首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Prior research indicated that foot ash determinations were as robust as tibia bone ash determinations in reflecting the degree of bone mineralization in chicks at 14 d of age. In the current research, the relative effectiveness of the 2 procedures was evaluated in 21- and 42-day-old broilers while also evaluating a new dietary phytase supplement. In experiment 1, broilers were fed until 21 d of age a negative control diet with 0.24% available phosphorus, a positive control diet with 0.48% available phosphorus, or the negative control diet supplemented with 300, 500, 1,000, or 2,500 phytase units/kg diet. In experiment 2, broilers were fed until 42 d of age negative control diets having 0.275, 0.250, and 0.225 percent available dietary phosphorus in the starter, grower, and finisher periods, respectively, positive control diets having 0.475, 0.450, and 0.425 percent available dietary phosphorus in the starter, grower, and finisher periods, respectively, or the negative control diets supplemented with 500, 1,000, or 2,500 phytase units/kg diet. At 21 and 42 d of age, broilers fed diets supplemented with the 2 highest doses of phytase had foot and tibia ash values equal to those fed the positive control diet and higher than those fed the negative control diet. At 42 d of age, feed conversion and total breast meat yield values for the broilers fed the highest dose of phytase were superior to the values of the birds fed the positive control diet or the diet containing the lowest dose of phytase. The results indicate that adding levels of this new dietary phytase beyond what is necessary for normal bone mineralization enhances feed conversion and that dried foot and tibia bone ash determinations are both reliable in detecting differences in bone mineralization in 21- and 42-day-old broilers.  相似文献   

2.
A feeding trial was designed to assess the effect of super dosing of phytase in corn–soya‐based diets of broiler chicken. One hundred and sixty‐eight day‐old broilers were selected and randomly allocated to four dietary treatment groups, with 6 replicates having 7 chicks per treatment group. Two‐phased diets were used. The starter and finisher diet was fed from 0 to 3 weeks and 4 to 5 weeks of age respectively. The dietary treatments were consisted of normal phosphorus (NP) group without any phytase enzyme (4.5 g/kg available/non‐phytin phosphorus (P) during starter and 4.0 g/kg during finisher phase), three low‐phosphorus (LP) groups (3.2 g/kg available/non‐phytin P during starter and 2.8 g/kg during finisher phase) supplemented with phytase at 500, 2500, 5000 FTU/kg diet, respectively, to full fill their phosphorus requirements. The results showed that super doses of phytase (at 2500 FTU and 5000 FTU/kg) on low‐phosphorus diet improved feed intake, body weight gain, ileal digestibility (serine, aspartic acid, calcium, phosphorus), blood P levels and bone minerals such as calcium (Ca), P, magnesium (Mg) and zinc (Zn) content. It could be concluded that super doses of phytase in low‐phosphorus diet were beneficial than the normal standard dose (at 500 FTU/kg) of phytase in diet of broiler chicken.  相似文献   

3.
The experimental design consisted of 5 dietary treatments including a positive control (PC), a negative control (NC; with a reduction of 88 kcal/kg of AME through the starter and grower 1 phase and a reduction of 132 kcal/kg of AME in the grower 2, finisher, and withdrawal phases compared with the PC), and the NC supplemented with either β-mannanase, nonstarch polysaccharide-degrading enzymes (NSPase; cocktail carbohydrase), or β-mannanase and NSPase intermittently fed. The intermittent treatment included β-mannanase from d 1 to 21 (starter and grower 1 phases) and NSPase from d 22 to 47. Each treatment included 9 replicate pens with 35 male broilers placed per replicate (1,575 total chicks placed). The dietary program consisted of 5 dietary phases, including the starter through d 10, grower 1 through d 21, grower 2 through d 32, finisher through d 40, and withdrawal through d 47. Broilers were weighed and feed consumption determined on days of dietary changes. On d 48, following an 8-h feed withdrawal, 6 broilers from each replicate pen were removed and processed for whole bird and fat pad measurements. The reduction in energy in the NC diet reduced BW and increased mortality rate, and the inclusion of β-mannanase and NSPase separately and intermittently in the NC diet improved growth performance and reduced mortality to levels that were comparable to the PC. The NC yielded the highest cumulative mortality-corrected FCR and all enzyme inclusion treatments reduced FCR to levels comparable to the PC for the duration of the trial. The NC diet yielded the lowest processing yields and the inclusion of β-mannanase and NSPase separately and intermittently increased multiple processing parameters to a level similar to the PC. These data confirm the ability of β-mannanase and NSPase inclusion separately and intermittently to improve performance parameters in reduced-energy broiler diets.  相似文献   

