首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Zinc (Zn) nutrition and plant genotype are two factors that may affect the tolerance of wheat to root-rot diseases. The aim of the present study was to determine the effect of Zn on shoot yield, root permeability and infection by Fusarium solani in six wheat genotypes with different Zn efficiency. A greenhouse (solution culture) experiment was carried out in which five bread wheat genotypes (Triticum aestivum L. cvs Rushan, Kavir, Cross, Pishtaz and Falat) and one durum wheat genotype (Triticum durum L. cv. Yav79), which are common in Zn-deficient soils of Iran and were exposed to two levels of Zn (0 and 1?μmol?L–1?Zn?kg?1, as ZnSO4.7H2O) and two F. solani infection levels (0 and 106?spore?mL?1). Zinc deficiency significantly decreased shoot dry matter in five of the genotypes (Yav79, Kavir, Rushan, Cross and Falat), but had no effect on shoot growth in Pishtaz. Infection with F. solani significantly decreased the shoot dry matter in Yav79, but did not affect the shoot dry weight of the other wheat genotypes. Root membrane permeability was lower in the Zn treatments than in the Zn-free treatments. Zinc deficiency caused a decrease in root reactive sulfhydryl (SH) groups, particularly in the Cross genotype. Root sulfhydryl groups decreased with Fusarium infection. Zinc application sharply increased the Zn content and decreased the Mn content of the shoots. Application of Zn had a positive effect on the tolerance of wheat to F. solani root rot. The relationship between Zn nutrition and disease tolerance suggests that Zn deficiency should be treated before evaluating the cost-effectiveness of fungicides. No correlation was found between the Zn efficiency of the wheat genotypes and Fusarium root-rot disease severity in this solution culture experiment.  相似文献   

2.
Abstract

Wheat grown on cadmium (Cd)‐uncontaminated soils can still potentially translocate unacceptable levels of Cd to grain. The effect of zinc (Zn) and Cd levels on Cd uptake and translocation in “Grandin” hard red spring wheat (HRS‐wheat) (Triticum aestivum L.) was investigated using a double chelator‐buffered nutrient solution [EGTA used to buffer Cd, Zn, copper (Cu), manganese (Mn), and nickel (Ni); and Ferrozine (FZ) used to buffer Fe2+]. In the Zn level series of treatments, Cd2+ activity was held constant at 10?10.7 M, and the Zn2+ activity was varied from 10?7.6 to 10?5.2 M. As Zn2+ activity increased, the translocation of Cd to the shoots decreased. The shoot : root Cd concentration ratio decreased from 0.20 to 0.03 as pZn2+ went from 7.6 to 5.2, indicating that adequate to high levels of Zn are effective in reducing Cd translocation to the shoots of “Grandin” HRS‐wheat. In the Cd series, the Zn activity was at 10?6.6 M, while Cd activity was increased from 10?10.7 to 10?9.2 M. High levels of Cd did not significantly affect the uptake and translocation of Zn in the roots and shoots. While at pCd2+ of 9.2, the root and shoot Cd concentrations significantly increased, there was not a significant increase in the shoot : root Cd ratio. This would indicate that even at high Cd2+ activities, Zn is effective in regulating Cd uptake and translocation in “Grandin” HRS‐wheat.  相似文献   

3.
ABSTRACT

We investigated the effect of histidine (His) and Zn deficiency on H+-ATPase activity and H+ release from wheat roots. Two bread wheat (Triticum aestivum L. cvs. Kavir and Back Cross Roshan) were grown in a nutrient solution for four weeks before being transferred to treatment solutions consisting of two concentrations of His (0 and 50 µM) and two concentrations of Zn (0 and 10 μM). The Zn-only and the Zn+His treatments were observed to release more H+ in the root media than did the control ones, with the highest achieved under the Zn+His treatment which was roughly 2.1 times higher than that under the control conditions. The H+ release from wheat roots increased slightly but significantly in the presence of only His when compared with the control solutions. The hydrolytic and transport activities of H+-ATPase were affected by both Zn deficiency and His supply. In both cultivars, application of Zn and His resulted in a higher hydrolytic activity of H+-ATPase when compared with the control solutions. The highest hydrolytic activity of H+-ATPase in the root plasma membrane vesicles was achieved with the Zn+His treatment. The ‘Back Cross Roshan’ exhibited a higher (PM) H+-ATPase activity and H+ pumping than did ‘Kavir’.  相似文献   

