首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of extender composition and freezing rate on motility and fertility of frozen‐thawed Arctic char, Salvelinus alpinus, spermatozoa were investigated. Three freezing rates, two semen diluents and three cryoprotectants were tested. Semen frozen in 0.3 mol L?1 glucose diluent with 10% methanol as a cryoprotectant or in a diluent described by Lahnsteiner with 10%N,N‐dimethylacetamide (DMA) resulted in the highest sperm motility. Fertility was the highest for semen frozen in a glucose–methanol extender but was not significantly different than that for semen frozen in Lahnsteiner's diluent with 10% DMA. Dimethyl sulphoxide (DMSO) at 10% was a relatively ineffective cryoprotectant with either semen diluent. Semen frozen at 6 cm above the surface of liquid nitrogen resulted in a higher post‐thaw sperm motility and fertility than semen frozen at 5 cm. The addition of 7% fresh egg yolk to glucose diluent containing methanol or DMSO did not improve the fertility of frozen‐thawed spermatozoa. However, the addition of 7% fresh egg yolk to glucose–DMA extender significantly improved the fertilization percentages of frozen‐thawed spermatozoa. In conclusion, dilution of semen 1:3 in 0.3 mol L?1 glucose with 10% methanol and freezing 6 cm above the surface of liquid nitrogen (freezing rate of 40±8°C min?1, mean±SD from ?5 to ?55°C) is a promising protocol for cryopreservation of Arctic char semen.  相似文献   

2.
The effects of straws volume, cryoprotectants and thawing temperatures were evaluated on the sperm quality of cachama blanca Piaractus brachypomus (Cuvier), an important Colombian fish species. Sexually mature fish were induced to ovulation or spermiation with a carp pituitary extract. A pool of suitable sperm samples was diluted in glucose, egg yolk, dimethyl sulphoxide (DMSO‐10%), methanol (MET‐10%) or ethylene glycol (ETG‐5%) and packed in 0.5, 2.5 or 5.0 mL straws and frozen in nitrogen vapour. The thawing process was performed in a 35 or an 80 °C water bath. The fertility was evaluated after 6 h post fertilization. The highest motility percentage (33 ± 3%) was observed with sperm cryopreserved with DMSO, packed in 5 mL straws and thawed at 35 °C. The treatments with DMSO and MET packed in 0.5 and 5.0 mL straws and thawed at 35 °C showed the highest fertility (higher than 71%) and the lowest fertility was obtained with MET‐2.5 mL (9 ± 5%). In all the treatments, a significant decrease in the sperm quality was observed at 80 °C. Sperm cryopreserved with DMSO‐10% or MET‐10%, packed in 2.5 or 5.0 mL straws are suitable to achieve acceptable fertilization and to fertilize high amounts of eggs.  相似文献   

3.
Effectiveness and efficiency of frozen sperm on fertilization and hatching success of eggs from silver barb was examined in relation to cryoprotectants, freezing rate and storage period. Sperm was diluted in calcium‐free Hank's balanced salt solution, equilibrated with dimethylsulphoxide (DMSO), propylene glycol, sucrose or methanol at 5%, 10%, 15% or 20% final concentrations, and frozen in 250‐μL straws using a one‐step freezing procedure (1, 5 and 8°C min?1 from 25 to ?40°C). Highest post‐thaw sperm motility was found from a treatment using 10% DMSO and 5°C min?1 (82.2 ± 2.1%), similar to that of 10% DMSO and 8°C min?1 (87.8 ± 3.2%). Post‐thaw motility of sperm frozen at 5 or 8°C min?1 was significantly higher than 1°C min?1. Relative sperm motility declined significantly after 10 months of cryostorage while viability did not change during a 12‐month cryostorage. Average fertilization rates of sperm after 1 and 4 months of storage were 64.5 ± 4.6% and 61.3 ± 3.4%, respectively, similar to those of fresh sperm (69.6–72.3%). Hatching rates of cryopreserved sperm (45.4–51.2%) were similar to those of fresh sperm (51.8–57.8%). This study developed suitable methods for cryopreservation of silver barb sperm that can be used to facilitate hatchery operation.  相似文献   