4.
Two experiments were conducted to evaluate the efficacy of low doses of Aspergillus niger (AN) phytase for growing and finishing pigs fed corn-soybean meal (SBM) diets with narrow Ca:P ratios that were about 0.9 g/kg deficient in available P and Ca. Experiment 1 utilized 120 pigs with an early finisher period from 51.5 +/- 0.2 to 89.7 +/- 0.9 kg of BW and a late finisher period that ended at 122.5 +/- 2.0 kg of BW. During each period, treatments were the low-P diets with 0, 150, 300, or 450 units (U) of AN phytase added/kg of diet, and a positive control (PC) diet. There were linear increases (P < or = 0.001) in bone strength and ash weight, the absorption of P (g/d and %) and Ca (%), and overall ADG (P = 0.01) with increasing concentration of AN phytase. Pigs fed the diets with 150, 300, or 450 U of AN phytase/kg did not differ from pigs fed the PC diet in growth performance overall, and pigs fed the diets with 300 or 450 U of AN phytase did not differ in P and Ca absorption (g/d) or bone ash weight from pigs fed the PC diet. However, only pigs fed the diet with 450 U of AN phytase/kg had bone strength similar to that of pigs fed the PC diet. Experiment 2 utilized 120 pigs in a grower phase from 25.3 +/- 0.1 to 57.8 +/- 0.8 kg of BW and a finisher phase that ended at 107.6 +/- 1.0 kg of BW. Treatments were the low-P diet with AN phytase added at 300, 500, or 700 U/kg of grower diet, and 150, 250, or 350 U/kg of finisher diet, respectively, resulting in treatments AN300/150, AN500/250, and AN700/350. Growth performance and the absorption (g/d) of P and Ca for the grower and finisher phases were not different for pigs fed the diets containing AN phytase and pigs fed the PC diets. However, pigs fed the PC diets excreted more fecal P (g/d, P < or = 0.01) during the grower and more P and Ca (g/d, P < 0.001) during the finisher phases than the pigs fed the diets with phytase. There were linear increases (P < or = 0.05) in bone strength and bone ash weight with increasing concentration of AN phytase. However, pigs fed the PC diets had a greater bone strength and bone ash weight than pigs fed diets AN300/150, AN500/250 (P < or = 0.02), or AN700/350 (P < or = 0.08). There were no treatment responses for N or DM digestibility in either experiment. Phytase supplementation reduced fecal P excretion from 16 to 38% and fecal Ca excretion from 21 to 42% in these experiments. In conclusion, 450 U of AN phytase/kg was effective in replacing 0.9 g of the inorganic P/kg of corn-SBM diet for finishing swine based on bone strength, whereas 300 or 150 U of AN phytase/kg of diet maintained growth performance of grower or finisher pigs, respectively.  相似文献   

5.
ABSTRACT

1. The current study was conducted to evaluate the influence of high phytase doses and xylanase, individually and in combination, on performance, blood inositol and real-time gastric pH in broilers fed wheat-based diets.

2. In a 42-d experiment, a total of 576 male Ross 308 broiler chicks were allocated to 4 dietary treatments. Treatments consisted of a 2 × 2 factorial arrangement, with 500 or 2500 FTU/kg phytase and 0 or 16 000 BXU/kg xylanase, fed in two phases (starter 0–21; grower 21–42 d). Heidelberg pH capsules were administered to 8 birds from each treatment group, pre- and post-diet phase change, with readings captured over a 5.5-h period.

3. At 21 and 42 d, birds fed 500 FTU/kg phytase without xylanase had on average 127 and 223 g lower weight gain than all other treatments, respectively (P < 0.05). At 42 d, body weight-corrected feed conversion ratio (bwcFCR) was reduced (P < 0.05) by supplementing 2500 FTU/kg phytase or xylanase, with the combination giving a 12 point reduction in bwcFCR compared to birds fed 500 FTU/kg phytase without xylanase. Inositol content of plasma was twice that of the erythrocyte (P < 0.001), with 2500 FTU/kg phytase tending to increase (P = 0.07) inositol content in both blood fractions.

4. Across all treatments, capsule readings ranged from pH 0.54 to 4.84 in the gizzard of broilers. Addition of 2500 FTU/kg phytase to the grower diet reduced (P < 0.05) average gizzard pH from 2.89 to 1.69, whilst feeding xylanase increased (P < 0.001) gizzard pH from 2.04 to 2.40. In contrast, digital probe measurements showed no effect of xylanase on gizzard pH, while addition of 2500 FTU/kg phytase increased (P = 0.05) pH compared to 500 FTU/kg phytase with or without xylanase.