4.
Rice (Oryza sativa L.) grown on cadmium (Cd)-contaminated soils has caused health problems in Asian subsistence rice farmers. For other crops, normal co-contaminant zinc (Zn) inhibits the increased uptake of Cd. We used a multi-chelator-buffered nutrient solution to characterize the interaction of Zn and Cd in uptake-translocation of Cd in “Lemont” rice. The activity of free Zn2+ varied from 10?7.6 to 10?5.2 M, while free Cd2+ held constant at 10?10.7 M. Zinc activity 10?5.6 M and higher was phytotoxic to rice, resulting in severe chlorosis, reduced growth, and increased Cd transport to shoots. In contrast to previous studies with wheat, lettuce, and spinach, free Zn2+ maintained at adequate to sub-phytotoxic levels (10?7.6 to 10?6.1) did not inhibit Cd uptake by rice. The inability of Zn to inhibit Cd uptake by rice is a key factor in Cd risk from zinc-lead mine waste contaminated soil compared with other crops.  相似文献   

5.
《Journal of plant nutrition》2013,36(11):1953-1962
Abstract

Zinc (Zn) deficiency is a yield limiting constraint for wheat production in central Iran. A field experiment was conducted for two consecutive years (1999/2000 and 2000/2001) to study Zn use efficiency of five wheat cultivars. Two Zn rates were used, i.e., 0 and 40 kg Zn ha?1 applied as zinc sulfate. Significant variation was found among wheat cultivars in relation to grain yield, straw yield, Zn use efficiency and yield components. Based on grain yield and Zn use efficiency across two years, cultivar Cross was most efficient and Dur-3 was most inefficient for Zn use efficiency. Cultivars Kavir, Falat, and Rushan were intermediate in Zn use efficiency. Zinc concentration and uptake were higher in the zinc efficient cultivar Cross, while these values were lowest in the Zn inefficient cultivar Dur-3.  相似文献   

6.
Zinc (Zn) is a plant nutrient; however, at elevated levels it rapidly becomes phytotoxic. In order to obtain insight into the physiological background of its toxicity, the impact of elevated Zn2+ concentrations (1 to 10 μM) in the root environment on physiological functioning of Chinese cabbage was studied. Exposure of Chinese cabbage (Brassica pekinensis) to elevated Zn2+ concentrations (≥ 5 μM) in the root environment resulted in leaf chlorosis and decreased biomass production. The Zn concentrations of the root and shoot increased with the Zn2+ concentration up to 68‐fold and 14‐fold, respectively, at 10 μM compared to the control. The concentrations of the other mineral nutrients of the shoot were hardly affected by elevated Zn2+ exposure, although in the root both the Cu and Fe concentrations were increased at ≥ 5 µM, whereas the Mn concentration was decreased and the Ca concentration strongly decreased at 10 µM Zn2+. The uptake and metabolism of sulfur and nitrogen were differentially affected at ≥ 5 µM Zn2+. Zn2+ exposure resulted in an increase of sulfate uptake and the activity of the sulfate transporters in the root, and in enhanced total sulfur concentration of the shoot, which could be ascribed partially to an accumulation of sulfate. Moreover, Zn2+ exposure resulted in an up to 6.5‐fold increase in water‐soluble non‐protein thiol (and cysteine) concentration of the root. However, nitrate uptake by the root and the nitrate and total nitrogen concentrations of the shoot were decreased upon Zn2+ exposure, demonstrating the absence of a mutual regulation of the uptake and metabolism of sulfur and nitrogen at toxic Zn levels. Evidently, elevated Zn2+ concentrations in the root environment did not only disturb the uptake, distribution and assimilation of sulfate, it also affected the uptake and metabolism of nitrate in Chinese cabbage.  相似文献   