4.
In our study, we used a full factorial analysis of variance design to examine the effects of diluent [Mounib's sucrose‐based diluent+hen's egg yolk (EY) and Hanks' balanced salt solution (HBSS)+EY], freezing rate (?2.5, ?5.0 and ?7.5 °C min?1) and thawing rate (2.5, 5.0 and 7.5 °C min?1) on motility and velocity of Atlantic cod sperm cryopreserved in 2.5 mL cryogenic straws. We found that post‐thaw sperm performance was strongly influenced by the presence of higher‐order interactions of the factors we tested. For all models broken down by diluent, the 2.5 °C min?1 thawing rate had the lowest sperm motility recovery index. Mounib's sucrose‐based diluent+EY had the highest motility recovery index at all thawing rates. Mean per cent motility for fresh sperm (87.7±2.9%) was not significantly different than of sperm cryopreserved using Mounib's sucrose‐based diluent+EY, frozen at ?2.5 °C min?1 and thawed at 5.0 °C min?1 (77.1±2.9%). For Mounib's sucrose‐based diluent+EY, velocity was significantly higher with sperm thawed at 7.5 °C min?1, than sperm thawed at 2.5 °C min?1, while thawing rate had no effect for HBSS+EY. Our findings have implications for cod mariculture and aiding in conservation efforts for a dominant marine fish species.  相似文献   

5.
Cryopreservation of Arctic charr Salvelinus alpinus (L.) semen was investigated using three diluents, three cryoprotectants [10% dimethyl sulphoxide (DMSO), 10% dimethylacetamide (DMA) or 20% glycerol] and three sizes of straw. The three diluents and three cryoprotectants were combined, resulting in nine extenders. One part semen was added to three parts extender, and motility was evaluated to assess the toxicity of six of the extenders. Semen in nine extenders was frozen in 0.5‐mL straws using liquid nitrogen vapour. Semen extended in 0.3 m glucose and each of the cryoprotectants was also frozen in 0.5‐mL, 1.7‐mL (flat) or 2.5‐mL straws. The freezing rate in each size of straw was measured. Fertility trials were conducted to determine the post‐thaw viability of the frozen semen. The motility of activated spermatozoa was higher in the DMA and DMSO extenders than in the glycerol extender. For the trial using 0.5‐mL straws, post‐thaw fertility results were higher for all extenders containing DMSO, or 0.3 m glucose and DMA, than for all other combinations of diluent and cryoprotectant. For the straw size comparison, the highest fertility was obtained for the 1.7‐mL straw using either DMSO or DMA and for the 2.5‐mL straw using DMSO. For all cryopreservation trials, fertility was low for extenders containing glycerol.  相似文献   

6.
This study investigated factors key to the development of sperm cryopreservation in the greenlip abalone Haliotis laevigata using a programmable freezing technique, including (1) permeable cryoprotectant agent (CPA) selection; (2) cooling rate; (3) endpoint temperature; (4) thawing temperature; (5) sperm to egg ratio and (6) sugar, vitamin and amino acid supplementation, using sperm motility, fertilization rate, plasma membrane integrity, mitochondrial membrane potential or acrosome integrity as quality assessment indicators. Results showed that among the permeable CPAs evaluated, 10% dimethyl sulfoxide was the most suitable for greenlip abalone sperm cryopreservation. The highest post‐thaw sperm motility was achieved with the sperm being frozen at a cooling rate of ?5°C min?1 to ?30°C from 0°C and thawed and recovered in 40°C and 18°C seawater baths respectively. The addition of sugars in 10% dimethyl sulfoxide did not significantly improve the post‐thaw sperm motility and fertilization rate. The addition of 0.6% glycine, 0.2% taurine or 0.02% L‐ascorbic acid, on the other hand, significantly improved the post‐thaw sperm motility. However, only the addition of 0.6% glycine improved the post‐thaw sperm fertilization rate, which was further confirmed by the improvement of the post‐thaw sperm mitochondrial membrane potential and acrosome integrity through flow cytometry analysis.  相似文献   

7.
The summer flounder, Paralichthys dentatus L., is a high‐value species and considerable research has been conducted to determine practices conducive for its culture. As milt can be limited in this species, experiments were conducted to develop a practical sperm cryopreservation protocol for hatchery use. Two dilution ratios (1:2 and 1:4; sperm:extender), 2 diluents (saline and sucrose‐based), 2 cryoprotectants (10% DMSO and 12% glycerol) and 3 freezing rates (?5, ?10 and ?15°C min?1) were evaluated using differential staining to assess post‐thaw sperm survival. Seven combinations of the factors examined reduced post‐thaw viability by less than 30%. The average viability of sperm from fresh, pooled flounder milt (67.2 ± 2.9%) was not different from that of thawed milt diluted 1:4 with sucrose diluent (10% DMSO) frozen at ?5°C min?1 (38.4 ± 7.7%) and fertilization and hatch success were not different in trials using fresh or thawed, cryopreserved sperm. From these experiments a practical sperm cryopreservation method was developed, but further refinement of the freezing protocol is necessary to optimize results.  相似文献   

