首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
To explore long-term impact of organic and inorganic fertilizers on soil health and grain quality, we monitored the enzyme activities and chemical properties of soil; and chemical composition of grain from eight treatments at an experimental field site established in 1996. There were eight treatments applied to both wheat and maize seasons: a control; four inorganic fertilizers, that is, nitrogen and phosphorus (NP), nitrogen and potassium (NK), phosphorous and potassium (PK) and nitrogen, phosphorus and potassium (NPK); farm yard manure alone (FYM) and addition of FYM at two different doses (100 and 50% of recommendation) to NPK that is, NPK + FYM and ½ NPK + FYM. After 11 years of the experiment the NPK + FYM and ½ NPK + FYM treatments had the highest yields, about 5 Mg maize ha−1 and 2 Mg wheat ha−1 with about 2 and 0.5 Mg ha−1, respectively more than the NPK treatments. The dehydrogeanse activity of soils increased significantly in FYM and ½ NPK + FYM. Except urease all other enzymatic activities were increased in those treatments, which received manure. Urease activity was higher in mineral-N applied plots. Grain protein content of both maize and wheat was highest in mineral fertilized plots. Test weight also increased significantly on application of mineral fertilizer. Plots treated with half dose of recommended mineral fertilizer along with FYM were higher in urease, phosphomono and diesterase activities than that of NPK + FYM treated plots. Long-term application of inorganic nutrients along with FYM improved grain mineral composition and yield. Inhibition of few enzymatic activities were also observed upon application of inorganic nutrients either alone or in combination.  相似文献   

2.
Effect of different manures and pine needles application on soil biological properties and phosphorus availability was evaluated in sandy loam soils. Fertilizers nitrogen, phosphorus, and potassium (NPK); Sesbania aculeata green manure (GM); farm yard manure (FYM); and vermicompost (VC) were applied alone or in combination with pine needles. Microbial biomass carbon, dehydrogenase, and alkaline phosphatase activity increased significantly due to manures and NPK. Pine needles reduced the microbial biomass carbon (MBC) and dehydrogenase activity in FYM and VC but increased in NPK and GM. Acid phosphatase activities were found to be significantly increased by pine needles application in NPK, FYM, VC, and GM as compared to without pine needles counterparts. No significant differences were found in soil solution phosphorus in manure treated soil due to pine needle application, but phosphorus uptake was reduced significantly in these treatments. Pine needles application clearly influenced the soil biological properties without any perceptible effect on nutrient release from the manures.  相似文献   

3.
长期施有机肥与缺素施肥对潮土微生物活性的影响   总被引:4,自引:1,他引:3  
利用中国科学院封丘农业生态国家实验站潮士农田生态系统养分平衡长期定位试验地,研究长期施有机肥或缺索施肥对农田土壤呼吸强度及酶活性的影响.结果发现,与不施肥对照(CK)相比.施肥处理均不同程度地提高了土壤的呼吸强度及转化酶、脲酶与磷酸酶活性;从N、P、K平衡施肥角度比较,施有机肥[OM)与有机无机配施(1/20M+1/2NPK)的效果均显著高于施无机肥(p<0.05);从缺素施肥角度分析,缺P显著低于NPK处理(p<0.05),缺N次之,缺K影响较小.结果表明,长期配施有机肥更有利于提高潮土的微生物活性,长期缺施P肥最不利于保育潮土的微生物学质量.  相似文献   

4.
In a 20‐yr‐old long‐term experiment, the impact of continuous application of organic manures and inorganic fertilizers on soil quality and the sustainability of finger millet production was conducted on two cropping systems: finger millet and finger millet–groundnut on an Alfisol of semi‐arid southern India. The study was conducted from 1992 to 2011 at the All India Coordinated Research Project for Dryland Agriculture, UAS, Bangalore, using a randomized block design. The treatments comprised of T1: control [no fertilizer and no farmyard manure (FYM) applied], T2: FYM 10 t/ha, T3: FYM 10 t/ha + 50% of recommended NPK (50:50:25 kg/ha), T4: FYM 10 t/ha + 100% of recommended NPK and T5: 100% recommended NPK. Comparison of long‐term yield data between treatments was used to calculate a ‘sustainability yield index’ (SYI), which was greatest for T4 (FYM 10 t/ha + 100% of recommended NPK), in both rotational (0.68) and monocropping (0.63) situations. Soil quality indices were determined using principal component analysis linear scoring functions. The key indicators which contributed to the soil quality index (SQI) under rotation were organic C; potentially available N; extractable P, K and S; exchangeable Ca and Mg; dehydrogenase activity and microbial biomass C and N. The largest SQI (7.29) was observed in T4 (FYM 10 t/ha + 100% NPK), and the smallest (3.70) SQI was for the control. Application of 10 t/ha FYM together with NPK (50:50:25 kg/ha) sustained a mean yield of 3884 kg/ha.  相似文献   