5. These findings suggested that xylanase and high phytase doses have opposite effects on real-time gastric pH, while similarly improving performance of broilers.  相似文献   

6.
Two studies were conducted to determine the efficacy of an Escherichia coli-derived phytase (ECP) and its equivalency relative to inorganic phosphorus (iP) from monosodium phosphate (MSP). In Exp. 1, one thousand two hundred 1-d-old male broilers were used in a 42-d trial to assess the effect of ECP and iP supplementation on growth performance and nutrient digestibility. Dietary treatments were based on corn-soybean meal basal diets (BD) containing 239 and 221 g of CP, 8.2 and 6.6 g of Ca, and 2.4 and 1.5 g of nonphytate P (nPP) per kg for the starter and grower phases, respectively. Treatments consisted of the BD; the BD + 0.6, 1.2, or 1.8 g of iP from MSP per kg; and the BD + 250, 500, 750, or 1,000 phytase units (FTU) of ECP per kg. Increasing levels of MSP improved gain, gain:feed, and tibia ash (linear, P < 0.01). Increasing levels of ECP improved gain, gain:feed, tibia ash (linear, P < 0.01), apparent ileal digestibility of P, N, Arg, His, Phe, and Trp at d 21 (linear, P < 0.05), and apparent retention of P at d 21 (linear, P < 0.05). Increasing levels of ECP decreased apparent retention of energy (linear, P < 0.01). Five hundred FTU of ECP per kg was determined to be equivalent to the addition of 0.72, 0.78, and 1.19 g of iP from MSP per kg in broiler diets based on gain, feed intake, and bone ash, respectively. In Exp. 2, forty-eight 10-kg pigs were used in a 28-d trial to assess the effect of ECP and iP supplementation on growth performance and nutrient digestibility. Dietary treatments consisted of a positive control containing 6.1 and 3.5 g of Ca and nPP, respectively, per kg; a negative control (NC) containing 4.8 and 1.7 g of Ca and nPP, respectively, per kg; the NC diet plus 0.4, 0.8, or 1.2 g of iP from MSP per kg; and the NC diet plus 500, 750, or 1,000 FTU of ECP per kg. Daily gain improved (linear, P < 0.05) with ECP addition, as did apparent digestibility of Ca and P (linear, P < 0.01). Five hundred FTU of ECP per kg was determined to be equivalent to the addition of 0.49 and 1.00 g of iP from MSP per kg in starter pigs diets, based on ADG and bone ash, respectively.  相似文献   

7.
To compare the effectiveness of 2 phytase enzymes (Phyzyme and Natuphos), growth performance, fibula ash, and Ca and P digestibilities were evaluated in 4 studies. The first 3 studies used 832 pigs (i.e., 288 in the nursery phase, initial BW 8.1 kg; 288 in the grower phase, initial BW 24.2 kg; and 256 in the finisher phase, initial BW 57.8 kg) and were carried out over periods of 28, 42, and 60 d, respectively. Dietary treatments in each study consisted of a positive control [available P (aP) at requirement level]; negative control (Ca remained as in the positive control, and aP at 66, 56, and 40% of the requirement for the nursery, grower, and finisher studies, respectively); negative control plus graded levels of Phyzyme [250, 500, 750, or 1,000; measured as phytase units (FTU)/kg] or Natuphos (250 and 500 FTU/kg for the nursery and grower studies, or 500 and 1,000 FTU/kg for the finisher study) plus a very high dose of Phyzyme (tolerance level, at 10,000 FTU/kg) in the nursery and grower experiments. Across the 3 studies, there was no effect of any dietary treatment on ADFI, but the negative control reduced ADG (10%), G:F (7%), and bone ash (8%) compared with the positive control. In the nursery study, phytase addition increased G:F and bone ash linearly (P < 0.01). In the grower study, phytase increased ADG, G:F, and bone ash linearly (P < 0.01). In the finisher study, phytase addition increased ADG and bone ash linearly (P < 0.01) and increased G:F quadratically (P < 0.05); G:F was, on average, 5% greater (P < 0.05) with Phyzyme than with Natuphos. The fourth study was conducted to investigate the P-releasing efficacy of the 2 phytases. The apparent fecal digestibility of P, measured with chromic oxide as an external marker in 35 pigs (55.9 kg of BW), showed that aP increased (P < 0.001) by 0.17 and 0.06 g (+/- 0.023) per 100 FTU consumed for Phyzyme and Natuphos, respectively. Also, Phyzyme at 10,000 FTU/kg was not detrimental to animal health or growth performance. At doses intended for commercial conditions, Phyzyme proved to be effective in releasing phytate bound P from diets, with an efficacy superior to a commercially available enzyme.  相似文献   

