on growth and survival has been proposed as the ultimate cause of the abundant return. However, when relevant data are brought to bear on the hypothesis, it shows that: (1) survival of the abundant sockeye salmon cohort was unremarkable when compared with the historical record; (2) without an accompanying volcano, survival of the returns in 2011 was about the same as in 2010; (3) parental abundance that spawned the abundant return in 2010 was the sixth largest since 1948; (4) during their first summer at sea, sockeye salmon are not known to migrate in the offshore region where the anomalous chlorophyll bloom occurred; (5) an older cohort that was likely exposed to the chlorophyll bloom had the second lowest productivity on record when it returned in 2009; (6) immature sockeye salmon do not feed on diatoms, so any trophodynamic benefit derived from excess chlorophyll in mid‐to late August 2008 would have to have found a rapid trophic pathway to sockeye salmon on the continental shelf; and (7) no other populations of sockeye salmon or other species of salmon that are known to rear in the same region had unexpectedly high returns.  相似文献   

9.
Previous research has documented two main migratory routes of juvenile sockeye salmon (Oncorhynchus nerka) through the Strait of Georgia, British Columbia, Canada, and large interannual variability in marine survival rates of the Chilko Lake stock. Simulation models were used to explore the influence of surface currents on the migratory route of juvenile sockeye salmon (smolts) through the Strait of Georgia. We used a model of downstream migration to generate daily numbers of Chilko Lake sockeye salmon smolts entering the Strait of Georgia, based on daily counts of smolts leaving the rearing lake. A numerical hydrodynamic model (driven by surface wind, tide, and Fraser River discharge) hindcasted surface currents in the Strait of Georgia on a 2 km × 2 km grid. A smolt migration model simulated fish moving through the Strait with different compass-oriented migratory behaviours (i.e. swimming speed and directional orientation) within the time-varying surface advection field. Results showed that surface currents within the Strait of Georgia can affect the migratory route of sockeye salmon smolts in spite of their large size (8 cm). Wind is the forcing mechanism primarily responsible for determining which migratory route would be used. Under prevailing wind conditions (i.e. toward the north-west), most sockeye salmon smolts would use the eastern migratory route; however, relatively brief south-eastward wind events (lasting about 2 days) would force most smolts into the western migratory route. Given the heterogeneity of food for salmon within the Strait, we hypothesize that wind-driven variability in the annual proportion of smolts that use the western and eastern migratory routes in the Strait of Georgia affects early marine survival rates of Fraser River sockeye salmon.  相似文献   

10.
Environmental change is occurring at unprecedented rates in many marine ecosystems. Yet, environmental effects on fish populations are commonly assumed to be constant across time. In this study, I tested whether relationships between ocean conditions and productivity of North American sockeye salmon (Oncorhynchus nerka) stocks have changed over the past six decades. Specifically, I evaluated the evidence for non‐stationary relationships between three widely used ocean indices and productivity of 45 sockeye salmon stocks using hierarchical Bayesian models. The ocean indices investigated were the Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), and sea surface temperature (SST). I found partial support for time‐varying salmon–ocean relationships. Non‐stationary relationships were strongest for the NPGO and weaker for the SST and PDO indices. Productivity–NPGO correlations tended to shift gradually over time with opposite trends for stocks in British Columbia (B.C.) and western Alaska; for B.C. stocks, the NPGO correlations shifted from significantly negative prior to 1980 to significantly positive after 1990, whereas for western Alaska stocks, the correlations shifted from positive to negative. Productivity–SST correlations showed declining trends for B.C. and Gulf of Alaska stocks, that is, correlations became more negative (B.C.) or less positive (Gulf of Alaska) over time. For the PDO, correlations weakened during the 1980s for western Alaska and B.C. stocks. Overall, these results provide evidence for time‐varying relationships between salmon productivity and environmental conditions over six decades, highlighting the need to recognize that historical responses of salmon populations to environmental change may not be indicative of future responses.  相似文献   