5.
长期施肥红壤稻田有机碳演变规律及影响因素   总被引:9,自引:0,他引:9  
利用1981年起设置的水稻土长期施肥定位试验,分析了CK(不施肥)、N(单施氮肥)、NPK(氮磷钾配施)、NPK2(2倍氮磷钾配施)和NPKM(有机无机肥配施)等施肥措施下土壤有机碳的演变规律及其与作物产量和土壤养分(全氮、碱解氮、全磷、速效磷、全钾和速效钾)的相关性.结果表明:试验30年后,各个处理的土壤有机碳含量均有上升,其中CK、N、NPK、NPK2和NPKM的土壤有机碳在试验30年分别比试验前增加18.95%、17.72%、23.36%、16.92%和32.68%.与CK处理相比,NPK、NPK2和NPKM处理的土壤有机碳平均提高了4.09%、4.03%和25.68%.土壤有机碳含量与水稻产量呈显著相关(P<0.001),相关系数r为0.410,这说明土壤有机碳含量的增加可以促进水稻增产.土壤有机碳与土壤养分中的碱解氮、速效磷和全磷含量均表现出极显著相关(P<0.001),相关系数r分别为0.452、0.559和0.487,但是与钾含量相关不显著.这表明:有机无机肥配施可以持续快速提高红壤性水稻土的有机碳含量,同时在有机无机肥配施过程中应适当增施钾肥,从而促进土壤肥力平衡和维持作物高产稳产,实现农业可持续性.  相似文献   

6.
A long‐term fertilizer experiment, over 27 years, studied the effect of mineral fertilizers and organic manures on potassium (K) balances and K release properties in maize‐wheat‐cowpea (fodder) cropping system on a Typic Ustochrept. The treatments consisted of control, 100% nitrogen (100% N), 100% nitrogen and phosphorus (100% NP), 50% nitrogen, phosphorus, and potassium (50% NPK), 100% nitrogen, phosphorus, and potassium (100% NPK), 150% nitrogen, phosphorus, and potassium (150% NPK), and 100% NPK+farmyard manure (100% NPK+FYM). Nutrients N, P, and K in 100% NPK treatment were applied at N: 120 kg ha—1, P: 26 kg ha—1, and K: 33 kg ha—1 each to maize and wheat crops and N: 20 kg ha—1, P: 17 kg ha—1, and K: 17 kg ha—1 to cowpea (fodder). In all the fertilizer and manure treatments removal of K in the crop exceeded K additions and the total soil K balance was negative. The neutral 1 N ammonium acetate‐extractable K in the surface soil (0—15 cm) ranged from 0.19 to 0.39 cmol kg—1 in various treatments after 27 crop cycles. The highest and lowest values were obtained in 100% NPK+FYM and 100% NP treatments, respectively. Non‐exchangeable K was also depleted more in the treatments without K fertilization (control, 100% N, and 100% NP). Parabolic diffusion equation could describe the reaction rates in CaCl2 solutions. Release rate constants (b) of non‐exchangeable K for different depth of soil profile showed the variations among the treatments indicating that long‐term cropping with different rates of fertilizers and manures influenced the rate of K release from non‐exchangeable fraction of soil. The b values were lowest in 100% NP and highest in 100% NPK+FYM treatment in the surface soil. In the sub‐surface soil layers (15—30 and 30—45 cm) also the higher release rates were obtained in the treatments supplied with K than without K fertilization indicating that the sub‐soils were also stressed for K in these treatments.  相似文献   