8.
One‐hundred and fifty male chickens were used to evaluate the effects of different activities (0, 250, 500, 12 500 FTU/kg) of phytase on their performance and antioxidant concentration in the liver. The chicks were housed in 30 cages and were allocated to six replicates of five dietary treatments. All diets were formulated to be adequate in energy and protein (12.90 MJ/kg metabolizable energy, 214 g/kg crude protein), however, the negative control (NC) was lower in available P compared with the positive control (PC) (2.5 vs. 4.5 g/kg diet). The other three diets were the NC supplemented with phytase at 250, 500 and 12 500 FTU/kg (NC + 250, NC + 500 and NC + 12 500 FTU respectively). The concentration of antioxidants in the liver of the birds was determined using HPLC at 21 days of age. Low P diets (NC) reduced weight gain, however, supplementation with phytase improved weight gain to the extent that it was better than the PC at the 12 500 FTU treatment (p < 0.05). Feed conversion ratio was also improved by the high level of phytase supplement more than other treatments (p < 0.05). Feed consumption was not affected either by dietary phosphorus concentration or by different phytase supplementation. The antioxidant data showed that the unsupplemented diet with low phosphorus (NC) decreased the concentration of coenzyme Q10 and retinol‐linoleate in the liver compared with that of birds on the adequate phosphorus treatment (PC). Phytase supplementation, especially at the higher doses (500 and 12 500 FTU) increased the level of coenzyme Q10 to the same level as the PC treatment. In addition, the highest dose (12 500 FTU) of phytase increased retinol concentration in the liver of chickens compared with those on the NC treatment. The highest inclusion level of phytase increased the α‐tocopherol level in the liver compared with the lower levels of phytase (NC + 250 and NC + 500 FTU).  相似文献   

9.
1. A broiler growth study was conducted to compare the effect of different concentrations of an Escherichia coli-derived phytase on performance, apparent metabolisable energy (AME), nitrogen (N), amino acid and mineral metabolisability, sialic acid excretion and villus morphology when fed to broiler chickens. 2. Female Ross 308 broilers (480) were reared in floor pens from 0 to 28 d of age. All birds were fed on nutritionally complete starter (0 to 21 d of age) and grower diets (21 to 28 d of age) with the exception that they were low in P (28 and 23 g/kg available P, respectively). These maize-soy diets were supplemented with 0, 250, 500 or 2500 phytase units (FTU)/kg feed. 3. Between 21 and 28 d of age, two birds from each floor pen were selected, and each pair placed in one of 32 metabolism cages (two birds per cage). Feed intake was recorded and excreta collected for the last 2 d of the feeding period, and AME, N, amino acid and mineral metabolisability coefficients and endogenous losses were determined following a total collection procedure. 4. Feed intake and weight gain increased in a linear manner in response to phytase dose, with an average increase of approximately 11.7 and 13.5%, respectively, compared with chickens fed on the low-P diet. Birds given diets with 2500 FTU weighed 6.6% more and had a 2.4% higher feed conversion efficiency (FCE) than those fed on diets containing 500 FTU. 5. Enzyme supplementation increased the intake of AME and metabolisable N by 10.3 and 3.9%, respectively, principally through increases in feed intake. Birds given enzyme-supplemented diets also improved their intake of metabolisable amino acids and P by approximately 14 and 12.4%, respectively, compared with birds fed on the control diet. Enzyme supplementation did not affect ileal villus morphometry of the birds.  相似文献   

10.
The objective of the current study was to evaluate the effect of feeding a thermo-tolerant xylanase in low-energy broiler diets on performance and processing parameters. Evaluation criteria included average broiler BW, FCR, livability, carcass yield, and fat pad yields. The experimental design consisted of 3 nutrient profiles: positive control, negative control 1 (−66 kcal/kg), and negative control 2 (−132 kcal/kg). Two xylanase inclusion programs were included in the negative control 1 and 2 diets; 60 g/t was included in the starter and grower diets with either 60 or 100 g/t in the finisher and withdrawal diets, yielding a total of 7 treatment groups with 8 replicate pens per treatment each containing 42-d-old straight-run chicks per treatment (2,352 total broilers). Broilers were reared in floor pens through 45 d of age. The dietary program consisted of 5 dietary phases: starter (1–15 d), grower 1 (16–23 d), grower 2 (24–31 d), finisher (32–38 d), and withdrawal (39–45 d). Body weights and feed consumption were determined on days of dietary changes, including d 15, 23, 31, 38, and 45. On d 45, 4 male and 4 female broilers per replicate (448 total) were subjected to an 8-h feed withdrawal period and processed to obtain carcass and fat pad weights. Reducing the dietary energy level increased FCR and decreased the fat pad weight of broilers in the negative control 2 treatment compared with the positive control. Inclusion of xylanase during the starter phase increased d 15 BW and reduced FCR. The inclusion of xylanase continued to reduce FCR throughout the trial, as compared with diets without xylanase inclusion. Within this study, we have demonstrated the effectiveness of xylanase inclusion in reduced-energy diets (−66 and −132 kcal/kg) to improve FCR of broilers to that of broilers fed energy-adequate diets.  相似文献   

