首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT This experiment was conducted to investigate leptin mRNA expression, adipocyte size, and their relationship in several adipose tissues of fattening steers. Subcutaneous, perirenal, intermuscular and intramuscular adipose tissues were collected from three crossbred steers (Japanese Black cattle X Holstein) aged 21 months. The mRNA level and adipocyte diameter were determined in these adipose tissues. The intramuscular adipose tissue had a lower leptin mRNA level than the intermuscular and perirenal adipose tissues (P < 0.05). Leptin mRNA level was lower in the subcutaneous depot than in the intermuscular depot (P < 0.05). Adipocyte diameter was larger in the intermuscular adipose tissue than in the subcutaneous and intramuscular adipose tissues (P < 0.05). Leptin mRNA level was positively correlated with adipocyte diameter (r2 = 0.81, P < 0.05). These results suggest that the cattle have fat depot‐specific differences in leptin gene expression, which are a result of a difference in adipocyte size.  相似文献   

2.
3.
Daidzein has been reported to be effective in regulating lipid metabolism in animals. However, the molecular mechanisms of daidzein on adipogenesis in beef cattle are not yet reported and the results of daidzein on affecting lipid metabolism in other species have been conflicting. High-throughput sequencing of mRNA (RNA-Seq) technology was performed to elucidate the underlying molecular mechanisms of daidzein on adipogenesis in subcutaneous adipose tissue of finishing Xianan beef cattle. A total of 893 differentially expressed genes (DEGs) were identified by differential expression analysis, among which 405 genes were upregulated and 488 genes were downregulated. Bioinformatics analysis suggested that these DEGs were significantly enriched to the pathways related to lipid metabolism including ECM–receptor interaction, Glycolysis/Gluconeogenesis and Hedgehog signalling pathway. Daidzein significantly affected the candidate genes (Shh, Pec, Gli, Wnt6, DLK, IGFBP2, ID3 and C/EBPE) related to adipocyte differentiation. Besides, daidzein improved the ability of subcutaneous adipocytes in synthesizing triglycerides by directly using the long-chain fatty acids and enhanced the efficiency of triglyceride synthesis of subcutaneous adipocytes in Xianan steers. In conclusion, daidzein plays a positive role not only in adipogenic differentiation, but also in triglyceride synthesis in subcutaneous adipose tissue of Xianan beef cattle.  相似文献   

4.
5.
The adipocyte is important not only for the storage of excess energy as fat, but also for the secretion of homeostatic factors. Gene expression profiles during adipocyte differentiation have been reported previously for mouse 3T3‐L1 cells. However, the profiles of adipogenic gene expression in mice and cattle may be different because several metabolic pathways of the ruminant adipose tissue are different from those of non‐ruminants. The gene expression profile in a clonal bovine intramuscular preadipocyte cell line during adipogenesis was examined using the polymerase chain reaction‐subtraction method. Six hundred and twenty‐one clones, which were expressed at an early stage of differentiation, from the preadipocyte to adipocyte, were isolated and characterized. Further detailed studies were carried out for 86 selected genes using northern blotting. Ten genes were found to be highly expressed after differentiation of bovine intramuscular preadipocyte cells. In particular, the expression profiles of genes for stearoyl CoA desaturase and FK506 binding protein were quite different from the time course of differentiation of that seen in the 3T3‐L1 cells reported previously. In addition, these genes were assigned to bovine chromosomes using a bovine/hamster somatic cell hybrid panel and public database.  相似文献   

6.
Short chain fatty acids (SCFA) represent the main source for energy supply in ruminants. Propionate up-regulates leptin synthesis through the G protein-coupled receptor 41 (GPR41) in mice but the importance of the GPR41 in ruminants is not yet clarified. Here we characterise the short-term effects of intravenously infused propionate on a putative GPR41 mRNA in goat adipose tissue. Castrated male goats (Capra hircus) received propionate infusion or NaCl solution with equivalent sodium content for 260 min. A putative GPR41 mRNA was quantified in subcutaneous and perirenal adipose tissue by real-time RT-PCR. The mRNA concentration of the putative GPR41 mRNA increased (p = 0.029) in subcutaneous but not in perirenal adipose tissue (p = 0.756) of propionate-infused animals versus the NaCl group. We hypothesise that the differential response of the putative GPR41 mRNA in subcutaneous versus perirenal adipose tissue towards short-term propionate infusion could be involved in a differential nutrient sensing of SCFA in the two adipose depots of goats.  相似文献   

