首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Influence of watercontent and salts on the nitrification in samples of a Dystric Cambisol Samples of a Dystric Cambisol from a beech site produced nitrate but autotrophic nitrifying microorganisms could not be detected. Net nitrification of the humic layer and the upper 5 cm of the mineral soil during incubation at 22°C was investigated. Nitrification rate increased with increasing water content of the soil. Additions of ammonium or peptone did not increase the nitrification in the humic layer. Supply of (ammonium-)sulphates and chlorides with concentrations higher than 2 mMol per kg soil inhibited nitrification totally. This could not be ascribed to pH-changes. Additions of phosphates, lime or alkali to the soil samples increased nitrification.  相似文献   

2.
The influence of different factors on the nitrification of an added ammonium salt and inherent soil-N in soils from arid and semi-arid areas of Israel was investigated. Nitrification of ammonium-N proceeded rapidly at 28°C but was inhibited partially or completely in soils incubated at 37·40°C. In contrast, nitrate formation from inherent soil-N proceeded better at 37·40 °C than at 28 °C. Bacteriological examination showed that a temperature of 37·40 °C had an injurious effect on the population of nitrifiers, especially the nitrate-forming bacteria. Nitrification by the Nitrosomonas-Nitrobacter group in culture media was also markedly inhibited at 37 °C as compared with that at 28 °C. Chloromycetin at a concentration of 25 mg per 100 g soil, and potassium chlorate at a concentration of 10-3m suppressed the formation of nitrate from ammonium, but did not exert any appreciable effect upon nitrate formation from inherent soil nitrogen. Sodium sulphacetamide inhibited the production of nitrate from ammonium-N more strongly than that from inherent soil-N. Marked differences in the two nitrification processes in the soils investigated provided good evidence that the greater part of nitrate originating from soil-N is produced by some process other than that which is responsible for nitrification of ammonium-N.  相似文献   

3.
Nitrification occurs slowly in many acid Scots pine forest soils. We examined if bacterial community structure and interactions between members of the bacterial community in these forest soils prohibit growth of ammonia-oxidising microorganisms and their nitrifying activity. Native and gamma-irradiated Scots pine forest soils known to have low net nitrification rates were augmented with fresh soils or soil slurries from nitrifying Scots pine forest soil, and vice versa. Augmentation of native non-nitrifying soils with nitrifying soils induced net nitrification, although no significant changes in bacterial community structure, as measured by 16S rRNA gene-based denaturing gradient gel electrophoresis (DGGE), were observed. In sterilised soils, the inoculum, i.e. native nitrifying soil or non-nitrifying soil, determined the occurrence of net nitrification and bacterial community structure, and not the origin of the sterilised soils. Our results demonstrate that low net nitrification rates in acid Scots pine forest soils cannot be (solely) explained by unfavourable abiotic soil conditions, but that still uncaptured biotic factors contribute to suppression of nitrification.  相似文献   

4.
The effects of incubation at 20°, 30° and 40°C and urea concentrations of 0, 50, 100 and 200 μg N/g soil on urea hydrolysis and nitrification were investigated in three Nigerian soils. At constant temperature urea hydrolysis and rate of NO3? accumulation increased with increasing rate of urea addition. Urea was rapidly hydrolyzed within 1 week of incubation. Nitrification in Apomu soil increased with increasing incubation temperature. Nitrification was slow in acid Nkpologu soil (pH 4.7). Texture, cation exchange capacity and C:N ratios of the soils were not related to urea hydrolysis or nitrification. Nitrite accumulation in these soils was insignificant. Soil pH was decreased by nitrification of hydrolyzed urea-N.  相似文献   

5.
In recent years, identification of the microbial sources responsible for soil N2O production has substantially advanced with the development of isotope enrichment techniques, selective inhibitors, mathematical models and the discoveries of specific N-cycling functional genes. However, little information is available to effectively quantify the N2O produced from different microbial pathways (e.g. nitrification and denitrification). Here, a 15N-tracing incubation experiment was conducted under controlled laboratory conditions (50, 70 and 85% water-filled pore space (WFPS) at 25 and 35 °C). Nitrification was the main contributor to N2O production. At 50, 70 and 85% WFPS, nitrification contributed 87, 80 and 53% of total N2O production, respectively, at 25 °C, and 86, 74 and 33% at 35 °C. The proportion of nitrified N as N2O (P N2O) increased with temperature and moisture, except for 85% WFPS, when P N2O was lower at 35 °C than at 25 °C. Ammonia-oxidizing archaea (AOA) were the dominant ammonia oxidizers, but both AOA and ammonia-oxidizing bacteria (AOB) were related to N2O emitted from nitrification. AOA and AOB abundance was significantly influenced by soil moisture, more so than temperature, and decreased with increasing moisture content. These findings can be used to develop better models for simulating N2O from nitrification to inform soil management practises for improving N use efficiency.  相似文献   