11.
Three experiments were conducted to evaluate the effect of supplementing phytase and xylanase on nutrient digestibility and performance of growing pigs fed wheat-based diets. In Exp. 1, 10 diets were fed to 60 pigs from 20 to 60 kg of BW to determine the effect of combining phytase and xylanase on apparent total tract digestibility (ATTD) of nutrients and growth performance. The 10 diets included a positive control diet (PC; 0.23% available P; 0.60% Ca) and a negative control diet (NC; 0.16% available P; 0.50% Ca) supplemented with phytase at 0, 250, and 500 fytase units (FTU)/kg and xylanase at 0, 2,000, and 4,000 xylanase units (XU)/kg in a 3 x 3 factorial arrangement. In Exp. 2, 6 ileally cannulated barrows (initial BW = 35.1 kg) were fed 4 wheat-based diets in a 4 x 4 Latin square design, with 2 added columns to determine the effect of combining phytase and xylanase on apparent ileal digestibility (AID) of nutrients. The 4 diets were NC (same as that used in Exp. 1) or NC supplemented with phytase at 500 FTU/kg, xylanase at 4,000 XU/kg, or phytase at 500 FTU/kg plus xylanase at 4,000 XU/kg. In Exp. 3, 36 barrows (initial BW = 55.5 kg) were fed 4 diets based on prepelleted (at 80 degrees C) and crumpled wheat for 2 wk to determine the effect of phytase supplementation on ATTD of nutrients. The 4 diets fed were a PC (0.22% available P; 0.54% Ca) and a NC (0.13% available P; 0.43% Ca) alone or with phytase at 500 or 1,000 FTU/kg. All diets in the 3 experiments contained Cr(2)O(3) as an indigestible marker. No synergistic interactions were detected between phytase and xylanase on any of the response criteria measured in Exp. 1 or 2. There were no dietary effects on growth performance in Exp. 1. In Exp. 1, phytase at 250 FTU/kg increased the ATTD of P and Ca by 51 and 11% at 20 kg of BW or by 54 and 10% at 60 kg of BW, respectively, but increasing the level of phytase to 500 FTU/kg only increased (P < 0.05) ATTD of P at 20 kg of BW. In Exp. 2, phytase at 500 FTU/kg increased (P < 0.05) the AID of P and Ca by 21 and 12%, respectively. In Exp. 3, phytase at 500 FTU/kg improved (P < 0.05) ATTD of P by 36%, but had no further effect at 1,000 FTU/kg. Xylanase at 4,000 XU/kg improved (P < 0.05) AID of Lys, Leu, Phe, Thr, Gly, and Ser in Exp. 2. In conclusion, phytase and xylanase improved P and AA digestibilities, respectively, but no interaction between the 2 enzymes was noted.  相似文献   

12.
Considering approaches to efficiently produce broiler chickens, an experiment was conducted to describe the manufacturing and feeding effects of a corn, soybean meal, and wheat based diet with varying levels of corn distillers dried grains with solubles (DDGS) and commercial phytase. Treatments were arranged in a 3 × 2 factorial randomized complete block design varying in phytase (zero, 1,000, and 6,000 FTU/kg) and DDGS inclusion (zero or 5%). Phytase inclusion decreased dietary non-phytate phosphorous (nPP) and total Calcium (Ca) in formulation by 0.12 and 0.1%, respectively. Diets were steam conditioned at 82°C for 10 s, extruded through a 4.7 × 38 mm pellet die, and fed as crumbles (starter and grower) or pellets (finisher). Ten replicate pens of straight-run Hubbard × Cobb 500 chicks consumed one of 6 dietary treatments for 38 days. Phytase improved feed conversion ratio (FCR) in the starter period (P = 0.05), but benefits were not apparent in the grower or finisher periods. Phytase and formulation main effects interacted to affect overall FCR (P = 0.05), demonstrating a 0.05 decrease in FCR when birds were fed a diet containing a super-dose of phytase and without DDGS relative to diets containing a super-dose of phytase and DDGS. The DDGS likely provided reduced nutrient availability relative to their nutrient values used for diet formulation or provided non-starch polysaccharides (NSP) at a level that decreased bird performance. Based on tibia ash measures, performance improvement associated with the super-dose of phytase was likely associated with reducing phytate phosphorus gastrointestinal irritation rather than meeting bird phosphorus requirement.  相似文献   