7.
Abstract

In the last decades, soybean (Glycine max (L.) Merrill) was the crop with the highest acreage in Brazil. Soybean has been cropped under unfertile soils as sandy soils and those under pasture decaying where applying high fertilizer levels have significant responses. The presence of calcium (Ca) and magnesium (Mg) concentration in the upper layers promotes ions imbalanced concentration in soil solution because the soil acidity correction reduces the uptake of other cations as zinc (Zn). The objective of this study was to evaluate under nutritive solution conditions, the Mg influence in Zn distribution and mobilization into plants from four soybean cultivars with different nutritional requirements. The experimental design was complete randomized blocks in factorial scheme 4?×?2?×?4 being with four soybean cultivars (FT Estrela, DM Nobre, IAC 17, and IAC 15-1), two Mg rates (0.1 and 1.0?mmol?L?1), four Zn rates (0, 1, 2, and 5?µmol?L?1), and four replicates. The IAC 17 and FT Estrela cultivars with determinate growth and high nutritional requirements, and the IAC 15-1 and DM Nobre with tolerance to soils partially corrected, average fertility, or both were investigated. In the highest Mg rates, we verified increase in grain yield (GY) as well as in the Zn rates up to 2.0?µmol?L?1. The Mg?×?Zn interaction was significant and the IAC 17 cultivar was the most responsive to Zn under nutritive solution. The foliar nutrient concentration was significantly modified by Mg rates. The Mg at 1.0?mmol?L?1 presented the lowest nutrient concentration in soybean plants and increased the shoot dry weight yield (SDWY) in plant and grain no matter the nutritional requirement from every cultivar.  相似文献   

8.
ABSTRACT

A greenhouse experiment with four bread wheat [Triticum aestivum L.] genotypes, ‘Rushan,’ ‘Kavir,’ ‘Cross,’ and ‘Falat,’ and a durum wheat [Triticum durum L.] genotype, ‘Dur-3,’ at two zinc (Zn) rates (0 and 15 mg Zn kg?1 dry soil) and four salinity levels (0, 60, 120, and 180 mM NaCl) was conducted. After 45 d of growth, the shoots were harvested, and Zn, iron (Fe), potassium (K), sodium (Na), and cadmium (Cd) concentrations were determined. In the absence of added Zn, visual Zn deficiency symptoms were observed to be more severe in ‘Dur-3’ and ‘Kavir’ than in other genotypes. The effect of Zn deficiency on shoot dry matter was similar to its effect on visual deficiency symptoms, such that shoot growth was most depressed in ‘Kavir’ and ‘Dur-3.’ At the 180 mM treatment, Zn fertilization had no effect on shoot dry matter of genotypes. Genotypes with high Zn efficiency had greater shoot Zn content than genotypes with low Zn efficiency. In the absence of added Zn, the Dur-3, and ‘Cross’ genotypes had the highest and lowest Cd concentrations, respectively. Application of Zn had a positive effect on salt tolerance of plants.  相似文献   