7.
The amount of monounsaturated fatty acid (MUFA) is intimately related to adipose softness, melting point (MP) and flavor in beef. Stearoyl‐CoA desaturase (SCD) is a main gene involved in MUFA synthesis. Mature adipose tends to be highly saturated, whereas immature or maturing adipose is highly unsaturated when chronologically based, so the degree of non‐saturation can be an index of adipose maturity. In this study, three different adipose tissues (coelomic (CL), perirenal (PR), and subcutaneous (SC)) from three beef breeds with differing slaughter ages (Japanese Black (29.5 months), Holstein (20.1 month), and F1 crossbreed (25.6 months)) were examined to: (i) determine adipose maturity level as indexed by MUFA %; and (ii) determine SCD and other lipogenic gene messenger RNA (mRNA) expression levels in relation to unsaturated fatty acid content. Fatty acid composition was significantly different between adipose tissues (P < 0.05). MUFA amount was high in the following order: SC > CL > PR. This pattern corresponded to SCD mRNA expression profile showing higher expression in SC than CL and PR. However, Japanese black cattle are an exception with CL adipose containing similar UFA % as SC adipose, yet having the lowest SCD mRNA expression level among all adipose tissues tested. Therefore, SCD mRNA expression and MUFA % appear to be directly related; however, differences in SCD mRNA expression among three adipose tissues may reflect differences in the fat development characteristics affected by chronological age of the cattle breeds.  相似文献   

8.
Body weight and fat mass vary distinctly between German Holstein (dairy cattle) and Charolais (beef cattle). The aim of this study was to determine whether the expression of the obese (Ob) gene and lipoprotein lipase (LPL) gene in fat tissues and expression of the long isoform leptin receptor (Ob-Rb) gene in the hypothalamus were different between these two cattle breeds. Body weight and the area of longissimus muscle cross-section of German Holstein were lower (P<0.001), while body fat content, as well as the omental and perirenal fat mass were higher (P<0.001), compared to Charolais. Plasma insulin and leptin levels between two cattle breeds were determined by radioimmunoassay. Compared to Charolais, plasma insulin concentrations were significantly higher (P<0.01), and plasma leptin levels were tended to be higher (P<0.1) in German Holstein. Ob mRNA levels in subcutaneous and perirenal fat depots, but not in the omental fat depot, were significantly higher (P<0.05) in German Holstein than in Charolais. LPL mRNA expression in the perirenal fat depot of German Holstein was greater in abundance than that of Charolais. No significantly different LPL mRNA levels were found in subcutaneous and omental fat depots, and Ob-Rb mRNA levels in the hypothalamus between these two cattle breeds (P<0.05). Both Ob and LPL expression was greater in perirenal and omental fat depots than in the subcutaneous fat depot (P<0.05). Data indicated that in bovine the Ob and LPL gene expression levels in perirenal fats are an important index that is associated with body fat content, while Ob-Rb in hypothalamus is not.  相似文献   

9.
Previous research reported that KLF3 plays different roles in the regulation of adipose deposition across species. However, the exact function of KLF3 in goat subcutaneous adipocyte remains unknown. Here, the goat KLF3 gene was firstly cloned and showed that the mRNA sequence of the goat KLF3 gene was 1,264 bp (GenBank accession number: KU041753.1) and its coding sequence was 1,037 bp, encoding 345 amino acids with three classic zinc finger domains of KLFs family at its C-terminus. The alignment of the amino acid sequence of KLF3 among various species demonstrated that goat had the highest homology to that of sheep, presenting 99.4% similarity, while the homology similarity to that of mice presented only 93.62% in contrast. Furthermore, KLF3 had highest mRNA level in fat tissue and lowest level in the heart in comparison. Additionally, the mRNA level of KLF3 gradually tended to increase during adipogenesis. Interestingly, overexpression of KLF3 increased lipid accumulation. In line with this, the gain-of-function of KLF3 dramatically elevated the mRNA levels of TG synthetic genes and adipogenic maker genes (p < .01) . Moreover, overexpression of KLF3 upregulated all the potential target genes, except for C/EBPα. These results suggested that KLF3 is a positive regulator for subcutaneous adipocyte differentiation in goats.  相似文献   