13.
Phytase supplementation beyond the standard doses used for phosphorus release has been reported to result in extraphosphoric effects by enhancing nutrient digestibility resulting in improved performance of broilers. A study was conducted to examine the effects of the progressive addition of an enhancedEscherichia Coli phytase (400–1,600 phytase units; FTU) on growth performance and carcass characteristics from 1 to 42 d of age in male broilers. One thousand four hundred Hubbard × Cobb 500 1-d-old chicks were randomly distributed into 56 floor pens (0.08 m2/bird). Seven dietary treatments were provided in a 3-phase feeding program consisting of (1) a positive control (adequate Ca and nonphytate P; PC); (2) 1 negative control (Ca and nonphytate P reduced by 0.14% and 0.13%; NC); (3 to 6) the NC diet with 4 increasing supplemental phytase concentrations (NC + 400 FTU, NC + 800 FTU, NC + 1,200 FTU, and NC + 1,600 FTU, respectively); and (7) a low-energy NC diet without phytase and xylanase (reduced 66 kcal of AMEn/kg). Body weight gain, feed conversion, mortality, weight and yield of whole carcass, abdominal fat, and pectoralis major and minor muscles were evaluated. Progressive supplementation of phytase decreased cumulative FCR linearly. Broilers fed diets containing 1,600 FTU had heavier total breast meat by 49 g compared with birds receiving the PC diets. Broilers consuming the NC + 400 FTU or the low-energy NC diet had similar growth performance and meat yield compared with birds provided PC diet. These data indicated that phytase supplementation beyond the need for phosphorus enhances growth performance and carcass characteristics.  相似文献   

14.
1. An experiment was performed to elucidate the subsequent effects of high-non-phytate phosphorus (NPP) diets on growth performance, blood metabolites, bone characteristics and P retention of broilers fed on low-NPP grower diets. The 42-d study was designed as a 2 × 2 × 2 + 1 factorial, which included two starter NPP concentrations (4.5 and 5.5 g/kg; d 0–21), two grower NPP concentrations (1.5 and 2.3 g/kg; d 22–42), with or without phytase (1000 FTU/kg), with a reference diet containing an adequate NPP concentration over the course of the trial.

2. In the starter period, growth performance and P retention were not affected by experimental diets. The high-NPP diet increased plasma P concentration, increased tibia ash and tibia P contents and decreased plasma alkaline phosphatase (ALP) activity at d 21.

3. No significant interaction was observed between NPP concentrations in the starter and grower periods and phytase. The main effect data indicated that the increase in NPP concentration in the starter diets had no effects on growth performance in the grower period and overall. The high-NPP diet in the early stage of growth reduced plasma P concentration, plasma ALP activity and tibia ash content at d 42. The main effect data also showed that exogenous phytase increased body weight gain in the grower period and overall.

4. It can be concluded that feeding increased NPP diets have no effects on growth performance in the starter period. This feeding strategy results in negative effects on plasma P concentration and bone ash content at d 42. Also, exogenous phytase is effective in improving growth performance, bone characteristics and apparent P retention of growing broilers fed diets that are inadequate in phosphorus.  相似文献   


15.
Two experiments were conducted to determine the efficacy of mannan oligosaccharides (MOS) fed at two levels of Cu on growth and feed efficiency of weanling and growing-finishing pigs, as well as the effect on the immunocompetence of weanling pigs. In Exp. 1, 216 barrows (6 kg of BW and 18 d of age) were penned in groups of six (9 pens/treatment). Dietary treatments were arranged as a 2 x 2 factorial consisting of two levels of Cu (basal level or 175 ppm supplemental Cu) with and without MOS (0.2%). Diets were fed from d 0 to 38 after weaning. Blood samples were obtained to determine lymphocyte proliferation in vitro. From d 0 to 10, ADG, ADFI, and gain:feed (G:F) increased when MOS was added to diets containing the basal level of Cu, but decreased when MOS was added to diets containing 175 ppm supplemental Cu (interaction, P < 0.01, P < 0.10, and P < 0.05, respectively). Pigs fed diets containing 175 ppm Cu from d 10 to 24 and d 24 to 38 had greater (P < 0.05) ADG and ADFI than those fed the basal level of Cu regardless of MOS addition. Pigs fed diets containing MOS from d 24 to 38 had greater ADG (P < 0.05) and G:F (P < 0.10) than those fed diets devoid of MOS. Lymphocyte proliferation was not altered by dietary treatment. In Exp. 2, 144 pigs were divided into six pigs/pen (six pens/treatment). Dietary treatments were fed throughout the starter (20 to 32 kg BW), grower (32 to 68 kg BW), and finisher (68 to 106 kg BW) phases. Diets consisted of two levels of Cu (basal level or basal diet + 175 ppm in starter and grower diets and 125 ppm in finisher diets) with and without MOS (0.2% in starter, 0.1% in grower, and 0.05% in finisher). Pigs fed supplemental Cu had greater (P < 0.05) ADG and G:F during the starter and grower phases compared to pigs fed the basal level of Cu. During the finisher phase, ADG increased when pigs were fed MOS in diets containing the basal level of Cu, but decreased when MOS was added to diets supplemented with 125 ppm Cu (interaction, P < 0.05). Results from this study indicate the response of weanling pigs fed MOS in phase 1 varied with level of dietary Cu. However, in phase 2 and phase 3, diets containing either MOS or 175 ppm Cu resulted in improved performance. Pharmacological Cu addition improved gain and efficiency during the starter and grower phases in growing-finishing pigs, while ADG response to the addition of MOS during the finisher phase seems to be dependent upon the level of Cu supplementation.  相似文献   