6.
Nitrification plays an important role in nitrogen transformation in soils. As a practical problem the fact is noteworthy that by nitrification, the loss of nitrogen from soils is caused at higher temperatures in the summer. On the contrary, it is quite slow at the lower temperatures of early spring. Recently much Work has been done on the effect of temperature on nitrification in soils. It was noticed that its effect is not the same according to the difference of soils. Soils which have high nitrifying activities at ordinary temperatures (around 25°C) show fairly good nitrification even at lower temperatures (1, 2, 5). However, in nitrification by usual experimental methods, the amount of nitrate produced can be only estimated while nitrifying organisms are increasing or decreasing in soil. As the growing Process of microbes is extremely influenced by both the properties of the soil and the cultural conditions, it is necessary to examine the effect of temperature on the growing process of microbes rather than biochemical nitrification by a unit cell. In usual methods nitrification can hardly be treated in these separate aspects. The author has succeeded in obtaining soils in which nitrifying organisms increase to the maximum limit, and no increase can be expected in number of these organisms. By using such samples, experiments were made concerning the effect of temperature on nitrification by a unit cell and its direct effect on the growth of organisms. Furthermore, the author prepared favorable cultural conditions for various kinds of soils by the “washing cultivation method” (6), and examined the effect of temperature on the increasing process of nitrifying ability.  相似文献   

7.
 Nitrification and denitrification are, like all biological processes, influenced by temperature. We investigated temperature effects on N trace gas turnover by nitrification and denitrification in two soils under two experimental conditions. In the first approach ("temperature shift experiment") soil samples were preincubated at 25  °C and then exposed to gradually increasing temperatures (starting at 4  °C and finishing at 40–45  °C). Under these conditions the immediate effect of temperature change was assessed. In the second approach ("discrete temperature experiment") the soil samples were preincubated at different temperatures (4–35  °C) for 5 days and then tested at the same temperatures. The different experimental conditions affected the results of the study. In the temperature shift experiment the NO release increased steadily with increasing temperature in both soils. In the discrete temperature experiment, however, the production rates of NO and N2O showed a minimum at intermediate temperatures (13–25  °C). In one of the soils (soil B9), the percent contribution of nitrification to NO production in the discrete temperature experiment reached a maximum (>95% contribution) at 25  °C. In the temperature shift experiment nitrification was always the dominant process for NO release and showed no systematic temperature dependency. In the second soil (soil B14), the percent contribution of nitrification to NO release decreased from 50 to 10% as the temperature was increased from 4  °C to 45  °C, but no differences were evident in the discrete temperature experiment. The N2O production rates were measured in the discrete temperature experiment only. The contribution of nitrification to N2O production in soil B9 was considerably higher at 25–35  °C (60–80% contribution) than at 4–13  °C (15–20% contribution). In soil B14 the contribution of nitrification to N2O production was lowest at 4  °C. The effects of temperature on N trace gas turnover differed between the two soils and incubation conditions. The experimental set-up allowed us to distinguish between immediate effects of short-term changes in temperature on the process rates, and longer-term effects by which preincubation at a particular temperature presumably resulted in the adaptation of the soil microorganisms to this temperature. Both types of effects were important in regulating the release of NO and N2O from soil. Received: 20 October 1998  相似文献   

8.
Abstract

Contamination of agricultural soil by fecal pathogenic bacteria poses a potential risk of infection to humans. For the biosafety control of field soil, soil solarization in an upland field was examined to determine the efficiency of solarization on the inactivation of Escherichia coli inoculated into soil as a model microorganism for human pathogenic bacteria. Soil solarization, carried out by sprinkling water and covering the soil surface with thin plastic sheets, greatly increased the soil temperature. The daily average temperature of the solarized soil was 4–10°C higher than that of the non-solarized soil and fluctuated between 31 and 38°C. The daily highest temperature reached more than 40°C for 8 days in total in the solarized soil during the second and third weeks of the experiment. Escherichia coli in the solarized soil became undetectable (< 0.08 c.f.u. g?1 dry soil) within 4 weeks as a result, whereas E. coli survived for more than 6 weeks in the non-solarized soil. Soil solarization, however, had little influence on the total direct count and total viable count of bacteria in the soil. These results indicate that soil solarization would be useful for the biosafety control of soil contaminated by human pathogens via immature compost or animal feces.  相似文献   