10.
To understand the molecular mechanisms that regulate intramuscular fat deposition (marbling), cDNA clones expressed in adipose tissues of Korean cattle were identified and characterized. One clone had a total length of 1262 nucleotides coding for 314 amino acids. It was identified as one encoding bovine homolog of human CGI-105 mRNA. CGI-105 is a member of fumarylacetoacetate hydrolase family. Comparison of the deduced amino acid sequences of bovine CGI-105 with those of human revealed more than 89% identity. High levels of CGI-105 mRNA expression were detected in muscle, heart, and kidney tissues among various bovine tissues. Carcass traits, including backfat thickness, rib eye area, yield index, marbling score, and quality grade were analyzed in steer of Korean cattle. A CCAAT/enhancer binding protein alpha (C/EBPα) is one of adipocyte differentiation factors that may affect deposition of fat in muscle. mRNA levels of CGI-105 and C/EBPα genes were determined in the loin muscle tissues of steers. Correlation between carcass traits and mRNA levels of the genes was estimated by Pearson's correlation coefficient. The mRNA levels of C/EBPα showed strong positive correlation (r = 0.83, p < 0.01) with marbling scores. The results of the present study indicate that the manipulation of the expression of the C/EBPα gene may contribute to the development of a method for enhancing intramuscular fat deposition in beef.  相似文献   

11.
本研究旨在对草原红牛AIDA基因进行克隆、生物信息学分析和差异表达研究,并构建真核表达载体,以期在细胞水平上探究AIDA基因对牛前体脂肪细胞分化的影响。应用RT-PCR方法从草原红牛脂肪组织中扩增AIDA基因编码区,测序鉴定后对其核苷酸和氨基酸序列进行生物信息学分析,同时利用实时荧光定量PCR技术研究AIDA基因在草原红牛9个组织(心脏、肝脏、脾脏、肺脏、肾脏、胃、肠、肌肉、脂肪)和前体脂肪细胞成脂分化过程中的表达规律;构建真核表达载体pBI-CMV3-AIDA,转染草原红牛前体脂肪细胞,通过实时荧光定量PCR方法检测AIDA基因在mRNA水平上的表达情况。结果显示,AIDA基因编码区全长921 bp,编码306个氨基酸,含有4个潜在的糖基化位点和29个潜在的磷酸化位点;亚细胞定位主要分布于细胞质、细胞核和线粒体上。AIDA基因在草原红牛9个组织中均有表达,其中在肾脏组织中表达量最高,显著高于其他组织(P<0.05)。成脂分化结果表明,AIDA基因mRNA表达量在分化的第2天达到最高,随着脂肪细胞的成熟,其表达量逐渐降低;双酶切及测序结果表明,试验成功构建了AIDA基因的真核表达载体pBI-CMV3-AIDA,且过表达组AIDA基因mRNA表达量极显著高于对照组(P<0.01)。本试验成功构建了AIDA基因真核表达载体,并在草原红牛前体脂肪细胞中高度表达,该结果为体外研究牛AIDA基因对脂肪合成代谢及其机体代谢的调节机制提供了基础材料。  相似文献   