16.
This study evaluated the effect of a direct-fed microbial (DFM) and its combination with xylanase, amylase, and protease (XAP) enzymes cocktail on performance of broilers, in comparison with two commonly used antimicrobial growth promoters (AGPs). Five treatments were tested using day-old Ross 708 broilers (mixed sex at 50:50 ratio) in a completely randomized design with 8 replications per treatment (40 birds/pen) using built up litter. Treatments were 1) a negative control (NC) based on corn/soy/wheat (10%) containing 500FTU/kg phytase, 2) NC + DFM (150,000 CFU/g of 3 Bacillus strains) (DFM150); 3) NC+ DFM (75,000 CFU/g of 3 Bacillus strains) in combination with XAP, XAP + DFM75); 4) NC+ BMD (50 g/ton), and 5) NC+ virginiamycin (20 g/ton). Diets were fed in mash form ad libitum in 3 phases: d 1 to 10 (starter); d 11 to 21 (grower) and d 22 to 42 (finisher). Body weight and feed intake (FI) were measured per phase and feed conversion ratio (FCR) was corrected for mortality weight. Treatment means were compared using a one-way analysis of variance (ANOVA) and separated via Duncan's Multiple Range Test. Supplementation of DFM increased (P < 0.05) average BW at d 10 when compared to the NC. Overall 42-d data indicated that the combination of XAP+DFM75 reduced (P < 0.05) mortality weight corrected FCR compared to NC, both DFM150 and the combination of XAP+DFM75 did not differ from both AGP treatments. Feed intake and body weight gain (BWG) were not affected by treatments during the 42-d study. The combination of XAP+DFM75 also reduced (P < 0.05) foot-pad lesion score as well as improved energy efficiency compared to the NC. These data indicate that both DFM150 and the combination of XAP + DFM75 may be used as an alternative to AGPs to achieve similar growth performance when producing broilers chickens under similar conditions.  相似文献   

17.
The trial was performed to investigate the effects of different concentrations of non‐phytate phosphorus (nPP) in the starter and grower (with phytase inclusion) periods on carcass characteristics, organ weight and weekly variations of growth performance in the grower period. Seven hundred and twenty‐day‐old male broiler chickens were randomly assigned to 12 treatments in a completely randomized design. Chickens received two dietary treatments (4.5 g/kg and 6 g/kg nPP) in the starter (0–21 days) and six experimental diets (4 g/kg, 3.1 g/kg, 2.3 g/kg and 2.3 g/kg + 1000 FTU/Kg of feed phytase, 1.5 g/kg, 1.5 g/kg nPP + 1000 FTU/Kg of feed phytase) in the grower period (22–42 days). Results showed that phytase inclusion in the second and third weeks of grower period could increase feed intake significantly. Also, decrease in the concentrations of nPP to 1.5 g/kg caused to decline body weight gain markedly. Moreover, there is a significant difference between 4.5 g/kg and 6 + 4 g/kg nPP (starter+grower) and 1.5 g/kg nPP. Phytase inclusion increased carcass yield and declined liver weight significantly. Dietary treatment of 4.5 + 1.5 g/kg nPP enhanced heart and liver weight markedly. It is concluded that starter diets with increased concentration of nPP (6 g/kg nPP) had no beneficial effects on growth performance in the starter and grower period in the total (0–42 days). Also, it is possible to decrease nPP concentration of grower diets to 1.5 and 2.3 g/kg with and without phytase inclusion respectively.  相似文献   

18.
1. The current study was conducted to investigate the effect of high phytase doses on growth performance and real-time gastric pH measurements in broiler chickens and pigs.