7.
The study was conducted to investigate the aggregate stability and distribution of organic carbon (C) in different-sized aggregates and mineral fractions in a loamy soil under rice-wheat system with continuous application of fertilizer nitrogen, phosphorus and potassium (NPK), farmyard manure (FYM), N+FYM and NPK+FYM, compared with unfertilized control. Macro-aggregates comprised 37.1–49.3% of the total water-stable aggregates (WSAs), compared with 23.3–30.3% as micro-aggregates. Application of inorganic fertilizers and FYM significantly increased the proportion of macro-aggregates, which were linearly related to total organic C (TOC). Organic C concentration in coarse macro-aggregates (CMacA) was higher than the micro-aggregates (CMicA). Application of FYM significantly increased the concentration of organic C in different-sized aggregates and mineral fraction, compared with the unfertilized control. Averaged across treatments, mineral-associated C comprised 26% of TOC. Macro-aggregates, on an average, constituted 66–68% of C preservation capacity of WSA. The amount of TOC sequestered was higher when NPK+FYM was applied together.  相似文献   

8.
以中国科学院海伦农业生态实验站长期定位试验为平台,研究了不同土地利用和施肥方式对土壤酶活性和相关肥力因子的影响,结果表明,种植苜蓿和土地休闲两种方式与裸地相比脲酶、转化酶、磷酸酶、过氧化氢酶活性、土壤全碳、全氮含量和碱解氮、速效磷、速效钾含量均显著增加。其中,脲酶活性增加了24.5%和25.0%,转化酶活性增加了18.4%和18.9%,磷酸酶活性增加了54.6%和50.4%,过氧化氢酶活性增加了8.52%和59.3%,土壤全碳、全氮含量分别增加了13.8%、13.0%和36.8%、33.7%,但苜蓿和休闲两种方式间无显著差异。不同施肥方式相比,土壤酶活性、土壤全碳、全氮含量及土壤养分含量相差显著,其高低顺序为:NPKOM (氮磷钾肥+有机肥)>NPKST (氮磷钾肥+秸秆)>NPK(氮磷钾肥)>CK (无肥);施肥,特别是有机肥,显著提高了土壤酶活性,使土壤全碳、全氮、有效养分含量显著增加。表明黑土经自然恢复和人工恢复及施肥后土壤肥力提高,土壤质量得到改善。  相似文献   

9.
Intensive cropping with conventional tillage results in a decline of soil organic carbon (SOC) with consequent deterioration of soil physical properties. Some studies indicate that this decline in SOC can be arrested by way of organic manure application and improved nutrient management practices. This study was conducted to find out the long-term effects of inorganic fertilizer, manure and lime application on organic carbon content and physical properties of an acidic Alfisol (Typic Haplustalf) under an annual soybean-wheat crop rotation. Six treatments namely, control (CON), nitrogen fertilization (NIT), nitrogen and phosphorus (NP), nitrogen, phosphorus and potassium (NPK), NPK plus manure (NPKM) and NPK plus lime (NPKL) from a long-term fertilizer experiment continuing at Ranchi, India, were chosen for this study. Soil samples were collected from the selected treatments after 29 crop cycles and analyzed for physical and chemical properties. The results indicated that SOC content in all the treatments decreased from initial levels, but the decrease was considerably less in NPKM (8.7%) and NPKL (10.9%) treatments than that in NIT (28.3%) treatment. The SOC at 0-15 and 15-30 cm depth was lowest in NIT and CON. The NPKM, NPKL and NPK treatments up to 30 cm soil depth recorded significantly higher SOC than NIT and CON. Application of balanced fertilizer along with manure (NPKM) or lime (NPKL) improved soil aggregation, soil water retention, microporosity and available water capacity and reduced bulk density of the soil in 0-30 cm depth over CON. In contrast, soil aggregate stability, microporosity and available water capacity were significantly lower in the NIT plots than that in CON. The study thus suggests that soil management practices in acidic Alfisols should include integrated use of mineral fertilizer and organic manure or lime to maintain the organic carbon status and physical environment of soil.  相似文献   

10.
Increasing importance has been placed on the use of agricultural soils for the mitigation of atmospheric CO2 through sequestration of soil C. Although crop productivity is sustained mainly through the application of organic manure in the Indian Himalayas, little information is available on C sequestration, C content in different aggregate size fractions and soil water transmission properties (infiltration and saturated hydraulic conductivity) as affected by long-term manure addition. We analyzed results of an 8-year experiment, initiated in 1995–1996 on a silty clay loam soil, to determine the influence of fertilizer and fertilizer + farmyard manure (FYM) application on those important soil properties. The overall increase in soil organic C (SOC) content in the 0–45 cm soil depth in NPK + FYM treatment as compared to NPK and control treatments was 11.0 and 13.9 Mg C ha−1 at the end of 8 years, respectively. Application of FYM significantly reduced soil bulk density and increased mean weight diameter (MWD) and SOC contents in different aggregate size fractions. Soil organic C content in macroaggregates was greater than in microaggregates. The response of SOC content to FYM application was dependent upon inorganic fertilization and more upon balanced application of NPK than N only. Steady state infiltration rate under NPK + FYM (1.98 cm h−1) was higher than under unfertilized (0.72 cm h−1) and NPK (1.2 cm h−1). Soil water sorptivity (calculated from Philip's equation) under NPK + FYM (1.06 cm min−0.5) was higher than under NPK (0.61 cm min−0.5). We conclude that hill farmers in northern India should be encouraged to use FYM along with chemical fertilizers to increase SOC content and improve soil physical properties.  相似文献   