9.
The tropical pasture grass Brachiaria humidiola (Rendle) Schweick releases nitrification inhibitory compounds from its roots, a phenomenon termed 'biological nitrification inhibition' (BNI). We investigated the influence of root exudates of B. humidicola on nitrification, major soil microorganisms and plant growth promoting microorganisms using two contrasting soil types, Andosol and Cambisol. The addition of root exudates (containing BNI activity that is expressed in Allylthiourea unit (ATU) was standardized in a bioassay against a synthetic inhibitor of nitrification, allylthiourea, and their function in soil was compared to inhibition caused by the synthetic nitrification inhibitor dicyandiamide. At 30 and 40 ATU g−1soil, root exudates inhibited nitrification by 95% in fresh Cambisol after 60 days. Nitrification was also similarly inhibited in rhizosphere soils of Cambisol where B. humidicola was grown for 6 months. Root exudates did not inhibit other soil microorganisms, including gram-negative bacteria, total cultivable bacteria and fluorescent pseudomonads. Root exudates, when added to pure cultures of Nitrosomonas europaea , inhibited their growth, but did not inhibit the growth of several plant growth promoting microorganisms, Azospirillum lipoferum , Rhizobium leguminosarum and Azotobacter chroococcum. Our results indicate that the nitrification inhibitors released by B. humidicola roots inhibited nitrifying bacteria, but did not negatively affect other major soil microorganisms and the effectiveness of the inhibitory effect varied with soil type.  相似文献   

10.
Nitrogen removal from wastewater is usually severely inhibited under low temperatures. The wastewater enrichment using an external carbon source has the influence on the stability and efficiency of the nitrification and denitrification processes during the biological wastewater treatment. This paper reports the results of the study where the effect of temperature and addition of an external carbon source on the efficiency of wastewater treatment process were investigated. Nitrification and denitrification rates were determined in the laboratory-scale treatment system, operating under low-temperature conditions, ranging from 6 up to 15 °C. Ethanol was used as an external carbon source. The addition of ethanol resulted in the increase during the nitrification rate at lower temperature (up to 71% at 6 °C and up to 11% at 15 °C). Similar tendency was observed during the denitrification process. Denitrification rate increased up to 81% at 6 °C and up to 10% at 15 °C, respectively. Nitrification rate was slightly higher compared to the denitrification rate. Two-variable model equations for calculation of an external carbon amount required were based on the experimental data and in order to reach desirable process rate at particular wastewater temperature were developed. The independency from wastewater temperature and the amount of loaded carbon explicit interdependence between nitrification and denitrification rates were observed.  相似文献   

11.
Inhibition of nitrification in soil by gaseous hydrocarbons   总被引:2,自引:0,他引:2  
Summary Recent work has shown that gaseous hydrocarbons such as methane, ethane, and ethylene are competitive inhibitors of the monooxygenase enzyme responsible for oxidation of ammonia by chemoautotrophic nitrifying microorganisms such as Nitrosomonas europaea. Because methane, ethane, and ethylene are produced by microbial activity in soil, we studied the possibility that they may inhibit oxidation of ammonia by the nitrifying soil microorganisms. We found that all three of these gaseous hydrocarbons inhibited nitrification in soil and that their ability to inhibit nitrification decreased in the order: ethylene > ethane > methane. Ethylene was much more effective than ethane or methane for inhibiting nitrification of ammonium in soil, but it was much less effective than acetylene, and it seems unlikely that the amounts of ethylene produced in soils will be sufficient to cause significant inhibition of nitrification by soil microorganisms.  相似文献   

12.
Abstract

In our previous report (Yanai et al. 2004: Soil Sci. Plant Nutr., 50, 821–829), we demonstrated that soil freeze-thaw cycles caused a partial sterilization of the soil microbial communities and exerted limited effects on the potential of organic matter decomposition of soils. In the present study, the effects of soil freeze-thaw cycles on the nitrification potential of soils were examined and the impacts of the freeze-thaw cycles on the nitrifying communities were analyzed. Samples of surface soils (0 to 10 cm depth) were collected, from tropical arable land sites, temperate forest, and arable land sites~ Nitrification potential was assayed by the incubation of soils with or without the addition of 200 fig N of ammonium sulfate per g soil to reach a moisture content adjusted to 60% of maximum water-holding capacity at 27~wC following four successive soil freeze-thaw cycles (-13 and 4°C at 12 h-intervals). Nitrification potential of the soils, in which the decrease in the microbial biomass following the freeze-thaw cycles was less appreciable, was not inhibited by the soil freeze-thaw cycles. On the other hand, the nitrification potential of the soils, in which the decrease in the microbial biomass following the soil freeze-thaw cycles was relatively more appreciable, was clearly inhibited by the freeze-thaw cycles or was undetectable even in the unfrozen control. Surprisingly, nitrate production in the samples of an arable soil collected from Vietnam was inhibited by the addition of ammonium sulfate, and thus the effects of counter-anions of ammonium salts on the nitrification potential of the soils were examined. Since a much larger amount of nitrate was produced in the Vietnam soil with the addition of ammonium acetate and ammonium hydrogen carbonate than that in the soil with the addition of ammonium sulfate, it was considered that ammonium sulfate inhibited nitrification in the soil. These results indicated that ammonium sulfate may not always be a suitable substrate for estimating the nitrification potential of soils. Relationship between soil physicochemical properties and the effect of the soil freeze-thaw cycles on the nitrification potential was evaluated and it was considered that the soil pH(KCI) was likely to be responsible for the difference in the responses among soils, assuming that the pH values changed in unfrozen water under the frozen conditions of soils.  相似文献   