9.
《Journal of plant nutrition》2013,36(12):2745-2761
ABSTRACT

Effect of cadmium (Cd) on biomass accumulation and physiological activity and alleviation of Cd-toxicity by application of zinc (Zn) and ascorbic acid in barley was studied, using semisolid medium culture including 15 treatments [four Cd concentration treatments: 0.1, 1, 5, 50?µmol?L?1, four treatments with addition of 300?µmol?L?1 Zn or 250?mg?L?1 ascorbic acid (ASA) based on these four Cd concentrations, respectively, and three controls: basic nutrient medium, and with Zn or ASA, respectively]. Cadmium addition to semisolid medium, at a concentration of 1, 5, and 50?µmol?L?1, inhibited biomass accumulation and increased malondialdehyde (MDA) content of barley plants, while the addition of 0.1?µmol?L?1 Cd increased slightly dry mass. There was a tendency to a decrease in Zn, copper (Cu) concentrations both in shoots and roots and iron (Fe) in shoots of barley plants exposed to 1 to 50?µmol?L?1 Cd. In addition, there were indications of a stress repose characterized by increased superoxide dismutase (SOD) and peroxidase (POD) activities relative to plants not subjected to Cd. The physiological changes caused by Cd toxicity could be alleviated to different extent by application of 300?µmol?L?1 Zn or 250?mg?L?1 ASA in Cd stressed plants. The most pronounced effects of adding Zn or ASA in Cd stressed medium were expressed in the decreased MDA and increased biomass accumulation, e.g., MDA contents were reduced (p≤0.01) by 4.8%–17.8% in shoots and 0.5%–19.7% in roots by adding 300?µmol?L?1 Zn, in 50?µmol?L?1 Cd stressed plants, and by 1.3%–7.4% in shoots and 2.6%–4.5% in roots by application of 250?µmol?L?1 ASA, respectively. However, ASA addition may enhance Cd translation from root to shoot, accordingly, ASA would be unsuitable for the edible crops grown in Cd contaminated soils to alleviate phytotoxicity of Cd.  相似文献   

10.
The role of cropping systems practices in agronomic biofortification programs with the aim of increasing micronutrient density in food plants has to be clarified. In these field experiments, the effect of four preceding crops, i.e., sunflower (Heliantus annus L. cv. Allstar), Sudan grass (Sorghum bicolor L. cv. Speed Feed), clover (Trifolium pratense L.), and safflower (Carthamus tinctorius L. cv. Koseh-e-Isfahan), on the total amino acids (AA) and dissolved organic carbon (DOC) concentration in rhizosphere soil solution and grain Zn content of successive wheat (Triticum aestivum cvs. Back Cross and Kavir) was investigated during 2009–2010 and 2010–2011 growing seasons. A fallow treatment was also considered as the control. In both growing seasons, preceding crops increased the concentrations of AA and DOC in the soil solution in comparison with the fallow control treatment; although the magnitude of this increase varied upon the preceding crop type and wheat cultivar. In general, clover and sunflower had greater effect on increasing soil solution DOC probably due to higher decomposability of their litter residues in soil. Preceding crops increased the total AA concentration, on average, by 45.9 % for the first year and 10.8 % for the second year. The preceding sorghum and clover had the highest and lowest influence on the concentration of AA in wheat rhizosphere soil solution, respectively. The preceding crops increased grain wheat Zn concentration and content over the fallow control treatment, although this effect was dependent on the crop type. For “Back Cross”, a positive and significant correlation was found between grain Zn concentration and soil solution DOC concentration (r?=?0.60, P?<?0.05) and particularly AA (r?=?0.76, P?<?0.001), while no such correlation was found for “Kavir”. At the second growing season, the concentration of AA in the rhizosphere of Back Cross was greater than that of Kavir, probably due to higher release of these compounds from the roots. According to the results, the preceding crop significantly affect grain Zn density of the successive wheat, that is, at least in part, by releasing soluble organic ligands into soil solution.  相似文献   

