首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract

In this study, two different methods were used to produce thermally modified wood. One was carried out in a typical kiln drying chamber using superheated steam (SS) and the other used pressurized steam in an autoclave cylinder (PS). Overall, both processes followed the same principles and the wood was not treated with any chemicals. Two wood species were studied, Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). Treatments in the autoclave were carried out under pressure using temperatures of 160°C, 170°C and 180°C. Temperatures of 190°C and 212°C were used in treatments in the chamber at normal air pressure. The colour was measured using L*C*H colour space. Results for both species showed that similar L* (lightness) can be reached at lower (20–30°C) temperatures using PS compared with SS treatment. The hue angle of PS-treated wood was smaller than that of SS-treated wood. No significant difference in C* (chroma) was detected. The difference in E value between PS- and SS-treated wood was smaller for Norway spruce than for Scots pine. The residual moisture content was about 10% higher in wood treated by the PS process compared with the SS process.  相似文献   

2.
Changes in physical and mechanical properties of wood were analyzed using sorption tests combined with dimensional measurements and perpendicular-to-the-grain tangential compression tests. In order to determine the influence of wood structure on these changes, three hardwood species (Fagus grandifolia, Brosimum alicastrum and Cariniana domestica) presenting different anatomical structures were studied. Two experimental techniques were used to perform moisture sorption tests at 25°C. The first technique used saturated salt solutions (from 33 to 90% relative humidity) and the second used the pressure membrane method (above 96% relative humidity). Special attention was given to the “fiber saturation region”, where changes in wood properties started to take place. Results showed that at equilibrium moisture content (EMC), radial, tangential and volumetric shrinkage, as well as changes in transverse strength occurred above the fiber saturation point (FSP). This behavior can be explained by the effect of hysteresis at saturation on wood properties. This hysteresis indicates that loss of bound water takes place in the presence of liquid or capillary water, which contradicts the concept of FSP. The initial EMC at which bound water starts to be removed varied largely among the wood species.  相似文献   

3.
Abstract

It is well established that acetylation of wood by the use of acetic anhydride is able to impart a significant degree of decay resistance. The aim of this work was to study how a standardized leaching procedure with water (EN 84) affected the degradation of acetic anhydride modified samples by the brown rot fungi Postia placenta compared to no leaching prior to incubation. Three different levels (low, medium, and high) of acetic anhydride modified Southern yellow pine (SYP; Pinus spp.) were tested. The samples were harvested after 4 and 28 weeks. We compared changes in mass loss, wood moisture content, fungal DNA, and gene expression from five genes. If leaching changes the acetylated samples and makes them more susceptible for fungal deterioration, the expected effect would be higher levels of these parameters. Generally, leaching resulted in few differences between leached and nonleached samples at low levels of acetylation, while no changes were found for the highest acetylation level. No differences were found in gene expressions after 28 weeks. The possible protection of acetylated wood against oxidative fungal degradation is suggested to be interpreted in combination with the lowered wood moisture content.  相似文献   

4.
Charcoal was produced from short rotation tropical species ofLeucaena leucocephala andTectona grandis. The combustion-related properties, moisture content, specific gravity and percentage element composition of carbon, hydrogen, oxygen, nitrogen, sulphur and ash in wood and charcoal from the two species were determined. The gross heat of combustion of wood and charcoal was also determined.There were significant differences in the moisture content, specific gravity and percentage element composition between wood and charcoal from the two species. The carbon and ash content of charcoal were higher than those of wood. The average heat of combustion of charcoal 25.25 MJKg–1 was higher than that of wood 13.75 MJKg–1.  相似文献   

5.
Abstract

Two Malaysian hardwoods, acacia (Acacia mangium) and sesendok (Endospermum malaccense), that had been subjected to oleo-thermal modification were studied to determine their sorption isotherm behaviour using a dynamic vapour sorption apparatus. All the specimens were thermally modified using palm oil at three different temperatures (180, 200 and 220°C) and three different times (1, 2 and 3 h). The results showed that there was a reduction in equilibrium moisture content at each target relative humidity due to the heat treatment, but that the two wood species showed different behaviour in this respect. The adsorption isotherms were analysed using the Hailwood and Horrobin model, with excellent fits to the experimental data. The monolayer water and polylayer water were both reduced at a range of relative humidity values of the treated samples, although behaviour between the two wood species differed. Heat treatment resulted in an increase in hysteresis ratio, which was probably due to the increase in matrix stiffness of the cell walls.  相似文献   