13.
A laboratory experiment showed that the oxidized layer of submerged soil has high nitrifying activity. Denitrification was active in soil below the soil surface. Tracer technique indicated that the nitrification and the subsequent denitrification of ammonium sulfate was most active in the layer about 2 cm below the soil surface, and that the activities extended to a depth of about 5 cm, Nitrification Inhibitors reduced the nitrogen lost through nitrification and subsequent denitrification.  相似文献   

14.
Nitrification and nitrifying potential of tropical and subtropical soils   总被引:3,自引:0,他引:3  
Summary Nitrification was measured in five different soils (slate alluvial soil, sandstone shale alluvial soil, sandstone shale and slate alluvial soil, red soil, and Taiwan clay). In these soils different lag periods were recorded before the onset of nitrification. Nitrifying activity was highest in sandstone shale alluvial soil and the lowest in acidic red soil. A part from those in the red soil, the numbers of nitrifying bacteria detected were all higher than numbers reported in temperate soils. However, there were no clear relationships between the numbers of nitrifying bacteria and the rate of nitrification in these soils. When soil cores were incubated for 3 weeks, no NO inf2 sup- or NO inf3 sup- was defected in the slate alluvial soil. This was ascribed to denitrification.  相似文献   

15.
Nitrification was inhibited by ammonium sulphate and potassium sulphate added to soil from the organic horizon (pH 4.7) of a Myrtillus-type pine forest. Urea did not inhibit nitrification. Soil pH was slightly decreased by the salts but increased by urea. The salts increased soil electrical conductivity more than urea did. The inhibition of nitrification following salt treatments was probably due to a decrease in soil pH and not to osmotic effects. In acid conditions, the salts had a less inhibitory effect on CO2 production than on nitrification, indicating that nitrifying bacteria were more sensitive than other organisms to the salts.  相似文献   

16.
中国典型生态系统土壤硝化强度的整合分析   总被引:3,自引:1,他引:2  
郭志英  贾仲君 《土壤学报》2014,51(6):1317-1324
针对国内外1959年至2013年间发表的2 900篇中国土壤硝化相关论文,获得288组中国土壤硝化强度数据,涉及26个省份,初步构建了开放式的中国土壤硝化信息系统。进一步利用整合分析,评估了土壤理化性质与土壤硝化强度的可能联系。结果表明:不同生态系统之间硝化速率由大到小依次为:农田(NO-3-N 1.39±0.27 mg kg-1d-1)、草地(0.74±0.17)、森林(0.66±0.16)、沙漠(0.17±0.08)、湿地(0.06±0.04)。在统计显著性的前提下,硝化强度与环境因子之间表现出一定的相关性趋势:即硝化强度与p H、有效磷、硝态氮正相关,与有机碳、速效氮和碳氮比负相关。在较大时空尺度下,生态系统类型是土壤硝化过程地理分异规律的最优解释因子,可能在硝化微生物形成与演替过程中发挥了重要作用。  相似文献   

17.
Soil solarization is an ecologically friendly method of controlling various plant pathogens and pests, but also affects non-pathogenic members of the soil biota. Here, we studied the impact of soil solarization on the community structure of soil ciliates using a culture-independent molecular approach, namely denaturing gradient gel electrophoresis (DGGE) of targeted 18S rRNA gene fragments. Greenhouse soil with added organic fertilizers was solarized for 33 days at an average temperature of 47–48°C. Solarization caused a drastic change in the ciliate community. The variation between replicates was large, which suggested that the distribution of ciliates was spatially heterogeneous in the soil, probably due to their decreased numbers. In contrast, non-solarized soil had a stable and homogeneous ciliate community during the experimental period. In solarized soil, most of the original ciliate community recovered 76 days after solarization. Sequence analysis of DGGE fragments indicated that both r-selected and K-selected species of ciliates were affected by solarization but recovered with time after solarization. Our results demonstrated both the vulnerability and resilience of the ciliate community to soil solarization and also the utility of using molecular-based analysis of ciliate communities as bioindicators of soil stress caused by solarization.  相似文献   