11.
Rice (Oryza sativa L.) cultivars differ widely in their susceptibility to zinc (Zn) deficiency. The physiological basis of Zn efficiency (ZE) is not clearly understood. In this study, the effects of Zn‐sufficient and Zn‐deficient pretreatments on the time and concentration‐dependent uptake kinetics of Zn were examined at low (0–160 nM) and high Zn supply levels (0–80 μM) in two contrasting rice genotypes (Zn‐efficient IR36 and Zn‐inefficient IR26). The results show that 65Zn2+ influx rate was over 10 times greater for the Zn‐deficient pretreatment plants than for the Zn‐sufficient pretreatment plants. At low Zn supply, significant higher 65Zn2+ influx rates were found for the Zn‐efficient genotype than for the inefficient genotype, with a greater difference (over three‐fold) at Zn supply > 80 nM in the Zn‐deficient pretreatments. At high Zn supply levels, however, a difference (2.5‐fold) in 65Zn2+ influx rate between the two genotypes was only noted in the Zn‐deficient pretreatments. Similarly, the 65Zn2+ accumulation in the roots and shoots of Zn‐efficient IR36 pretreated with Zn‐deficiency were sharply increased with time and higher than that in the Zn‐inefficient IR26 with an over four‐fold difference at 2 h absorption time. However, with Zn‐deficient pretreatments, the Zn‐efficient genotype showed a higher shoot : root 65Zn ratio at higher Zn supply. Remarkable differences in root and shoot 65Zn2+ accumulation were noted between the two genotypes in the Zn‐deficiency pretreatment, especially at low Zn level (0.05 μM), with 2–3 times higher values for IR36 than for IR26 at an uptake time of 120 min. There appear to be two separate Zn transport systems mediating the low and high‐affinity Zn influx in the efficient genotype. The low‐affinity system showed apparent Michaelis–Menten rate constant (Km) values ranging from 10 to 20 nM, while the high‐affinity uptake system showed apparent Km values ranging from 6 to 20 μM. The Vmax value was significantly elevated in IR36 and was 3–4‐fold greater for IR36 than for IR26 at low Zn levels, indicating that the number of root plasma membrane transporters in low‐affinity uptake systems play an important role for the Zn efficiency of rice.  相似文献   

12.
This study evaluated how zinc (Zn) concentration of rice (Oryza sativa L.) seed may be increased and subsequent seedling growth improved by foliar Zn application. Eight foliar Zn treatments of 0.5% zinc sulfate (ZnSO4?·?7H2O) were applied to the rice plant at different growth stages. The resulting seeds were germinated to evaluate effects of seed Zn on seedling growth. Foliar Zn increased paddy Zn concentration only when applied after flowering, with larger increases when applications were repeated. The largest increases of up to ten-fold were in the husk, and smaller increases in brown rice Zn. In the first few days of germination, seedlings from seeds with 42 to 67?mg Zn?kg?1 had longer roots and coleoptiles than those from seeds with 18?mg Zn?kg?1, but this effect disappeared later. The benefit of high seed Zn in seedling growth is also indicated by a positive correlation between Zn concentration in germinating seeds and the combined roots and shoot dry weight (r?=?0.55, p?相似文献   

13.
A sensitive and rapid bioassay system using Ca-45 uptake by larvae of Mulinia lateralis as indicator is described. The values of Ca uptake per larva?1 versus elapsed time were linear and some of the Ca uptake rates, expressed as pg Ca larva?1 h?1, were 148.2 (no added heavy metal), 114.4 (20 µg kg?1 of added Hg), 89.7 (200 gg kg?1 of added Zn) and 20.5 (40 µg kg?1 of added Cu). Linearities were also obtained by plotting log of Ca uptake per larva?1 against heavy metal concentrations. A new terminology, xCa inf50 supt , was proposed which expressed the concentration of heavy metal, x, causing 50% depression of Ca uptake over the exposure time, t. For Cu, Hg, and Zn, the values of x Ca inf50 sup72h were 18.5, 26.5 and 176.0 µg kg?1 respectively, which were comparable to the published values of LC50. The effectiveness of Ca uptake depression on a weight basis was Cu > Hg > Zn, and the same sequence was also observed for larval mortalities.  相似文献   