6.
Abstract

Plantation wood from tropical climate has been introduced rapidly in the national market; however, there is lack of knowledge about the process. The main objective of this study was to investigate the kiln drying behavior of 10 plantation-grown wood species from natural forest in Costa Rica using the recommended drying schedule. Initial moisture content (MCi), final moisture content (MCf), drying rate, drying time, and drying defects were evaluated. The drying schedule applied produced the following results: (1) high MCi (over 110%) in four species and lower values in two species. (2) The largest drying time was found in species with high MCi, and the shortest drying time in species with lower MCi. (3) Significant variations of target MCf were found in some species, despite equalization and conditioning. (4) Exponential relationship MC=a*??t*b was used to establish a moisture content (MC) decrease model, which is not a good indicator of drying time for fives species. (5) High incidence of drying defects was found in Alnus acuminata and Vochysia guatemalensis. According to the above results, it is necessary to test other drying schedule oriented to improve lumber quality and to decrease variability of MC in wood from plantation trees.  相似文献   

7.
Abstract

The aim of this study was to reveal some important physical properties of two lesser used wood species from Mozambique. Density of wood, green moisture content (MC), shrinkage, swelling, sorption–desorption behaviour and quantitative colour analyses were carried out to facilitate the potential use of Icuria dunensis (ncurri) and Pseudolachnostylis maprounaefolia (ntholo). The study found that the average densities at 12% MC were 907.1 kg m?3 for ncurri and 1023.4 kg m?3 for ntholo. The average values of green MC were 31.4% for ncurri and 39.2% for ntholo. Ncurri and ntholo wood showed low coefficients of anisotropy for heartwood, 1.3 and 1.4, respectively. The colour measurements described the patterns of radial and longitudinal variations in wood colour. In conclusion, ntholo and ncurri are characterized by high density and dimensional stability. Ntholo can be used where small dimensional changes are required, e.g. in joinery, flooring and furniture.  相似文献   

8.
The dynamic water vapour sorption properties of Scots pine (Pinus sylvestris L.) wood samples were studied to investigate the modifying effects of glutaraldehyde. Pine sapwood was treated with solutions of glutaraldehyde and a catalyst (magnesium chloride) to obtain weight per cent gains of 0.5, 8.6, 15.5, and 21.0%, respectively. The sorption behaviour of untreated and treated wood was measured using a Dynamic Vapour Sorption apparatus. The results showed considerable reduction in equilibrium moisture content of wood and the corresponding equilibrium time at each target relative humidity (RH) due to glutaraldehyde treatment. The moisture adsorption and desorption rates of modified and unmodified wood were generally faster in the low RH range (up to approximate 20%) than in the high range. Modification primarily reduced the adsorption and desorption rates over the high RH range of 20–95%. Glutaraldehyde modification resulted in a reduction in sorption hysteresis due to the loss of elasticity of cell walls.  相似文献   

9.
Abstract

In this study, water content in black spruce (Picea mariana Mill.) and aspen (Populus tremuloides Michx.) sapwood samples was investigated with time-domain magnetic resonance (MR). Time-domain MR measurements easily distinguish water in different environments in wood according to the spin-spin relaxation time and provide quantitative information on water content. The MR techniques employed can distinguish and quantify the individual signal components. Both black spruce and aspen have two signal components at moisture contents above the fiber saturation point. These two signal components correspond to motionally restricted water, often referred to as bound water, and unrestricted, or free water. Bound water content is constant above 40% moisture content. No signal from free water was detected at or below 20% moisture content in either species. We also demonstrate the use of a recently developed portable unilateral magnet that can be employed as a powerful tool in the study and measurement of water content in wood.  相似文献   

10.
Two experimental techniques were used to test the water permeability of two Korean hardwood species: diffuse porous Populus tomentiglandulosa T. Lee (eunsasi poplar) and ring porous white oak, Quercus serrata Thunb (konara oak). The first technique measured the void volume filled at different moisture content (MC) levels. Samples were treated with water via a schedule of full-cell impregnation. A significant relation between MC and permeability (the fractional void volume) was found. A reduction in liquid permeability was observed at MC above the fiber saturation point (FSP), whereas the opposite result was observed at MC below FSP due to the effect of the voids available in the wood. However, the differences of increased permeability from MC level 20% to 0% were found satistically the same in either wood species. The second technique measured the speed of liquid penetration in vessels, fibers, and rays with no application of external pressure. In this method, liquid flow was captured via video and the penetration speed was measured. Vessels, fibers, and rays in poplar were found to be more permeable than those in oak. Different anatomical factors such as cell diameter, cell length, pit number, pit aperture area, and thickness of the pit membrane seemed to be responsible for the variation of liquid flow rate in different cells of the two hardwood species.  相似文献   