8.
The commercial‐scale production of fish by use of artificial (induced) spawning would require reliable, large‐volume sources of sperm. Cryopreservation can be used to preserve and store sperm within commercial and research germplasm repositories, but is limited in its application to aquaculture. Straw volume and cooling chamber size restrict the quantity of sperm that can be frozen, and straws must be filled by hand. In contrast, the dairy industry has refined methods for freezing of bull sperm, including automation of straw filling and the use of large cooling chambers. These methods could be used for commercial‐scale cryopreservation of fish sperm, although application would require testing. To supply sperm in large volumes, bags originally developed for swine semen could be cooled using dairy protocols and used as a container for fish sperm. The current study documented the use of commercial‐scale dairy cryopreservation techniques for the production of hybrids of channel catfish Ictalurus punctatus (female) by blue catfish Ictalurus furcarus. Four cryoprotectants (methanol, dimethyl sulfoxide, dimethyl acetamide, and glycerol) were initially evaluated for use with blue catfish sperm. During May 2000 and March to April 2001, suspensions of blue catfish sperm were cryopreserved with 10% methanol in 0.5‐mL French straws and in commercial swine semen bags (Cochette* bags, IMV International. Minneapolis, Minnesota, USA). Cryopreservation took place at a dairy breeding cooperative, using technology employed for bull semen. Sperm motility before freezing was 26 ± 18% during Year 1 (2000) and 62 ± 30% during 2001. Sperm were thawed at 40 C and used to fertilize the eggs of channel catfish (yielding hybrids). Motility after thawing for sperm frozen in 0.5‐mL straws was 11 ± 10% during 2000 and 50 ± 24% during 2001. Motility after thawing was 41 ± 17% for sperm frozen in swine semen bags in 5‐mL aliquots and 43 ± 10% for sperm frozen in 10‐mL aliquots. Neurulation of eggs fertilized with thawed sperm from straws was 83 ± 13% during 2000 and 54 ± 27% during 2001. Neurulation was 57 ± 24% using sperm frozen in swine semen bags in 5‐mL aliquots and 55 ± 10% using sperm frozen in 10‐mL aliquots. There was no correlation between sperm motility before freezing (in 0.5‐mL straws) and after thawing during 2000 (r= 0.52) or during 2001 (r= 0.49). In addition, there was no correlation between initial motility and neurulation of channel catfish eggs fertilized using thawed sperm during 2000 (r= 0.14) or during 2001 (r= 0.29). Sperm of blue catfish can thus be cryopreserved at a commercial scale using dairy protocols and can be made available for the production of hybrid catfish when viable eggs are available.  相似文献   

9.
Three experiments were performed to develop protocols for cryopreservation of Persian sturgeon Acipenser persicus, sperm. In the first experiment, sperm from six males was individually split in three subsamples and cryopreserved using Modified Tsvetkova's extender (mT) supplemented with dimethyl sulfoxide (DMSO), methanol (MeOH), glycerol (Gly) and ethylene glycol (EG) at concentration of 5%, 10%, 15% and 20%. In the second set of experiments, the effects of six equilibration times (0, 5, 10, 20, 40 and 60 min) and dilution ratios (volume sperm: volume extender 1:0.5, 1:1, 1:2, 1:3, 1:5 and 1:10) and the additive advantage of bovine serum albumin (BSA; 0, 2.5, 5 and 10 mg mL?1) and ascorbic acid (0, 2.5, 5 and 10 U mL?1), on the post‐thaw survival of sperm (triplicate set of six fish) were evaluated. Then, sperm was diluted in 1:1 mT extender with 10 mg mL?1 BSA with selected cryoprotectants (15% MeOH and 10% DMSO) for 5 min. After a month of storage in liquid nitrogen, post‐thawed sperm motility; fertilization and hatching rate and viability of derived larvae were measured (Exp.3). Evaluation of cryoprotectants efficiency showed that MeOH 15% and DMSO 10% were suitable for cryopreservation of Persian sturgeon sperm. Gly and EG resulted in very low post‐thaw motility rates even at lowest concentration. No significant difference was observed among the four different equilibration times (0, 5, 10, 20 min) (P > 0.05) although higher equilibration times than 20 min resulted low post‐thaw motility (P < 0.05). The motility of frozen–thawed sperm did not significantly change when dilution ratio was increased from 1:0.5 to 1:3 (P > 0.05). However, higher dilution ratios (1:5 and 1:10) reduced the percentage of motile sperm. Supplementation of the cryoprotectant solution with 10 mg mL?1 BSA significantly improved post‐thaw motility (P < 0.05), but ascorbic acid did not improve post‐thaw motility (P > 0.05). The results of experiment 3 showed that the highest fertilization (30.2 ± 5.75) and hatching rates (28.2 ± 5.25) were observed when samples were frozen with 15% MeOH (P > 0.05). Our study indicates that the use of mT extender consisting of 10 mg mL?1 BSA in 15% MeOH diluted with sperm at 1:1 ratio for 5 min can be recommended cryopreservation method for Persian sturgeon sperm.  相似文献   