14.
Plants’ tolerance to salt stress is different among species, nevertheless, mineral nutrition might also affect it. A greenhouse experiment was conducted to evaluate the effect of Zinc (Zn) on salinity tolerance using a sigmoid response model in two wheat (Triticum aestivum L.) genotypes ‘Falat’ and ‘Bam’ with different salinity tolerances. The treatments consisted of three Zn rates (0, 5 and 10 mg Zn kg?1) and five levels of soil salinity (1.1, 6.5, 12.3, 18.7 and 25.1 dS m?1). The results showed that dry weight of straw and grain decreased, as salinity increased in both genotypes although this decrease in ‘Falat’ genotype was higher than that of ‘Bam’ genotype. Application of 10 mg kg?1 Zn increased the dry weight by 25% (straw) and 32% (grain) in ‘Falat’ but 67% (straw) and 60% (grain) in ‘Bam’ as compared with the absence of added Zn. According to the fitted function, in the absence of Zn, grain production began to decline at ECe-values of 4.7 dS m?1 in ‘Falat’ genotype, and 7.5 dS m?1 in ‘Bam’ genotype. Application of Zn led to a decrease of salinity tolerance in ‘Falat’ genotype, but an increase in ‘Bam’ genotype. The study found that Zn application under saline conditions, depending on genetic differences of wheat genotypes, would have different effects on their tolerance to salinity.  相似文献   

15.
Abstract

Efficient nutrient and water use are two important considerations to obtain good harvests of wheat. This necessitates the development of an effective nutrient management technique that not only increases yield, but simultaneously can save nutrient and water use. In this context, a field experiment was conducted at Indian Agricultural Research Institute, New Delhi, India to evaluate the residual effect of sesbania and rice bean (in-situ), subabul (ex-situ) green manuring and Zinc (Zn) fertilization, using chelated Zn-ethylenediaminetetraacetic acid (Zn-EDTA) on nutrient use, yields and water productivity of wheat under rice–wheat cropping system. Among residual effects of green manure crops and Zn fertilization, sesbania and foliar spray of 0.5% chelated Zn-EDTA at 20, 40, 60 and 80 days after sowing (DAS) recorded significantly higher nutrient content and uptake and yields than other green manure crops and Zn treatments. Residual effect of sesbania saved about 46.5?×?103 and 30.5?×?103 L irrigation water per tonne of wheat over subabul and rice bean, respectively. Foliar spray of 0.5% chelated Zn-EDTA at 20, 40, 60 and 80 DAS saved about 55.5?×?103, 47?×?103 and 13?×?103 L irrigation water per tonne wheat over residual effect of 5?kg Zn ha?1 through chelated Zn-EDTA as soil application, 2.5?kg Zn ha?1 through chelated Zn-EDTA as soil application + 1 foliar spray of 0.5% chelated Zn-EDTA at flowering and foliar spray of 0.5% chelated Zn-EDTA at active tillering?+?flowering?+?grain filling, respectively. Correlation analysis showed positive correlation between Zn uptake and grain yield.  相似文献   

16.
Chen  Yanlong  Shi  Jianglan  Tian  Xiaohong  Jia  Zhou  Wang  Shaoxia  Chen  Juan  Zhu  Wenling 《Journal of Soils and Sediments》2019,19(2):774-784
Purpose

Crop straw return into arable land is a common method of disposing of excess straw in China and can improve soil dissolved organic matter (DOM) that is known to modify soil zinc (Zn) extractability and mobility.

Materials and methods

We conducted a soil box (internal dimensions, 160?×?140?×?80 mm3) experiment to evaluate the response of Zn extractability and transfer by diffusion to DOM after maize straw amendment (St, 0 and 15 g kg?1) in calcareous soil treated with ZnSO4·7H2O (Zn, 0 and 20 mg kg?1). Soil treated with St0Zn0 (control), St15Zn0, St0Zn20, or St15Zn20 was isolated in the 10-mm center of the box, and untreated soil was placed in compartments at either side.