11.
Piscirickettsia salmonis, the aetiological agent of salmonid rickettsial septicaemia (SRS), is a global pathogen of wild and cultured marine salmonids. Here, we describe the development and application of a reproducible, standardized immersion challenge model to induce clinical SRS in juvenile pink (Oncorhynchus gorbuscha), Atlantic (Salmo salar) and sockeye salmon (O. nerka). Following a 1‐hr immersion in 105 colony‐forming units/ml, cumulative mortality in Atlantic salmon was 63.2% while mortality in sockeye salmon was 10%. Prevalence and levels of the bacterium in kidney prior to onset of mortality were lower in sockeye compared with Atlantic or pink salmon. The timing and magnitude of bacterial shedding were estimated from water samples collected during the exposure trials. Shedding was estimated to be 82‐fold higher in Atlantic salmon as compared to sockeye salmon and peaked in the Atlantic salmon trial at 36 d post‐immersion. These data suggest sockeye salmon are less susceptible to P. salmonis than Atlantic or pink salmon. Finally, skin lesions were observed on infected fish during all trials, often in the absence of detectable infection in kidney. As a result, we hypothesize that skin is the primary point of entry for P. salmonis during the immersion challenge.  相似文献   

12.
In high‐latitude lakes, air temperature is an important driver of ice cover thickness and duration, which in turn influence water temperature and primary production supporting lake consumers and predators. In lieu of multidecadal observational records necessary to assess the response of lakes to long‐term warming, we used otolith‐based growth records from a long‐lived resident lake fish, lake trout (Salvelinus namaycush), as a proxy for production. Lake trout were collected from seven deep, oligotrophic lakes in Lake Clark National Park and Preserve on in southwest Alaska that varied in the presence of marine‐derived nutrients (MDN) from anadromous sockeye salmon (Oncorhynchus nerka). Linear mixed‐effects models were used to partition variation in lake trout growth by age and calendar‐year and model comparisons tested for a mean increase in lake trout growth with sockeye salmon presence. Year effects from the best mixed‐effects model were subsequently compared to indices of temperature, lake ice, and regional indices of sockeye salmon escapement. A strong positive correlation between annual lake trout growth and temperature suggested that warmer springs, earlier lake ice break‐up, and a longer ice‐free growing season increase lake trout growth via previously identified bottom‐up increases in production with warming. Accounting for differences in the presence or annual escapement of sockeye salmon with available data did not improve model fit. Collectively with other studies, the results suggest that productivity of subarctic lakes has benefitted from warming spring temperatures and that temperature can synchronise otolith growth across lakes with and without sockeye salmon MDN.  相似文献   

13.
The importance of interspecific competition as a mechanism regulating population abundance in offshore marine communities is largely unknown. We evaluated offshore competition between Asian pink salmon and Bristol Bay (Alaska) sockeye salmon, which intermingle in the North Pacific Ocean and Bering Sea, using the unique biennial abundance cycle of Asian pink salmon from 1955 to 2000. Sockeye salmon growth during the second and third growing seasons at sea, as determined by scale measurements, declined significantly in odd‐numbered years, corresponding to years when Asian pink salmon are most abundant. Bristol Bay sockeye salmon do not interact with Asian pink salmon during their first summer and fall seasons and no difference in first year scale growth was detected. The interaction with odd‐year pink salmon led to significantly smaller size at age of adult sockeye salmon, especially among younger female salmon. Examination of sockeye salmon smolt to adult survival rates during 1977–97 indicated that smolts entering the ocean during even‐numbered years and interacting with abundant odd‐year pink salmon during the following year experienced 26% (age‐2 smolt) to 45% (age‐1 smolt) lower survival compared with smolts migrating during odd‐numbered years. Adult sockeye salmon returning to Bristol Bay from even‐year smolt migrations were 22% less abundant (reduced by 5.9 million fish per year) compared with returns from odd‐year migrations. The greatest reduction in adult returns occurred among adults spending 2 compared with 3 years at sea. Our new evidence for interspecific competition highlights the need for multispecies, international management of salmon production, including salmon released from hatcheries into the ocean.  相似文献   