11.
The equilibrium moisture content (EMC) of six wood species under desorption conditions of 20°C and 100% 0% relative humidity (RH), and the rate of adsorption at various depths of three wood species blocks under 98% RH at 22.5°C were studied. There were no significant differences among the EMC values for these six wood species over the RH range 40% 0%, but there were highly significant differences over the RH range 100% 50% at constant 20°C. The amount of moisture absorbed in the wood decreased curvilinearly with the increase of depth in the specimens as sorption time increased, and their relation could be represented by a semilogarithmic equation. Time-dependent adsorption behavior at various depths of the wood specimens could be represented by an exponential equation as a function of the product of the difference between moisture contents at equilibrium and initial conditions and the term (1 – e–t/). The value of of various wood species was found to increase linearly with the increased depth of the specimen and showed the following trend: hard maple (Acer sp.) > China fir (Cunninghamia lanceolata) > Japanese cedar (Cryptomeria japonica D. Don).Part of this report was presented at the 47th annual meeting of the Japan Wood Research Society, Kochi, April 1997.  相似文献   

12.
Abstract

Coarse woody debris (CWD) is critical for forest ecosystem carbon (C) storage in many ecosystems. Since the turnover of CWD is mostly driven by mineralization, changes in temperature and precipitation may influence its pools and functions. Therefore, we analysed, under controlled conditions, the effect of wood temperature and moisture on carbon respiration from CWD for the important European tree species Fagus sylvatica L., Picea abies (L.) Karst. and Pinus sylvestris L. in different stages of decay, represented by different wood densities. Additionally, we measured CWD respiration of individual F. sylvatica and P. abies logs over one year to analyse the effects of micro-climatic variables in the field. CWD respiration rates under controlled lab conditions were about two times higher for beech than for spruce and pine and similar for the latter two species. In addition, wood moisture exerted a stronger influence on respiration than wood temperature. In contrast, respiration in the field was most strongly controlled by temperature. Average Q 10 values under controlled conditions were 2.62 for F. sylvatica and 2.32 for P. abies across all temperature and moisture levels, while no significant relationship between temperature and CO2 flux was observed for P. sylvestris. About 80% of the variation in respiration under controlled conditions could be explained by species, wood density, moisture and temperature and their interactive effects. Temperature alone explained 96% (beech) and 94% (spruce) of the variation in respiration in the field. Furthermore, we predicted average monthly temperatures of CWD in the field very accurately from air temperature (r 2=0.96), which is relevant for modelling CWD carbon dynamics under climate change scenarios. Our results indicate that species identity, decay stage and micro-climatic conditions should be considered when predicting CWD decay rates.  相似文献   

13.
Lack of data especially pertaining to the chemistry of mangrove wood species makes it difficult to prepare successful plans for their conservation and to use mangroves as a source of wood fiber. In this paper, chemical characterizations of the six main mangrove species of Bangladesh [namely Keora (Sonneratia apetala), Geoa (Excoecaria agallocha), Bine (Avicennia alba), Sundari (Heritiera fomes) Pashur (Xyloccarpous mekongests), and Kakra (Bruguiera gymnorhiza)] were investigated. The chemical results revealed that these species contain high percentages of dichloromethane followed by methanol extractives. Methanol extracts in Pashur, Sundari, and Bine were higher than 10%, which indicates high percentage of tannin material. The total lignin content in these species was higher than 25%, except for Gewa (23.6%) and Pashur (21.3%), which is higher than that of the normal range of hardwood. The pentosan content in these six species was within the range of 19.4–22.8%. The α-cellulose content in Keora and Gewa was acceptable for pulp production, but the others were lower than the normal range of hardwood. Alkaline nitrobenzene oxidation showed that all these species had a very high syringaldehyde to vanillin (2.6–5.0) ratio except Keora (1.6). Surprisingly, rhamnose is the main constituent with xylose of hemicelluloses of these six mangrove species. The ash content in these six mangrove wood species was also higher than that in normal hardwood.  相似文献   

14.
为合理利用异叶南洋杉人工林木材,通过排水法、质量法和数值法对异叶南洋杉人工林的生材性质展开研究,结果表明,异叶南洋杉人工林木材树皮体积百分率、质量百分率、生材密度、基本密度和生材含水率的平均值分别为11.39%、13.78%、0.842 g/cm3、0.394 g/cm3和121.43%。随异叶南洋杉树高的增加,树皮体积百分率和质量百分率总体呈增大趋势;生材密度和基本密度总体呈下降趋势;生材含水率总体呈先升高后降低的趋势。以期为异叶南洋杉人工林木材的合理利用提供数据支持和理论支撑。  相似文献   