18.
Solarization makes a great impact on the abundance of ammonia oxidizers and nitrifying activity in soil. To elucidate fluctuations in the abundance of ammonia oxidizers and nitrification in solarized soil, copy numbers of amoA gene of ammonia-oxidizing bacteria (AOB) and archaea (AOA), viable number of ammonia oxidizers and inorganic nitrogen contents were investigated in greenhouse experiments. The copy number of amoA gene and the viable number of ammonia oxidizers were determined by the quantitative polymerase chain reaction and most probable number methods, respectively. Abundance of AOB based on the estimation of amoA gene copy numbers and viable counts of ammonia oxidizers was decreased by the solarization treatment and increased during the tomato (Solanum lycopersicum L.) cultivation period following the solarization. Effect of solarization on the copy number of amoA gene of AOA was less evident than that on AOB. The proportion of nitrate in inorganic nitrogen contents was declined by the solarization and increased during the tomato cultivation period following the solarization. Positive correlations were found between the proportion of nitrate in inorganic nitrogen content and the copy number of bacterial or archaeal amoA gene or the viable number of ammonia oxidizers; the copy number of bacterial amoA gene showed a strong correlation with the viable number of ammonia oxidizers. The present study revealed influences of solarization on the fluctuation in the abundance of ammonia oxidizers and dynamics of inorganic nitrogen contents in soil and the results indicate that the determination of amoA gene of AOB is possibly a quick and useful diagnostic technique for evaluating suppression and restoration of nitrification following solarization.  相似文献   

19.
The effects of seven different fertilization treatments on nitrification in the organic horizons of a Myrtillus-type (MT) and a Calluna-type pine forest in southern Finland were studied. No (NO?3 + NO?2)-N accumulated in unfertilized soils during 6 weeks at 14 or 20°C in the laboratory. Net nitrification was stimulated by urea in both soils (but more in the MT pine forest soil) and to a lesser degree by wood ash but not by ammonium nitrate or nitroform (ureaformaldehyde). Nitrification was not detected in nitroform fertilized soils although ammonium accumulation was high during incubation. In the MT pine forest soil, net nitrification appeared to be stimulated by apatite, biotite and micronutrients. Nitrapyrin inhibited nitrification indicating that it was carried out by autotrophic nitrifiers. In the urea-fertilized MT pine forest soil, nitrification took place at an incubation temperature of 0°C. Accumulation of (N0?3 + NO?2)-N was highest in soil sampled at < 10°C.  相似文献   

20.
Abstract

Higher rates of nitrification often reported in fine than in coarse textured soils may not be a direct effect of soil texture because in most of the earlier studies, soil water content has been usually expressed as gravimetric, volumetric or soil's water‐holding capacity without consideration of differences in density/ porosity for soils of varying texture. The same water content in texturally different soils could provide very different conditions of soil aeration and associated nitrifying activity. Effects of soil texture on nitrification was studied by incubating three semiarid subtropical soils having sandy loam, loam, and silty clay textures at 35°C for 30 days using water‐filled pore space (WFPS) as the criterion of soil aeration. Upland or aerobic soil conditions, simulated by incubating soil at 60% WFPS, exhibited very fast nitrification of added fertilizer nitrogen (N) and most of the applied 100 mg of ammonium‐nitrogen (NH4+‐N/kg soil) was nitrified within 10 days of incubation in all three soils irrespective of the differences in texture. Under flooded soil conditions (120% WFPS), nitrification was slow and only 84 to 92% of the applied NH4+‐N was nitrified even after 30 days. Nitrification could be described by first‐order kinetics for both the upland and flooded moisture regimes, thus nitrification rate depended upon NH4+ concentration. At similar gravimetric water contents, rates of nitrification differed greatly in soils of varying texture, but when varying water‐holding capacity and bulk density were accounted for using WFPS, all the soils behaved similarly at 60% WFPS. Under impeded aeration (flooded conditions), however, substantial differences were observed in nitrification in soils of varying texture, the largest in fine‐textured Chamror silty clay followed by Habowal loam and the smallest in Tolewal sandy loam soil. These results illustrate the utility of WFPS, compared with soil water content, and its reliability as an indicator of aeration dependent nitrification for soils of varying texture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号