首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to investigate the effects of nitrogen (N) and zinc (Zn) fertilizers on seed yield, oil percentage, glucosinolate content, and nutrient uptake of canola (Brassica napus L. cv. Okapi), irrigated with saline and ultra-saline water, field experiments were conducted in Agriculture Research Centre of East Azarbaijan, Iran, during three consecutive years: 2011, 2012, and 2013. The experiments were carried out based on randomized complete block design arranged in factorial with three replications. The experimental treatments included N rates at three levels (0, 50, and 100 kg ha?1), Zn rates at three levels (0, 5, and 10 kg ha?1), and saline water at two levels (8 and 16 dS m?1 as saline and ultra-saline water). According to the results, N and Zn application had a significant effect on the plant height, pod number per plant, and seed yield. However, the value of these traits decreased as a result of the higher salinity level (from 8 to 16 dS m?1). From the results, the glucosinolate content was not affected by N or Zn fertilization, whereas, salinity increased the glucosinolate content from 27.51% to 30.06% when saline water and ultra-saline water were applied, respectively. In addition, the effect of ultra-saline water on the decrease in the N, phosphorous, potassium, and calcium uptake and the increase in the sodium and chlorine accumulation in canola seed was significant. However, Zn application could diminish adverse effects of salinity on phosphorus uptake. For instance, under ultra-saline water conditions, application of 10 kg ha?1 Zn increased the seed phosphorus content compared with control treatment. In general, it seems that nutrients’ supply, especially N and Zn, can be considered as an effective solution to diminish adverse effects of salinity.  相似文献   

2.
The interaction between water availability in the soil and fertilizer application rates often strongly affects crop growth. In the current study, the quality of fresh fruit and antioxidant enzymes of tomato crops (Lycopersicon esculentum Mill) were investigated under different irrigation (low water content [Wl]: 50 ~ 60% field moisture capacity (FMC); moderate [Wm]: 70 ~ 80% FMC; and high [Wh]: 90 ~ 100% FMC) and fertilizer conditions (deficit fertilizer [Fl]: 195 kg ha?1 nitrogen (N) + 47 kg ha?1 phosphorus pentoxide (P2O5) and moderate [Fm]: 278 kg ha?1 N + 67 kg ha?1 P2O5) in a solar greenhouse. The results showed that the quality of fresh fruits and the antioxidant enzyme activities in the leaves and fruits were related to the water content in the soil. Deficit irrigation improved the fruit quality and 50 ~ 60% FMC combined with fertilizer application rates of 195 kg ha?1 N + 47 kg ha?1 P2O5 is recommended for tomato crop cultivation under greenhouse conditions.  相似文献   

3.
The optimum dose of nitrogen (N) and phosphorus (P) for Withania somnifera was determined by utilizing graded levels of 0, 30, 45 and 60 kg ha?1 N and 0, 13, 26 and 40 kg ha?1 P in two separate simple randomized pot experiments. Soil-application of 45 kg N ha?1 and 26 kg P ha?1 proved the best dose for increasing shoot and root length, leaf area, fresh and dry weight of shoot and root, total chlorophyll and leaf-N, P, and potassium (K) content, nitrate reductase, and carbonic anhydrase activity, total alkaloid content, seed-yield per plant, root- yield per plant and berries per plant. While 30 kg N ha?1 proved best for root length, fresh and dry weights, as well as root-yield per plant. However, the effect of N and P fertilizers on carotenoid content, seeds per berry and 100-seed weight were insipid. Leaf- P remained unaffected by nitrogen application.  相似文献   

4.
Because limited information is available about the validated use of a chlorophyll meter for predicting nitrogen requirements for optimum growth and yield of wheat after application of herbicides, field experiments were carried out in the winter seasons of 2011/2012 and 2012/2013 under different weed and N fertilization treatments. Five weeded treatments, application of herbicides 25 days after sowing (DAS), hand pulling once at 55 DAS and a weedy check were combined with four N application rates. Weeds were completely absent in the non-fertilized plots, either with metribuzin or hand pulling as well as in isoproturon-treated plots fertilized with 190 or 285 kg N ha?1. The grain yield was similar in the treatments of isoproturon × 190 kg N ha?1, isoproturon + diflufenican × conditional N treatment (113.9) or 190 kg N ha?1, hand pulling × conditional N treatment (104.8) or 285 kg N ha?1 and metribuzin × 190 kg N ha?1. Under weeded practices, conditional N treatment recorded the maximum nitrogen use efficiency and almost equaled the grain protein content of the 190 kg N ha?1 application rate. N application based on SPAD readings saved about 40.0% and 44.8% N with isoproturon + diflufenican or hand pulling, respectively, compared to the recommended rate (190 kg N ha?1) without noticeable yield loss.  相似文献   

5.
A 2-year field experiment (2013 and 2014) was conducted in calcareous soil (CaCO3 19.2%), on soybean grown under three irrigation regimes 100%, 85% and 70% of crop evapotranspiration combined with three potassium (K2O) levels (90, 120 and 150 kg ha?1). The objective was to investigate the complementary properties of potassium fertilizer in improving soybean physiological response under water deficit. Plant water status (relative water content RWC, chlorophyll fluorescence Fv/F0 and Fv/Fm), had been significantly affected by irrigation or/and potassium application. Potassium improved growth characteristics (i.e. shoot length, number, leaf area and dry weight of leaves) as well as physiochemical attributes (total soluble sugars, free proline and contents of N, P, K, Ca and Na). Yield and yield water use efficiency (Y-WUE) were significantly affected by irrigation and potassium treatments. Results indicated that potassium application of 150 and 120 kg ha?1 significantly increased seed yield by 29.6% and 13.89%, respectively, compared with 90 kg ha?1 as average for two seasons. It was concluded that application of higher levels of potassium fertilizer in arid environment improves plant water status as well as growth and yield of soybean under water stress.  相似文献   