Results and discussion

Results revealed that addition of St0Zn20 or St15Zn20 increased the concentration of Zn extracted with diethylenetriaminepentaacetic acid (DTPA-extractable Zn) in the central layer compared with control or addition of St15Zn0. Over the course of 45 days, transfer of DTPA-extractable Zn into the adjacent untreated soil was detected at 15–20 mm in soil with St15Zn20 but at 10–15 mm with St0Zn20 and only 0–5 mm with St15Zn0. Additionally, a higher amount of DTPA-extractable Zn transfer into the adjacent untreated soil also occurred in St15Zn20. This increased DTPA-extractable Zn transfer may be associated with the formation of Zn-fulvic acid complexes with the provision of DOM derived from straw.

Conclusions

Soluble Zn combined with straw return may be a promising strategy for improving both Zn mobility and extractability in calcareous soil.

  相似文献   

17.
High levels of phosphorus (P) often induce zinc (Zn) deficiency in plants grown on Zn-poor soils. We investigated P-induced Zn deficiency in durum wheat (Triticum durum L. ‘Carpio’) grown on 16 noncalcareous and 31 calcareous soils differing in levels of available (Olsen) P and available (diethylenetriaminepentaacetic acid (DTPA)-extractable) Zn using micropots. A completely randomized factorial design with two levels of P (0 and 40 mg P kg?1 soil) and Zn (0 and 3 mg Zn kg?1 soil), i.e. four treatments (‘control’, + P, + Zn, and + PZn), were used. Grain yield of control plants depended mainly on the Olsen P level. Phosphorus had a negative effect on yield in 6 soils with Olsen P/ZnDTPA > 25, and Zn a positive one in 5 soils with Olsen P/ZnDTPA > 50; and the + PZn treatment generally resulted in the highest yield. Grain Zn concentration of control plants was negatively correlated with growth and Olsen P. Calcareous soils were less sensitive to P-induced Zn deficiency than noncalcareous soils because phosphate is sorbed by calcite rather than being co-adsorbed with Zn on the Fe oxides. Co-application of P and Zn to soil at low and application of Zn at high Olsen P ensured both maximum yield and grain Zn bioavailability.  相似文献   

18.
Abstract

Studies examining iron (Fe) toxicity and zinc (Zn) deficiency in rice have shown that screening experiments in nutrient solutions are of limited use because the rankings of genotypes as tolerant or intolerant can be very different from the results obtained in field-screening experiments. A possible reason for such deviation is that crucial rhizosphere processes cannot be reproduced in nutrient solutions. The objective of the present study was to evaluate the suitability of low-concentration agar nutrient solutions (ANS) as an alternative screening tool. Agar was dissolved in boiling water and mixed with nutrient solution to achieve a final agar concentration of 0.1% (w/v). Zinc deficiency was induced by supplying Zn at a low concentration (0.1 × 10?3 µmol L?1), while Fe toxicity was induced by supplying excess Fe2+ (200 mg L?1). Three-week-old seedlings were transplanted into this medium. Symptoms of Zn deficiency and Fe toxicity developed more rapidly in ANS compared with conventional nutrient solutions (CNS). For Zn deficiency this was probably because of the development of Zn depletion zones as a result of the reduced convection in the viscous agar medium. In the case of Fe toxicity we observed far less Fe precipitation in ANS compared with CNS. Genotypic comparisons showed that the tolerance rankings obtained in ANS were very similar to the field tolerance rankings, whereas this was not the case in CNS. This was particularly evident with regard to the considerable root growth inhibition detected in intolerant genotypes when stress treatments were imposed in ANS.  相似文献   