2. In the first experiment, 576 male Ross 308 broilers were fed in two phases (0–21 and 21–42 d) with 4 treatment groups, with diets meeting nutrient requirements containing 0, 500, 1500 or 2500 FTU/kg phytase. In the second, 64 Landrace weaners were fed on diets meeting nutrient requirements with or without phytase (0 or 2500 FTU/kg) in two phases (0–21 and 21–42 d). Heidelberg pH capsules were administered to 7 broilers and approximately 13 pigs per treatment group, pre- and post-phase change, with readings monitored over several hours.

3. Addition of phytase into an adequate Ca and P diet had no significant effect on broiler performance although phytase tended (< 0.07) to improve feed conversion in pigs over the entire experimental period. Real-time pH capsule readings in broilers demonstrated an increase (< 0.05) in gizzard pH when phytase was dosed at 500 or 1500 FTU/kg, while higher doses of 2500 FTU/kg phytase lowered pH to a level comparable to control birds. Gastric pH increased (< 0.01) when animals were exposed to dietary phase change, signifying a potential challenge period for nutrient digestibility. However, pigs fed 2500 FTU/kg were able to maintain gastric pH levels through diet phase change. In contrast, spear-tip probe measurements showed no treatment effect on gastric pH.

4. These findings demonstrate dietary manipulation of gastric pH and the value of real-time pH capsule technology as a means of determining phytase dose response.  相似文献   

19.
Three experiments were conducted to compare the excretion of water-soluble phosphorus (P) of starter, grower, and finisher pigs fed corn-soybean meal-based P-deficient basal diet containing no added inorganic P (B), P-adequate diet (the basal diet with added dicalcium phosphate; B + P), the basal diet plus 500 units of microbial phytase/kg (B + 500), or the basal diet plus 1000 units of microbial phytase/kg (B + 1000). There were 6 barrows per diet, in a randomized complete block design, with an average initial body weight of 10.4, 20.0, or 51.1 kg for each of starter, grower, and finisher pigs in the three phosphorus balance experiments, respectively. In the experiments, the addition of dicalcium phosphate or phytase to the basal diet increased ( P  < 0.05) the digestibility and retention of P, and there were linear reductions ( P  < 0.05) in water-soluble P excretion as a result of supplementing the basal diet with phytase. In the starter pig experiment, phytase addition at 500 or 1000 units/kg reduced ( P  < 0.05) water-soluble P excretion by 28 or 42%, respectively when compared with the B + P diet. In the grower pig experiment, adding phytase at 500 or 1000 units/kg reduced ( P  < 0.05) water-soluble P excretion by 24 or 34%, respectively when compared with the B + P diet. The use of phytase at 500 or 1000 units/kg reduced ( P  < 0.05) water-soluble P excretion by 11 or 30%, respectively in the finisher pig experiment. The proportion of water-soluble phosphorus in total phosphorus was not affected by dietary treatment in any of the three experiments. In conclusion, adding phytase at 1000 units/kg to a corn-soybean meal-based P-deficient diet basal diet containing no added inorganic P compared with B + P diet reduced the daily excretion of water-soluble P in starter, grower, and finisher pigs by 42, 34, and 30%, respectively.  相似文献   

20.
An experiment was conducted to evaluate the effects of diets containing low-, moderate-, or high-oil dried distillers dried grains with solubles (DDGS) included at conventional- or increased-inclusion rates fed to 1,500 Ross × Ross 708 male broilers that were assigned to 60 floor pens from 1 to 49 d of age. Three sources of DDGS had ether extract composition of 6.06, 8.80, or 11.59%, on dry matter (DM) basis, representing low-oil, moderate-oil, or high-oil DDGS, respectively. Diets were formulated to contain corn, soybean meal, animal protein meal as the primary ingredients, and 1 of the 3 DDGS sources at either 5, 7, 9, or 11% (conventional-inclusion rate) and 8, 10, 12, or 14% (increased-inclusion rate) in the starter (1 to 14 d), grower (15 to 24 d), finisher 1 (25 to 34 d), and finisher 2 (35 to 49 d) periods, respectively. Apparent MEn (low-oil:1,975, moderate-oil: 2,644, and high-oil: 3,137 kcal/kg) and digestible amino acid (AA) values of the 3 DDGS sources were determined from previous research. No differences were detected for cumulative BW gain and feed conversion 1 to 49 d of age or meat yields at 50 d of age. Feeding broilers diets containing the low-oil DDGS source increased feed cost per BW gain and breast meat weight of $0.025/kg and $0.004/kg compared with birds fed diets containing high-oil DDGS or moderate-oil and high-oil DDGS sources, respectively. These data indicated that DDGS source and inclusion rate did not affect cumulative growth and carcass characteristics of broilers from 1 to 50 d of age but demonstrate differences in feed cost/BW gain and feed cost/breast meat weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号