15.
Abstract

Several key wood properties of four Australian hardwood species: Corymbia citriodora, Eucalyptus pilularis, Eucalyptus marginata and Eucalyptus obliqua, were characterized using state-of-the-art equipment at AgroParisTech, ENGREF, France. The wood properties were measured for input into microscopic (cellular level) and macroscopic (board level) vacuum-drying models currently under development. Morphological characterization was completed using a combination of environmental scanning electron microscopy and image analysis software. A clear difference in fibre porosity, size, wall thickness and orientation was evident between species. Viscoelastic properties were measured in the tangential and radial directions using dynamic mechanical analysis instrumentation. The glass transition temperature was markedly different for each species owing to anatomical and chemical variations. The radial direction showed higher stiffness, internal friction and glass transition temperature than the tangential direction. A highly sensitive microbalance and laser technology were used to measure loss of moisture content in conjunction with directional shrinkage on microsamples. Collapse shrinkage was clearly evident with this method for E. obliqua, but not with other species, consistent with industrial seasoning experience. To characterize the wood–water relations of E. obliqua, free of collapse, thinner sample sections (in the radial–tangential plane) are recommended.  相似文献   

16.
17.
We measured the longitudinal and tangential shrinking processes in wood specimens from Chamaecyparis obtuse Endl. with different microfibril angles (MFAs). The shape of the shrinking curve was compared with the MFA. Only the longitudinal shrinking process of specimens with a small MFA clearly showed nonlinearity, and the degree of nonlinearity increased as the MFA decreased. In contrast, the tangential shrinking process and the longitudinal shrinking process of compression wood with a large MFA were linear. The nonlinearity is probably caused by the longitudinal shrinkage of the noncrystalline region of the cellulose microfibril (CMF) in regions of low moisture content during water desorption. When the moisture content is high, the matrix substance in the cell wall begins to dry; however, the shrinkage in the chain direction is restrained by the rigid CMF. As the wood dries further, the noncrystalline region of the CMF embedded in the matrix substance begins to shrink. Because the longitudinal mechanical behavior of wood with a small MFA is greatly affected by a rigid CMF, longitudinal shrinkage increases suddenly at about 10% moisture content; as a result, the shrinking process shows nonlinearity.  相似文献   

18.
Felled palm trunks are susceptible to fungi as long as their moisture content is above fibre saturation. During this period, palm wood has to be protected against mould and rot fungi. The study was aimed at testing environment-friendly organic acids for their protecting efficiency. Small samples of date palm (Phoenix dactylifera) and oil palm (Elaeis guineensis) wood were treated with weak organic acids and subsequently infected by moulds and wood-decay fungi. Short dipping of the samples in solutions of 5% acetic acid and propionic acid, respectively, protected all samples for two months from colonization by Aspergillus niger, Penicillium sp., Cladosporium sp. and by a natural infection. Boric acid (4%) used in practice for protection was ineffective. Decay tests with the white-rot fungus Pleurotus ostreatus, the brown-rot species Coniophora puteana and the soft-rot fungus Chaetomium globosum showed that both acids prevented most samples from fungal colonization for three weeks and reduced the decay considerably during two months.  相似文献   

19.
对应力波在古建筑木材中传播速度的影响因素及其影响规律进行了检测和分析,目的是找出各种因素变化与应力波扫描图像之间的关系,从而更好地判定木材内部缺陷的位置和面积。研究表明:含水率对应力波传播速度影响显著;在相同含水率下,应力波径向传播速度大于弦向,其传播方向偏离髓心越远,传播速度越小;树种和年代对应力波传播速度也有影响。  相似文献   

20.
In this research, technological properties of glulam beams made from hydrothermally treated poplar (Populus deltoides) wood were investigated. Poplar wood blocks with dimensions of 6 (r)?×?10 (t)?×?73 (l)?cm3 were cut and hydrothermally treated in a stainless steel reactor at temperatures of 140 and 160°C for a holding time of 30?min. The treated wood blocks were initially air seasoned and then they were dried in a semi-pilot scale vacuum dryer to achieve moisture content (MC) of 12%. Conditioning of the treated and the untreated wood blocks was done prior to adhesive bonding. Afterwards the glulam beams (4 ply) were manufactured using polyurethane. In order to evaluate the physico-mechanical properties of the beams, density, equilibrium moisture content, water repellent effect (WRE), anti-swelling effect (ASE), mass loss (ML), wettability as well as surface roughness due to the hydrothermal treatment were determined in the treated wood and delamination, bond shear strength, tensile strength, MC and moisture-induced stresses as well as strains in cross-section of the beams were determined in the glulam beams. The results revealed that density, ML, ASE, WRE, modulus of elasticity, modulus of rupture and delamination were increasing and the others were decreased due to the hydrothermal treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号