12.
13.
[目的]克隆秦川牛CAP2基因的编码区序列(CDS),分析该基因在不同组织及原代脂肪细胞分化过程中的表达特征。[方法]采用RT-PCR方法扩增秦川牛CAP2基因的CDS区,运用ProtPram、TMpred、ProtFun 2.1 Server等在线网站进行CAP2蛋白的生物信息学分析;通过油红O染色和qPCR检测成脂标志基因PPARγFABP4基因的表达水平以构建牛原代脂肪细胞诱导分化体系;利用qPCR检测分析CAP2基因在秦川牛7种组织(心、肝、脾、肺、肾、肌肉和背脂)和原代脂肪细胞分化过程(0~10 d)中的表达。[结果]秦川牛CAP2基因CDS区长1 461 bp,编码486 个氨基酸,氨基酸序列主要由无规卷曲和α-螺旋构成。CAP2基因在脂肪组织中高表达,极显著(P<0.01)高于其他组织。牛原代脂肪细胞诱导分化过程中,PPARγFABP4基因的表达量逐渐上升,与第0天相比第10 天时表达量达到最大(P<0.01);与对照组相比,诱导分化组脂滴积累明显增加;CAP2基因表达量也随时间推移逐渐上升,以0 d为对照,第10天表达量最高(P<0.001)。[结论]成功克隆了秦川牛CAP2基因全长1 461 bp的编码区;CAP2基因在牛脂肪组织中以较高水平表达,且CAP2基因可能参与脂肪生成与分化过程,预测CAP2基因可能是促进成脂分化的转录因子,对维持牛脂肪细胞状态发挥关键作用,可能作为秦川牛肉质性状的候选基因,该研究结果为进一步揭示牛CAP2基因的功能提供基础资料。  相似文献   

14.
In cattle, genetic markers at the leptin (LEP) gene and at those linked to the gene have been described as affecting calving interval (markers LEPSau3AI and IDVGA51), or daily weight gain (BMS1074 and BM1500). This work investigated the effect of these alleles on LEP mRNA levels in cattle subcutaneous and omental adipose tissues. A sample of 137 females of a Brangus‐Ibage beef cattle herd was analysed to evaluate the distribution of the polymorphisms; then, animals having at least one of the IDVGA51*181 (allele 181 at marker IDVGA51; six animals), LEPSau3AI*2 (four), BMS1074*151 (13), BM1500*135 (six) alleles and a control group composed of animals without any of these alleles (four animals) were submitted to surgery to obtain omental and subcutaneous adipose tissues. Leptin mRNA expression was quantified by TaqMan RT‐PCR, using 18S rRNA as internal control and adjusted for the effect of body condition score, through regression analysis. Omental fat had LEP gene expression 33% lower than the subcutaneous tissue. Carriers of IDVGA*181 and BMS1074*151 showed subcutaneous fat leptin mRNA levels higher than the controls. Leptin controls feed intake and coordinates reproduction; therefore, animals with higher LEP gene expression will probably have lower daily weight gain than others with similar forage offer and nutritional condition and probably will also have longer calving interval.  相似文献   

15.
Maternal nutrient restriction leads to alteration in fetal adipose tissue, and offspring from obese mothers have an increased risk of developing obesity. We hypothesized that maternal obesity increases fetal adipogenesis. Multiparous ewes (Columbia/Rambouillet cross 3 to 5 yr of age) carrying twins were assigned to a diet of 100% (Control; CON; n = 4) or 150% (Obese; OB, n = 7) of NRC maintenance requirements from 60 d before conception until necropsy on d 135 of gestation. Maternal and fetal plasma were collected and stored at -80°C for glucose and hormone analyses. Fetal measurements were made at necropsy, and perirenal, pericardial, and subcutaneous adipose tissues were collected from 7 male twin fetuses per group and snap frozen at -80°C. Protein and mRNA expression of fatty acid translocase [cluster of differentiation (CD) 36], fatty acid transport proteins (FATP) 1 and 4, insulin-sensitive glucose transporter (GLUT-4), fatty acid synthase (FASN), and acetyl-coA carboxylase (ACC) was evaluated. Fetal weight was similar, but fetal carcass weight (FCW) was reduced (P < 0.05) in OB versus CON fetuses. Pericardial and perirenal adipose tissue weights were increased (P < 0.05) as a percentage of FCW in OB versus CON fetuses, as was subcutaneous fat thickness (P < 0.001). Average adipocyte diameter was greater (P < 0.01) in the perirenal fat and the pericardial fat (P = 0.06) in OB fetuses compared with CON fetuses. Maternal plasma showed no difference (P > 0.05) in glucose or other hormones, fetal plasma glucose was similar (P = 0.42), and cortisol, IGF-1, and thyroxine were reduced (P ≤ 0.05) in OB fetuses compared with CON fetuses. Protein and mRNA expression of CD 36, FATP 1 and 4, and GLUT-4 were increased (P ≤ 0.05) in all fetal adipose depots in OB versus CON fetuses. The mRNA expression of FASN and ACC was increased (P < 0.05) in OB vs. CON fetuses in all 3 fetal adipose tissue depots. Fatty acid concentrations were increased (P = 0.01) in the perirenal depot of OB versus CON fetuses, and specific fatty acid concentrations were altered (P < 0.05) in subcutaneous and pericardial adipose tissue because of maternal obesity. In conclusion, maternal obesity was associated with increased fetal adiposity, increased fatty acid and glucose transporters, and increased expression of enzymes mediating fatty acid biosynthesis in adipose depots. These alterations, if maintained into the postnatal period, could predispose the offspring to later obesity and metabolic disease.  相似文献   