14.
Abstract– In contrast to the well-known "lake-type" sockeye salmon, two additional anadromous life-history types have been recognized within the species: 'river-type' sockeye salmon whose juveniles spend 1 or 2 years in off-channel river habitats prior to migrating to sea, and "sea-type" sockeye salmon that initially rear in similar river habitats yet migrate to sea as underyearlings. Persistent populations of river-/sea-type sockeye salmon occur in small numbers throughout the species'range in North America but are usually associated with glacier-fed rivers. We found published and unpublished records showing that riverine-spawning sockeye salmon occur in 11 rivers in western Washington, USA, that don't have access to juvenile lake-rearing habitat. Evidence of persistent spawning was strongest for the Nooksack and Skagit rivers in northern Puget Sound. We analyzed allozyme frequency differentiation in 26 laketype and 12 river-/sea-type populations of sockeye salmon in North America, ranging from northern Puget Sound, Washington (including 3 in the Nooksack and Skagit rivers) to northern Southeast Alaska. Across this 2000 km range, river-/sea-type sockeye salmon showed very little genetic differentiation between populations, much less than that displayed by the highly divergent lake-type sockeye salmon. Genetic similarity among river-/sea-type sockeye salmon in this study is likely a result of common ancestry and a high level of historical gene flow among river-/sea-type sockeye salmon populations.  相似文献   

15.
Effect of wind stress on the annual catch of Japanese anchovy Engraulis japonicus off northwestern Kyushu for the period between 1963 and 2009 was investigated. Regime shift analysis detected several step changes in catch and environmental variables. Since the mid-1980s, the anchovy catch in the coastal fishery zones has declined, while the catch in the offshore zone has increased. The decline of catch in the coastal zones showed a significant correlation with the long-term variations in prevailing north-northeastward wind stress over the Goto-Nada Sea during spring spawning season. The results indicated that weakened north-northeastward winds caused the recent low recruitment of anchovy through low levels of wind-induced eggs and larval transport from the offshore spawning ground to the coastal nursery areas, resulting in the potential shift of nursery area to the northwestern offshore region. Thus, as well as the growth-favorable ambient temperature, transport process would play a key role on long-term fluctuations in anchovy abundance in these coastal seas.  相似文献   

16.
Interannual variation in the timing of the return migration to fresh water of adult sockeye salmon, Oncorhynchus nerka, from 46 populations throughout the species North American range was examined in a broad analysis of how timing patterns are affected by marine and freshwater conditions. Migration timing data (measured at various points along the migration, including just prior to freshwater entry, just after freshwater entry, and near the spawning grounds) were examined for correlations with sea‐surface temperatures (SST) prior to migration and to freshwater temperatures and flows during migration. Following a spring–summer period with warm SST, populations from southwestern Alaska tended to return early, Fraser River populations returned late, and populations from other regions showed no consistent patterns. Similarities between interannual timing of both nearby and distant populations indicated the presence of common or coincidental influences on timing. When riverine conditions related to timing, high flows and low temperatures were associated with late migrations, low flows and high temperatures were associated with early migrations. However, even counting stations at upriver locations showed correlations with SST. Notwithstanding some inconsistencies among the many populations examined and the indirect nature of the inferences, the results supported the hypotheses that (i) interannual variations in salmon distributions at sea reflect temperature conditions, and (ii) the date when salmon initiate homeward migration is a population‐specific trait, largely unaffected by the fish's location at sea.  相似文献   