10.
Sperm cryopreservation is an essential tool for long‐term storage of genetic resources for aquaculture fishes. The goal of this study was to develop an efficient and streamlined protocol for high‐throughput processing for sperm cryopreservation in Atlantic salmon, Salmo salar. The objectives were to evaluate: (1) osmolality of blood serum for determining extender osmolality, (2) effects of extenders for fresh sperm dilution and refrigerated storage, (3) effects of methanol and dimethyl sulfoxide (DMSO) on fresh sperm motility, and (4) motility and fertility after thawing. In this study, sperm samples were collected at a hatchery site in Canada and shipped to a freezing site located 2200 miles (3550 km) away in the USA. Evaluation of three extenders indicated that Mounib solution was suitable for diluting dry sperm for sample processing. Ten percent of methanol or DMSO was less toxic to sperm cells than was 15% within 30 min. Further testing with methanol at 5, 10, and 15%, and sperm solution : extender dilutions (v:v) of 1:1, 1:3, and 1:19 (at concentrations of 5 × 107, 3 × 108, and 1 × 109 cells/mL) indicated that methanol at 5 and 10% showed less toxicity to fresh sperm within 1 h at sperm:extender dilutions of 1:1 and 1:3. Post‐thaw motility of sperm cryopreserved with 10% methanol was significantly higher than that with 10% DMSO, and fertility reflected those results (0–1% in DMSO vs. 38–55% in methanol). Further evaluation of sperm cryopreservation with 10 and 15% methanol at sperm dilution ratios of 1:1, 1:3, and 1:19 indicated that post‐thaw motility in 10% methanol was significantly higher than that in 15% methanol, and post‐thaw fertility in 10% methanol at 1:1 and 1:3 dilution ratios had fertilization rates similar to that of fresh sperm controls. Sperm samples from 12 males cryopreserved with 10% methanol showed male‐to‐male variation in post‐thaw motility (0–36%). Overall, a simplified standard protocol was established for cryopreservation of shipped sperm of Atlantic salmon using extender without egg yolk and yielded satisfactory post‐thaw motility and fertilization rates. This procedure can be readily adopted by aquaculture facilities to take advantage of high‐throughput cryopreservation capabilities at remote service centers. Most importantly, this approach lays the groundwork for an alternative commercial model for commercial‐scale production, quality control, and development of industrial standards. Control of male variability and sperm quality remain important considerations for future work.  相似文献   

11.
The aim of this study was to test the effects of cryoprotectants [dimethyl sulphoxide (DMSO) and methylglycol], extenders (0.9% NaCl, 5% glucose, Beltsville Thawing Solution? and Merck III?), thawing temperatures (30 and 60 °C) and activating agents (0.29% NaCl and 1% NaHCO3) on the cryopreservation process of tiete tetra Brycon insignis sperm. Sperm was loaded in 0.5 mL straws, frozen in nitrogen vapour at ?170 °C and stored in liquid nitrogen. Post‐thaw sperm quality was evaluated in terms of subjective motility rate, quality motility score (0=no movement; 5=rapidly swimming spermatozoa), duration of motility and vitality (eosin–nigrosin staining). Post‐thaw sperm motility rate was greater in methylglycol (76–88%), compared with DMSO (23–59%). In general, the highest quality motility scores were observed when sperm was thawed at 30 °C and triggered in 1% NaHCO3 (3.5–4.3). Duration of motility was longer when triggered in 1% NaHCO3 (95–120 s) compared with 0.29% NaCl (69–107 s). Sperm vitality was not affected by any of the parameters tested and varied from 51% to 69% intact sperm. Brycon insignis sperm frozen in methylglycol combined with any of the extenders tested and using the methods described above yields motility above 57% and that should last long enough to fertilize oocytes.  相似文献   