19.
Abstract

Arsenic (As) is a deadly poison at high concentrations. It is mysterious in the sense that people are exposed to it most of the time through drinking groundwater, fortunately at much lower concentrations than the deadly levels, and usually without knowing it. Arsenic content in alluvial aquifers of Punjab varied from 3.5 to 688 µg L?1. Arsenic status of groundwater is classified into low (<10 µg L?1), moderate (≥10 to <25 µg L?1), high (≥25 to <50 µg L?1), and very high (>50 µg L?1). In zone I, the concentration of As in groundwater varied from 3.5 to 42 µg L?1 with a mean value of 23.4 µg L?1. On the basis of these limits, only 8% of samples were low, whereas 51 and 41% of the total samples collected from this region fall in the moderate and high As categories. The concentration of As in groundwater of zone II varied from 9.8 to 42.5 µg L?1 with a mean value of 24.1 µg L?1. Arsenic concentration in the alluvial aquifers of the central plain of zone II is 2 and 52% in the low and moderate limits. In this region, 46% of groundwater sites contain high As concentrations. Arsenic concentrations in the aridic southwestern parts are significantly different from other two provinces. The As concentration ranged from 11.4 to 688 µg L?1 with average value of 76.8 µg L?1. Eleven percent of the aquifers of the southwestern region of zone III are in the moderate category, 54% in the high, and 35% in the very high. According to safe As limits (<10 µg L?1), only 3 and 1% of the groundwater samples collected from zones I and II were fit for dinking purposes with respect to As content. In the aridic southwest, zone III, all water samples contained As concentrations greater than the safe limits and thus are not suitable for drinking purposes. The presence of elevated As concentrations in groundwater are generally due to the results of natural occurrences of As in the aquifer materials. The concentration of other competitive oxyanions in waters such as phosphate, sulfate, and borate also depressed the adsorption of As on the sorption sites of aquifer materials and thereby eventually elevate the As concentration in groundwaters. In groundwater of alluvial aquifers of Punjab, released from sulfide oxidation and oxyhydroxide of iron, elevated (>10 µg L?1) concentrations of As were widespread because of high pH (>8.0) and higher concentrations of phosphate, borate, sulfate, and hydroxyl anions. It is conclusively evident that geochemical conditions, such as pH, oxidation–reduction, associated or competing ions, and evaporative environments have significant effects on As concentration in groundwater. These conditions influence how much As is dissolved or precipitated into the water and how much is bound to the aquifer materials or the solid particles in water.  相似文献   

20.
The concentrations of Hg, Cu, Pb, Cd, and Zn accumulated by regional macrophytes were investigated in three tropical wetlands in Colombia. The studied wetlands presented different degrees of metal contamination. Cu and Zn presented the highest concentrations in sediment. Metal accumulation by plants differed among species, sites, and tissues. Metals accumulated in macrophytes were mostly accumulated in root tissues, suggesting an exclusion strategy for metal tolerance. An exception was Hg, which was accumulated mainly in leaves. The ranges of mean metal concentrations were 0.035?C0.953 mg g?1 Hg, 6.5?C250.3 mg g?1 Cu, 0.059?C0.245 mg g?1 Pb, 0.004?C0.066 mg g?1 Cd, and 31.8?363.1 mg g?1 Zn in roots and 0.033?C0.888 mg g?1 Hg, 2.2?C70.7 mg g?1 Cu, 0.005?C0.086 mg g?1 Pb, 0.001?C0.03 mg g?1 Cd, and 12.6?C140.4 mg g?1 Zn in leaves. The scarce correlations registered between metal concentration in sediment and plant tissues indicate that metal concentrations in plants depend on several factors rather than on sediment concentration only. However, when Cu and Zn sediment concentrations increased, these metal concentrations in tissues also increased in Eichhornia crassipes, Ludwigia helminthorriza, and Polygonum punctatum. These species could be proposed as Cu and Zn phytoremediators. Even though macrophytes are important metal accumulators in wetlands, sediment is the main metal compartment due to the fact that its total mass is greater than the corresponding plant biomass in a given area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号