11.
ABSTRACT

This work aims to study the status of silicon (Si) as a plant nutrient in the soil of Bahtim long-term field experiment in Egypt under the effect of crop rotations system and continuous fertilization. The experiment has been set up since 1912 based on two main factors: (1) crop rotations: mono-cropping (MC), two-year rotation (2Y-R), and three-year rotation (3Y-R), and (2) Fertilization: mineral nitrogen N, phosphorus P, potassium K, and organic farmyard manure FYM. Available N, P, K, and Si in soil were estimated. Productivity of soil was evaluated using Berseem (Trifolium alexndrinum L.) cultivated and harvested in 2019. The plant-available Si (PAS) in soil decreased significantly compared to the control C in case of MC by 70.26%, 2Y-R by 85.09%, and 3Y-R by 92.65% in the direction of N > NP > NPK. Mineral fertilization decreased the PAS significantly by 12.84% N, 29.52% NP, 78.45% NPK compared to the control C in the order of MC > 2Y-R > 3Y-R. Berseem yield (t ha?1) increased significantly compared with the control C following the order C < N < NP < NPK. The most significant increase in the yield was recorded for the NPK treatments by 224.04%, and 200% in case of MC, 2Y-R, 3Y-R, respectively.  相似文献   

12.
A five-year (2001/02–2006/07) field experiment was carried out on acidic clay loam soil classified as Typic Hapludalf with a maize–mustard crop sequence to study the effect of continuous application of nitrogen, phosphorus, and potassium (NPK) fertilizers alone and in combination with lime, farmyard manure (FYM), and biofertilizers on soil physical properties, soil organic carbon (SOC), soil microbial biomass carbon (SMBC), and crop yields on the hilly ecosystem of Meghalaya. Significant improvement in the soil physical conditions of the soil was observed under integrated application of organic manure and inorganic fertilizers. Addition of NPK fertilizers along with organic manure, lime, and biofertilizers increased soil organic carbon (SOC) content, aggregate stability, moisture-retention capacity, and infiltration rate of the soil while reducing bulk density. The SOC content under the treatment of 100% NPK + lime + biofertilizer + FYM was significantly greater (68.58%) than in control plots. Maize and mustard crop yields also significantly increased (4.73- and 21.09-folds, respectively) with continuous application of balanced inorganic (100% NPK) + lime + biofertilizer + FYM as compared to the control plots. However, crop yields drastically reduced under application of integrated nutrients without FYM as compared to the treatment with FYM application. Thus, the results suggest that integrated use of a balanced inorganic fertilizer in combination with lime and organic manure sustains a soil physical environment that is better for achieving higher crop productivity under intensive cropping systems in the hilly ecosystem of northeastern India.  相似文献   

13.
A pot experiment was conducted in heat-sterilized soil to evaluate the effect of effective microorganism (EM) application on growth, yield, and nutrient uptake in Vigna radiata (L.) Wilczek var. NIAB Mung 98 in different soil amendment systems. Pot soil was amended with farmyard manure (FYM), Trifolium alexanrinum L. crop residues (TCR), and half (½NPK) and recommended dose (NPK) of chemical fertilizers. The EM application significantly enhanced shoot and root biomass in TCR-amended soil. However, grain yield was significantly enhanced in FYM, TCR, and NPK amendments by 24%, 15%, and 84%, respectively, as a result of EM application. Effect of EM application on nutrient uptake was variable with respect to soil amendment and plant growth stage. In general, EM application enhanced plant nitrogen (N), phosphorus (P), and potassium (K) nutrition in organic amendments while its effect was either negative or insignificant in chemical fertilizer amendments. Effects of EM application on plant nutrient uptake were more pronounced at maturity than at flowering stage.  相似文献   