17.
Extreme variability in abundance of California salmon populations is often ascribed to ocean conditions, yet relatively little is known about their marine life history. To investigate which ocean conditions influence their distribution and abundance, we surveyed juvenile Chinook salmon (Oncorhynchus tshawytscha) within the California Current (central California [37°30′N) to Newport, Oregon (44°00′N]) for a 2‐week period over three summers (2010–2012). At each station, we measured chlorophyll‐a as an indicator of primary productivity, acoustic‐based metrics of zooplankton density as an indicator of potential prey availability and physical characteristics such as bottom depth, temperature and salinity. We also measured fork lengths and collected genetic samples from each salmon that was caught. Genetic stock identification revealed that the majority of juvenile salmon were from the Central Valley and the Klamath Basin (91–98%). We constructed generalized logistic‐linear negative binomial hurdle models and chose the best model(s) using Akaike's Information Criterion (AIC) to determine which covariates influenced the salmon presence and, at locations where salmon were present, determined the variables that influenced their abundance. The probability of salmon presence was highest in shallower waters with a high chlorophyll‐a concentration and close to an individual's natal river. Catch abundance was primarily influenced by year, mean fork length and proximity to natal rivers. At the scale of sampling stations, presence and abundance were not related to acoustic indices of zooplankton density. In the weeks to months after ocean entry, California's juvenile Chinook salmon population appears to be primarily constrained to coastal waters near natal river outlets.  相似文献   

18.
Using a salmon migration model based on the assumption that swimming orientation is temperature dependent, we investigated the determining factors of the migration of juvenile and immature chum salmon (Oncorhynchus keta) in the North Pacific. We compared the predictions of the model with catch data of immature and juvenile chum salmon collected by Japanese research vessels from 1972 to 1999. The salmon migration model reproduced the observed distributions of immature chum salmon and indicates that passive transport by wind‐driven and geostrophic currents plays an important role in the eastward migration of Asian salmon. These factors result in a non‐symmetric distribution of Asian and North American chum salmon in the open ocean. The directional swimming component contributes to the northward migration in summer. The model results indicate that during the first winter Asian chum salmon swim northward against the southward wind‐driven currents to stay in the western North Pacific. This suggests that Asian chum salmon require more energy to migrate than other stocks during the first winter of their ocean life.  相似文献   

19.
We examine the oft-quoted relationship between the migration of Fraser River sockeye salmon around the northern end of Vancouver Island and sea surface temperatures. We examine the methods used to estimate the northern diversion and conclude that the estimates have a sufficiently low expected error to form a useful representation of sockeye salmon behaviour. The well-known relationship with Kains Island sea surface temperature is explored and problems are pointed out. In particular, we explore why Kains Island temperatures are good predictors of salmon behaviour in May when the sockeye can be over 1000 km away, but the coastal temperatures are poor predictors in July to September when the salmon are actually close by. We show that a more robust predictor can be developed using open ocean temperature fields and we show why Kains Island fails as a predictor during the summer months. Finally, we show by cross-validation that the northern diversion is predictable with an r.m.s. error of about 0.1.  相似文献   

20.
We hypothesize that the interannual variability of the Northeast Pacific Ocean circulation affects the latitude of landfall and migration speed of adult sockeye salmon ( Oncorhynchus nerka ) returning to the Fraser River. The Ocean Surface Current Simulations (OSCURS) model was used to simulate the return migration paths of compass-orientated sockeye for two years: 1982, which had a weak Alaska Gyre circulation and low Northern Diversion Rate (defined as the percentage of sockeye returning around the north end of Vancouver Island instead of the south end); and 1983, with a strong circulation and high northern diversion rate. The majority of model sockeye made landfall further north in 1983 than in 1982. The difference in landfall between 1983 and 1982 depended on the migration start position, swim speed, direction of orientation, and migration start date. The currents assisted the shoreward migration of sockeye starting from south of 55o N and impeded the migration of sockeye starting from further north. The simulation results were consistent with our hypothesis and suggest that the effects of the Northeast Pacific currents must be included in sockeye migration models. We propose a conceptual model for the prediction of the Northern Diversion Rate that includes Blackbourn's (1987) temperature-displacement model, enhanced to include the effects of currents during the ocean phase of migration, and the use of two predictive formulas for the coastal phase of migration: the formula of Xie and Hsieh (1989) for sockeye approaching Vancouver Island directly from the ocean, and a yet-to-be-developed formula for sockeye approaching from within the Coastal Downwelling Domain directly to the north of Vancouver Island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号