12.
We developed both a cryopreservation method for Japanese sea cucumber spermatozoa and an artificial fertilization method using post‐thaw spermatozoa. Twenty per cent dimethyl sulfoxide (DMSO), 16% foetal bovine serum, and 64% artificial seawater were suitable cryodiluent, and the diluent was pre‐cooled to 0°C. Semen was diluted with the solution and enclosed in a 250 μl straw, cooled to ?50°C at 10.4 ± 0.4°C/min, and immediately immersed in liquid nitrogen. Although this method showed the highest post‐thaw motility in all the conditions we examined, its post‐thaw motility was still less than approximately 15%. Artificial fertilization was carried out by adding post‐thaw semen with a cryodiluent to the oocytes. The fertilization rate of 200 oocytes/ml seawater increased with the amount of post‐thaw semen from 1 to 5 μl but showed a significant decrease at 25 μl. This decrease was considered to be due to DMSO in the cryodiluent, because the fertilization rate of the fresh semen decreased sharply when the DMSO concentration around the oocytes was 1.0% or more. Further improvement in increasing post‐thaw motility and lowering the cryoprotectant concentration is necessary for commercial‐scale artificial fertilization.  相似文献   

13.
Sperm were collected in Florida from wild common snook, Centropomus undecimalis (Bloch), and were shipped to Louisiana State University for analysis and cryopreservation. Threshold activation of sperm (10% motility) occurred at 370 mOsmol kg?1, and complete activation occurred at 680 mOsmol kg?1. These values were significantly different. Sperm samples stored at 1°C in Hanks' balanced salt solution (HBSS) or in 0.6% NaCl solution at 200 mOsmol kg?1 retained motility for as long as 22 days. Mean motility remained above 50% for 9 days for sperm stored in HBSS and for 7 days for sperm stored in NaCl solution. Sperm exposed to 5% dimethyl acetamide (62±10%; mean±SD), 10% dimethyl sulphoxide (DMSO) (39±16%), 5% glycerol (26±5%) or 10% glycerol (6±2%) for 30 min had significantly lower motility than did unexposed sperm (89±9%). When used as a cryoprotectant, samples frozen with 5% or 10% DMSO or 5% methanol had significantly higher post‐thaw motility than did samples frozen with other cryoprotectants. Sperm cryopreserved with 10% DMSO (38±12%) had significantly higher post‐thaw motility than did sperm cryopreserved with 15% DMSO (19±10%) or 20% DMSO (4±4%). There were no significant differences in hatch rates of eggs fertilized with fresh sperm (54±29%) or cryopreserved sperm (41±35%). Survival to first feeding was not different between fish produced with fresh sperm (37±30%; range, 0–86%) or with thawed sperm (24±29%; 0–77%). Transport of sperm to a cryopreservation laboratory and back to a hatchery for thawing and use enabled collaboration between groups with specific expertise and provides a model for the application of cryopreservation by transport of fresh and frozen samples.  相似文献   

14.
The effects of three extenders (Ginzburg fish ringer, Calcium‐free Hank's balanced salt solution, C‐F HBSS and sodium chloride, 0.9% NaCl) and four cryoprotectants (dimethyl sulphoxide, DMSO; dimethyl acetamide, DMA; methanol, MeOH and glycerol) in different concentrations (5%, 10% and 15%) on the motility, viability and fertilization rates of Mekong catfish (Pagasius bocourti) sperm were investigated. Sperm samples were transferred into 250‐μL French straws and sealed with a heated haemostat. The straws were then placed in a cryochamber. A computer‐controlled rate freezer (CL 3300) and programmable Cryogenesis, version 4 were used to regulate the freezing rate. The sperm samples were frozen at a rate of 10°C min?1 from 4 to ?80°C and then evaluated after 72 h. Of the three extenders used with each cryoprotectant, C‐F HBSS had the highest fertilization rate of 75% (93% of control). This was not significantly different from the control treatment (fresh sperm) when tested with DMSO as the cryoprotectant. The lowest fertilization rate of 27% (38% of control) was resulting from the combination of 15% glycerol and C‐F HBSS. This study found that fertilization, motility and viability rates in all of the experiments had a positive significant correlation (< 0.001).  相似文献   