14.
Field experiments were conducted at Water Management Research Station, Begopara, Nadia, WB, India, during the rabi seasons of 2008–2009 and 2009–2010 to find out the integrated effect of nitrogen (N), phosphorus (P), potassium (K), farmyard manure (FYM) and zinc (Zn) under the system of rice intensification (SRI) techniques using eight treatments on the fertility changes in soil. The results revealed that the amounts of organic carbon and available N content in soil were found to maintain the highest fertility status with the highest yield in T6 (NPK + FYM 10 tha?1 + Zn 5 kgha?1) and gave the highest N uptake (55.98 kgha?1). The availability of P decreased with the increased level of Zn application and gave the highest P uptake (23.52 kgha?1) in the treatment T5 (NPK + FYM 10 tha?1). The highest Zn content (4.71 mgkg?1) was recorded in the treatment T7 (NPK + FYM 10 tha?1+ Zn 10 kgha?1).  相似文献   

15.
The physical quality of the soil, which creates suitable environment for the availability and uptake of the plant nutrients, is generally ignored. Though the effect of organic manures on soil physical quality has been widely appreciated but that of inorganic fertilizers is studied to a lesser extent. The present study carried out during 2004–2005 aims to characterize the soil physical quality in relation to the long-term (32 years) application of farmyard manure (FYM) and inorganic fertilizers in maize (Zea mays L.) wheat (Triticum aestivum L.) cropping system. The treatments during both maize and wheat crops were (i) farm yard manure at 20 Mg ha−1 (FYM), (ii) nitrogen at 100 kg ha−1 (N100), (iii) nitrogen and phosphorus at 100 and 50 kg ha−1 (N100P50) and (iv) nitrogen, phosphorus and potassium at 100, 50 and 50 kg ha−1 (N100P50K50) in addition to (v) control treatment, i.e. without any fertilizer and/or FYM addition. The treatments were replicated four times in randomized block design in a sandy loam (Typic Ustipsament, non-saline, slightly alkaline). Bulk density, organic carbon content, structural stability of soil aggregates and water holding capacity of 0–60 cm soil layer were measured.The application of FYM to maize increased the organic carbon by 16% whereas N100P50K50 increased it by 21%. The increased organic matter with both FYM and N100P50K50 increased the total soil porosity and decreased soil bulk density from that in control plots. The mean weight diameter (MWD) was highest in FYM plots of both maize (0.160 mm) and wheat (0.172 mm) closely followed by that in N100P50K50 plots. The effect of FYM in increasing the MWD decreased with soil depth. The average water holding capacity (WHC) was higher with FYM and N100P50K50 application than that in control plots. The MWD, total porosity, OC content and WHC improved with the application of balanced application of fertilizers. The grain yield and uptake of N, P and K by both maize and wheat were higher with the application of FYM and inorganic fertilizers than in control plots. The uptake of N, P and K increased with the application of FYM and N100P50K50.  相似文献   

16.
Abstract

The effect of organic manure and inorganic fertilizer on soil aggregate size distribution and stability, and associated carbon (C) within aggregates varies greatly in previous studies because of the differences in soil conditions, cropping systems, and management practices. This study was conducted as two field fertilization experiments, with different cropping systems, under a subtropical climate in China. The two field experiment sites were located in Jinhua (established in April 2011) in the Jinqu basin in Zhejiang province and Jintan (established in October 2010) in the low-middle Yangtze River plain in Jiangsu province. Both experiments consisted of four treatments, including unfertilized (CK), mineral fertilizer nitrogen (N)–phosphorus (P)–potassium (K) (NPK), NPK plus straw (NPK?+?SR), and NPK plus cattle manure (NPK?+?FYM) or half NPK plus cattle manure (1/2NPK?+?FYM). Water stable aggregate size classes (>5, 2–5, 1–2, 0.5–1, 0.25–0.5, and <0.25?mm) and associated soil organic C (SOC) at 0–15?cm depth were measured. The mean weight diameter (MWD), geometric mean diameter (GMD), and water stable aggregates (WSA)?>?0.25?mm were also determined. The results showed that aggregate-size distribution varied with soil types. Combined application of NPK and organic matter (straw residue or cattle manure), unlike the CK and NPK treatments, significantly increased the WSA >0.25?mm, MWD, and GMD, while obviously reducing the proportion of <0.25?mm aggregates. However, no differences in WSA >0.25?mm, MWD, GMD, and associated C were observed between CK and NPK at both sites. The addition of FYM to the NPK treatment yielded the highest SOC contents in bulk soil, and showed significantly higher associations of C within all size aggregates at both sites. In contrast, NPK?+?SR significantly increased SOC within aggregate classes (2–5?mm, 0.5–1?mm, 0.25–0.5?mm, and <0.25?mm) at Jinhua and (>5?mm and 1–2?mm) at Jintan compared to the CK and NPK treatments. Overall, the combined application of FYM and mineral NPK was the best sustainable management practice for the improvement of aggregate stability and SOC sequestration.  相似文献   