16.
Obesity is a growing health problem in humans as well as companion animals. In the development and progression of obesity‐associated diseases, the members of the renin–angiotensin system (RAS) are proposed to be involved. Particularly, the prevalence of type 2 diabetes mellitus in cats has increased enormously which is often been linked to obesity as well as to RAS. So far, reports about the expression of a local RAS in cat adipocytes are missing. Therefore, we investigated the mRNA expression of various RAS genes as well as the adipocyte marker genes adiponectin, leptin and PPAR‐γ in feline adipocytes using quantitative PCR. To characterize the gene expression during adipogenesis, feline pre‐adipocytes were differentiated into adipocytes in a primary cell culture and the expression of RAS key genes measured. All major RAS components were expressed in feline cells, but obvious differences in the expression between pre‐adipocytes and the various differentiation stages were found. Interestingly, the two enzymes ACE and ACE2 showed an opposite expression course. In addition to the in vitro experiments, mature adipocytes were isolated from subcutaneous and visceral adipose tissue. Significant differences between both fat depots were found for ACE as well as AT1 receptor with greater expression in subcutaneous than in visceral adipocytes. Visceral adipocytes had significantly higher adiponectin and PPAR‐γ mRNA level compared to the subcutaneous fat cells. Concerning the nutritional status, a significant lower expression of ACE2 was measured in subcutaneous adipocytes of overweight cats. In summary, the results show the existence of a potentially functional local RAS in feline adipose tissue which is differentially regulated during adipogenesis and dependent on the fat tissue depot and nutritional status. These findings are relevant for understanding the development of obesity‐associated diseases in cats such as diabetes mellitus.  相似文献   

17.
利用半定量RT-PCR法分析比较了甘油三酯水解酶(Triacylglycerol hydrolase,TGH)和激素敏感脂酶(Hormone-sensitive lipase,HSL)基因在不同猪种、不同发育阶段及不同部位脂肪组织中转录表达的差异,探讨其在猪脂肪组织的表达规律。结果显示,脂肪型个体TGHmRNA表达丰度显著低于瘦肉型和杂交型个体,成年猪较初生仔猪低,皮下、腹膜和内脏脂肪组织中TGH表达量依次递增;其变化规律与HSL相同。此外,对分离培养的原代前体脂肪细胞通过诱导分化和油红O染色区分分化状态,分析TGHmRNA表达的时序变化,发现TGH在前脂肪细胞中不转录表达,诱导分化后开始表达,且在诱导分化第4天表达量最高,分化第10天表达量下降,达到峰值的时间较HSL早。结果表明,TGH的表达与个体肥胖程度、年龄、脂肪组织部位以及脂肪细胞分化程度相关,同时,在脂肪细胞分化过程中,TGH表达峰值早于HSL,提示TGH在脂肪细胞发育过程中可能较早承担基础脂解作用。  相似文献   

18.
旨在对绵羊β3肾上腺素能受体基因在脂肪组织中的表达进行研究。本研究通过real-time PCR和免疫组化的方法检测了2个绵羊群体皮下脂肪、大网膜、小网膜、腹膜后脂肪、肠系膜和肾周等6种脂肪组织中ADRB3基因mRNA及其蛋白的表达量与分布情况。结果表明:ADRB3蛋白位于脂肪细胞的细胞膜中。ADRB3基因mRNA及其蛋白在皮下脂肪组织的表达丰度最小(0.159和0.139),在腹膜后脂肪组织的表达丰度最大(2.911和2.225),深层脂肪组织中ADRB3基因mRNA表达量要显著高于皮下脂肪组织(P<0.05),表明皮下脂肪组织的脂肪分解率要低于深层脂肪组织。品种对ADRB3基因mRNA的表达没有显著影响,但对于ADRB3蛋白的表达影响显著。不同脂肪组织中ADRB3表达丰度的差异反映了山西肉用绵羊的遗传稳定性较差。本研究的结果与已知的ADRB3调节脂肪分解和产热的功能是一致的,为利用ADRB3基因作为候选基因进行绵羊新品种的培育提供理论依据。  相似文献   