15.
The aim of this study was to develop a simple cryopreservation protocol for silver barb, Barbodes gonionotus, semen using a dry shipper. Freezing rates within the upper and lower chambers of dry shipper were recorded for 14 days post liquid nitrogen loading (dpl). To regulate freezing rates, straws (250 and 500 µl) wrapped with various insulators (polystyrene foam box, oxygen tube, silicone tube and electric wire) were frozen within the upper chamber. Straws containing semen diluted with Calcium‐free Hank's Balanced Salt Solution (Ca‐F HBSS) and 10% dimethyl sulphoxide were cryopreserved with or without insulators. Appropriate protocols were selected based on sperm quality during a 45‐day cryostorage. The upper chamber had potential as a freezing chamber within 9 dpl due to no significant (p > 0.05) change in freezing rates. High percentages of sperm motility and viability (p < 0.05) were observed when 250 µl straws with silicone tube (T4) frozen for 5 min, non‐insulated 500 µl straws (T9) and 500 µl straws with polystyrene foam box (T12) frozen for 1–5 min, having freezing rates of 43.1 ± 1.3, 71.3 ± 1.4 and 14.7 ± 0.4°C/min respectively. Dry shipper can be used as a freezing tool to cryopreserve silver barb semen.  相似文献   

16.
Experiments were carried out to develop an optimal cryopreservation protocol for tench sperm by testing the fertilizing capacity and motility parameters including progressive motility, curvilinear velocity (VCL) and linearity (LIN) of cryopreserved sperm. Three experiments were designed to this aim: first experiment where we tested the effects of two extenders (sugar‐based Grayling and ion‐based Kurokura 180) and two cryoprotectants (DMSO and methanol) on fertilization and hatching success; second where we tested the effect of cryoprotectant type (methanol or DMSO) in different concentrations (5%, 10% and 15%) on fertilization and hatching success; and third where we tested the effect of two cryoprotectants (methanol and DMSO) on sperm motility parameters (progressive motility, VCL and LIN) after 4 h post‐thaw storage (4°C). Sperm prepared with the sugar‐based Grayling extender displayed better fertilization and hatching rates independently of the applied cryoprotectant most likely due to glucose present which acted as an external cryoprotectant. Concerning cryoprotectant concentrations, the use of 10% methanol yielded the highest fertilization (85 ± 15%) and hatching (80 ± 13%) rates, which were significantly higher than in all other groups. During the post‐thaw storage time, 5% methanol, 10% methanol and 5% DMSO groups had significantly higher motility parameters than other groups and we observed no significant decline in any of the parameters during the storage time. Overall, we found that a sugar‐based extender in combination with methanol as cryoprotectant is suitable for the cryopreservation of tench sperm and allows storage of cryopreserved sperm for up to 4 h post thaw.  相似文献   

17.
The present study examined the possibility of long‐term storage, by cryopreservation in liquid nitrogen, of the sperm of filefish (Thamnaconus septentrionalis). Changes in motility, survival rate, ultrastructure and fertilization rate of the sperm after freezing and thawing were tested. For selection of the immobilizing solution, artificial seawater (ASW) of 250, 350 and 450 mOsmol kg?1 were tested. Sperm motility was significantly inhibited in 350 mOsmol kg?1 ASW, and restored entirely after 100% ASW (1200 mOsmol kg?1) was added. Two cryoprotectants, dimethyl sulphoxide and glycerol, were employed. The sperm was diluted at the ratio of 1:6 with the extenders, and frozen at a freezing rate of ?40°C min?1 to ?100°C after equilibration for 10 min at room temperature, followed by plunging into liquid nitrogen. The highest post‐thawed sperm motility and survival rate were obtained with 5% glycerol. Afterwards, the effect of different freezing rates was examined using 5% glycerol as a cryoprotectant, and the rate of ?30°C min?1 to ?100°C showed the best result.  相似文献   