17.
Field experiments were carried out to assess the effect of nutrient management on soil properties and available micronutrients using Soil Test Crop Response (STCR) based targeted yield equations under a six-year old pearl millet-wheat cropping system. After six years, results showed that soil pH and bulk density decreased, while cation exchange capacity and organic carbon increased in farmyard manure (FYM) as compared to control and nitrogen, phosphorus and potassium (NPK) treated plots in both surface and sub-surface soil depths. Higher values of available zinc (Zn) (1.54 mg kg?1) and iron (Fe) (5.68 mg kg?1) were maintained in FYM+NPK treated plots, while higher values of manganese (Mn) (6.16 mg kg?1) and copper (Cu) (1.07 mg kg?1) were found in FYM alone at surface soil as compared to sub-surface soil. This study demonstrated the importance of application of FYM in improving soil properties and maintaining micronutrients availability in soil and their uptake by wheat for sustainable crop production.  相似文献   

18.
A comparison was made between a long-term rice–wheat cultivation with fertilizer nitrogen–phosphorus–potassium (NPK) or added organics [farmyard manure (FYM), paddy straw (PS), green manure (GM)] and a permanent fallow on bulk density (BD), saturated hydraulic conductivity (Ksat), available water capacity (AWC), maximum water-holding capacity (MWHC), aggregation, and soil organic carbon (SOC) dynamics on an Inceptisol of humid subtropics of eastern India. Continuous cropping caused a net decrease in SOC content. Undisturbed fallow was comparable to soils with FYM, PS, and GM amendments in structural and hydrophysical properties. Maximum WHC and AWC values were in the order of FYM followed by PS, GM, fallow, NPK, and control. The relative efficacy of the organics for physical buildup was FYM > PS > GM, which increased structural indices. This study represents further steps toward understanding the ecological importance of fallow management and integrated use of balanced fertilizer and organics.  相似文献   

19.
A field experiment was conducted for five kharif seasons (2006–2011) in an Alfisol to study the effect of integrated use of lime, mycorrhiza, and inorganic and organics on soil fertility, yield, and proximate composition of sweet potato. Application of graded doses of nitrogen, phosphorus, and potassium (NPK) significantly increased the mean tuber yield of sweet potato by 44, 106, and 130 percent over control. Green manuring along with ½ NPK showed greater yield response over that of ½ NPK. The greatest mean tuber yield was recorded due to integrated application of lime, farmyard manure (FYM), NPK, and MgSO4 (13.69 t ha?1) over the other treatments. Inoculation of mycorrhiza combined with lime, FYM, and NPK showed a significant yield response of 10 percent over FYM + NPK. Conjunctive use of lime, inorganics, and organics not only produces sustainable crop yields but also improve soil fertility, nutrient-use efficiency, and apparent nutrient recovery in comparison to NPK and organic manures.  相似文献   

20.
The present investigation was carried out to evaluate the effect of integrated nutrient management (INM) on crop yield sustainability and soil quality in a long-term trial initiated during the wet season of 1971 under a humid subtropical climate. Over 41 years of study, 100% nitrogen, phosphorus, and potassium (NPK) + farm yard manure (FYM) at 15 t ha?1 recorded the most sustainable grain yields. Optimal and superoptimal NPK fertilizers gave quite similar crop yields to that of 100% NPK + FYM at 15 t ha–1 up to two decades but thereafter yields declined sharply due to emergence of zinc (Zn) deficiency. The sustainable yield index (SYI) values indicated that wheat yields were more sustainable than rice. Soil organic carbon and available N, P, K, and Zn in the control plot decreased the most, whereas 100% NPK + FYM at 15 t ha–1 improved available N, P and K, maintained soil organic carbon, and decreased Zn over initial levels. Grain yield and SYI were more significantly correlated with Soil Organic Carbon (SOC). Continuous application of FYM contributed the maximum Soil Quality Index (SQI) (0.94), followed by Zn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号