19.
为了研究阿勒泰大尾羊不同部位脂肪组织沉积的变化规律,本试验选取90和270日龄健康、雄性阿勒泰大尾羊各6只,分别采集了90和270日龄时肾周脂、尾脂、腹部皮下脂肪组织样和血清,采用冰冻脂肪组织切片油红O滴染技术和Motic显微数字图像处理系统,测定脂肪细胞面积,并采用放射性免疫技术和酶联免疫法测定了血脂指标.结果显示,90日龄时,阿勒泰大尾羊尾脂脂肪细胞面积极显著高于肾周脂脂肪细胞面积(P<0.01),270日龄时,尾脂和腹部皮下脂肪脂肪细胞面积均极显著高于肾周脂脂肪细胞面积(P<0.01),但脂肪细胞的面积在尾脂和皮下脂肪之间无显著差异(P>0.05);与90日龄相比,270日龄阿勒泰大尾羊肾周脂脂肪细胞面积显著增高(P<0.05),而尾脂脂肪细胞面积极显著降低(P<0.01);90日龄阿勒泰大尾羊血清中leptin和HSL含量极显著高于270日龄(P<0.01),而血清中AST和ALT含量极显著低于270日龄(P<0.01).结果表明,阿勒泰大尾羊从90日龄生长至270日龄时,肾周脂脂肪细胞面积呈增加的趋势,而尾脂脂肪细胞的面积呈减少的趋势,这种变化可能与血清瘦素、激素敏感脂肪酶、天门冬氨酸氨基转氨酶和丙氨酸氨基转移酶含量有关.  相似文献   

20.
This investigation addressed the hypothesis that stearoyl coenzyme A desaturase (SCD) gene expression would serve as a postnatal marker of adipocyte differentiation in bovine s.c. adipose tissue. Samples of tailhead s.c. adipose tissue were obtained by biopsy from preweaning steer calves 2.5 wk, 5 mo, and 7.5 mo of age and from yearling steers 12 mo of age. Samples also were obtained at slaughter when the steers were 18 mo of age. The steers sampled as yearlings were fed native pasture from weaning until 12 mo of age, and the steers sampled at slaughter were fed a high-concentrate diet from 12 to 18 mo of age. Major peak adipocyte volumes for the 2.5-wk-, 5-mo-, and 7.5-mo-old steers were 14, 270, and 700 pL, respectively (P < .001). The steers did not gain weight during pasture feeding, and at 12 mo of age peak adipocyte volume had decreased (P = .009) to 270 pL. At this time, a second, smaller population of adipocytes had appeared with a peak volume of 115 pL. At slaughter, adjusted fat thickness of the steers was 1.60 +/- .13 cm, the USDA yield grade of the carcasses was 3.51 +/- .31, and peak adipocyte volume had increased (P = .01) to over 2,500 pL. The number of adipocytes per 100 mg of adipose tissue doubled (P = .006) between 2.5 wk and 5 mo of age, concurrent with the nearly 20-fold increase in peak adipocyte volume, indicating that this was a period of apparent adipocyte hyperplasia. Uncoupling protein mRNA was undetectable at all stages of postnatal growth, indicating that differentiating tailhead s.c. adipocytes do not acquire brown adipocyte characteristics postnatally. Lipogenesis expressed on a cellular basis was low in all preweaning samples and increased significantly above preweaning values only in the 18-mo-old steers. Stearoyl coenzyme A desaturase mRNA concentration also was low in all preweaning samples, but it peaked (P = .07) at 12 mo of age. Because the peak in SCD mRNA concentration preceded a significant rise in lipogenesis and lipid filling, we conclude that the level SCD gene expression may be indicative of the extent of terminal differentiation in bovine tailhead s.c. adipose tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号