18.
《水生生物资源》1998,11(6):387-394
A sperm cryopreservation protocol adapted from turbot, was tested on sea bass using either 250-μL straws or 1.5-mL cryovials. A dilution to 1/3 in Mounib s extender and a cooling rate of −65 °C·min−1 allowed frozen sperm to recover an initial motility similar to that of fresh sperm at thawing; however, significant differences in motility (P < 0.001, n = 10 fish semen) were observed at further post-activation times, the motility decrease being faster in thawed sperm. At the experimental scale, triplicate inseminations of 2-mL aliquots (approximately 2 000 eggs) showed a significant fertility decay of thawed sperm compared to that of fresh sperm (P < 0.01, n = 12 fish semen) when a discriminating 35·103 spermatozoa to egg ratio was applied. When 70·103 and 200·103 spermatozoa per egg were provided in the same experimental conditions, no significant difference appeared between the fertilisation rates of fresh and thawed sperm. In order to validate the procedure for production or cryobank purpose, a scaled-up protocol was established. Two and 50 mL batches of eggs (approximately 2·103 and 50·103 eggs, respectively) were inseminated in triplicate using either fresh or thawed individual sperms of 5 males with 200·103 spermatozoa per egg. The mean fertility decreased by 23.5 % due to cryopreservation. This decline was explained by the loss of fertility of only one sperm, and only in large-volume conditions, probably due to the delay of use after thawing.  相似文献   

19.
Cryopreservation of sea cucumber Apostichopus japonicus (Selenka) sperm   总被引:1,自引:0,他引:1  
A simple and convenient method for the cryopreservation of sea cucumber Apostichopus japonicus (Selenka) sperm was tested in the present study. The highest motility (76.7±2.9%) of post‐thawing sperm was obtained in 15% dimethyl sulphoxide (DMSO) with a 1:9 dilution (semen volume to DMSO volume) when 0.5 mL semen–DMSO mixture was frozen at 6 cm above liquid N2 in a closed styrofoam box. After thawing, sperm cryopreserved in glycerol almost lost motility entirely. Although there was no significant difference in percentage of motile sperm between 15% and 20% DMSO, the duration of sperm motility of 15% DMSO group was longer than that of 20% DMSO group. The motility of post‐thawing sperm enhanced when the dilution ratio of semen increased from 1:1 to 1:9. Morphological changes such as the loss of mitochondria, swollen plasma membrane and broken or rolled‐up tails were observed in post‐thawing sperm using an eosin–nigrosin staining. The fertility of cryopreserved sperm was significantly lower than that of unfrozen sperm. The 10‐fold increase in sperm to egg ratio resulted in double fertility for cryopreserved sperm, and about 70% fertility relative to the control.  相似文献   

20.
Preliminary techniques of mass propagation of grey mullet were established in Taiwan some years ago. Among the many problems concerned, the cryogenic preservation of grey mullet sperm has been studied since 1971. The aim of this study is not only to ensure the availability of mullet semen anywhere and anytime it is needed, but also to contribute to the international cooperation of cross breeding of grey mullet in the future. Results of the study on cryogenic preservation of grey mullet sperm made during the experimental mass propagation of mullet in the Tungkang Marine Laboratory for the past 3 years are summarized in this paper.The gonadosomatic index (GSI) of male grey mullet migrating near the coast of Tungkang ranged from 4 to 20 during the spawning season. The pH value of the semen was 7.4. Each spermatozoon was composed of a head part measuring 2.3 μ × 1.4 μ and a tail part four to five times as long as the head. There were about 5.3 × 1010 sperms in each ml of semen. Eosin-nigrosin staining was used for clearer identification. Sperm motility was preserved for up to 23 days in the case of raw semen at 5° C. Cryoprotective agents were needed at the ultra-low temperature (?196° C) of preservation in liquid nitrogen. Feasible procedures of freezing the grey mullet sperm were determined. Fresh semen diluted with cryoprotective agents was dispensed into 0.5 ml straws which were then sealed. These pretreatments prior to cryopreservation had to be done within the correct equilibration time of 1 h or less. Semen in straws was precooled in liquid nitrogen vapor until a temperature of ?80° C was reached. Straws in the canister were then put into liquid nitrogen for long-term preservation. The optimum effect of cryoprotective agents was found with 5–10% glycerine or dimethylsulfoxide (DMSO) at 1:1, 1:5, and 1:10 dilutions. In this condition, both good motility and fertility before freezing and cryoprotection were obtained. So far the best result of frozen thawed mullet sperm was moderate motility and 2.7% fertility of the semen cryopreserved for 1 year and 4 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号