6.
Wheat (Triticum aestivum L.) residues and nitrogen (N) management are the major problems in the southern part of Iran where irrigated wheat–cotton (Gossypium hirsutum L.)–wheat rotation is a common practice. A 2-year (2009–2011) field experiment was conducted as a split plot design with four replications at a cotton field (Darab), Fars Province, Iran, to determine the influence of different rates of wheat residue (0%, 25%, 50%, and 75%) incorporation and N rates (150, 200, 300, and 400 kg ha?1) on weed suppression, yield, and yield components of cotton. Results showed that a higher residue incorporation and a lower N rate improved weed suppression in both years. For treatments receiving 150 kg N ha?1 and 75% of wheat residues (2250 kg ha?1), weed biomass and density were significantly lower compared to treatments receiving 400 kg N ha?1. The highest cotton lint yield (about 2400–2700 kg ha?1) was obtained by 300 kg N ha?1 in the absence of residue application, in both years. Incorporation of 25% of wheat residue (750 kg ha?1) and application of 300 kg N ha?1 are recommended to guarantee an optimum level of cotton lint yield and weed suppression in a wheat–cotton–wheat rotation in this region.  相似文献   

7.
The main objective of this investigation was to evaluate the response of red pepper grown in a subhumid climate to different irrigation and nitrogen levels. Open-field trials were conducted in the Marmara Region, Turkey. Plants were subjected to three water levels [full irrigation (FI) = 100% crop evapotranspiration (ETc) and two deficit irrigations (DIs)= 66 and 33% ETc restoration] and four levels of N (0, 80, 160, and 240 kg N ha?1) during the 2012, 2013, and 2014 growing seasons. A split-plot experimental design was used. The highest values of biomass and marketable yield (MY) were observed under FI. DI significantly increased the fruit soluble solids content. The biomass yield, MY, and fruit weight significantly improved with increasing nitrogen levels. The 240 kg N ha?1 treatment under FI provided the maximum net income. Increasing N supply under DI conditions enhanced the water-use efficiency based on both biomass yield and MY. These results indicate that with respect to the yield, the net income, and the water productivity of red pepper, the FI with a nitrogen supply of 160–240 kg ha?1 is recommended for drip irrigated and N-fertigated red pepper under subhumid climate conditions.  相似文献   

8.
Soil-test crop-response experiments on rice were conducted in the Bastar Plateau Agroclimatic Zone of Chhattisgarh during 2009–2011 to assess yield, soil, plant, and fertilizer nitrogen (N), phosphorus (P), and potassium (K) nutrient relationships and calibrate optimum fertilizer doses for attaining yield targets. Soil fertility status was poor to medium for N (194–283 kg ha?1) and P (7.53–19.66 kg ha?1), and medium to good for K (226–320 kg ha?1). Based on nutrient requirements (NR, kg q?1) and contributions from soil (CS, %), fertilizer (CF, %), and farmyard manure (CFYM, %), optimum fertilizer doses were derived. The fertilizer doses were validated for attaining yield targets of 5000 and 6000 kg ha?1 in farmer’s fields. Rice yield within 10% deviation was attained, which indicated that soil-test-based fertilizer dose was superior. This approach could be adopted for regions with similar soil and agroclimatic conditions in other parts of the world to increase rice yields.  相似文献   

9.
This study was carried out to evaluate the impact of permanent and intermittent irrigation on the yield of rice (cv. Koohrang) in Lordegan rice-growing areas in Chaharmahal and Bakhtiari Province (Iran). The experiment was set up in a randomized complete block design with four treatments and four replications during 2003 and 2004. Irrigation treatments were: I1, continuous irrigation with a 5-cm water head every day; I2, alternative irrigation with a 5-cm water head every 2 days; I3, alternative irrigation with a 5-cm water head every 4 days; and I4, alternative irrigation with a 5 cm water head every 6 days. Results showed that the paddy yield was highest under treatment I2 (5655.6 kg ha?1) and lowest under treatment I4 (3421.3 kg ha?1). The highest rate of water use was obtained in I1 with 17 687.5 m3 ha?1 and the lowest in I4 with 9325 m3 ha?1. Paddy yield, plant height, panicle length and 1000-seed weight did not show a significant difference at the 5% level among I1, I2 and I3, but differed significantly to I4. Thus irrigation treatment I3 is appropriate for paddy irrigation in the Lordegan region with 10 645 m3 ha?1 water use and 5483.7 kg ha?1 paddy yield.  相似文献   

10.
Cereal grain and nitrogen (N) fertilizer prices have varied greatly in recent years. The aim of this study was to determine the optimum dose of N fertilizer needed to maximize revenues of soft red winter wheat in Alava (northern Spain). Economically optimum rates of N application (Nyield) ranged from 142 to 174 kg N ha?1 depending on the price of both N fertilizer and wheat. Growers received an extra income of 0.006 [euro] kg?1 if the grain protein content was greater than 12.5%, with the minimum required N dose to obtain this value (Nprot) being 176 kg ha?1. The extra amount of N fertilizer required over Nyield to reach Nprot ranged from 2 to 34 kg N ha?1, and the extra benefits associated varied from 24 to 36 [euro] ha?1.  相似文献   

11.
A long-term experiment was conducted at the Central Research Institute for Dryland Agriculture for 13 years to evaluate the effect of low tillage cum cheaper conjunctive nutrient management practices in terms of productivity, soil fertility, and nitrogen chemical pools of soil under sorghum–mung bean system in Alfisol soils. The results of the study clearly revealed that sorghum and mung bean grain yield as influenced by low tillage and conjunctive nutrient management practices varied from 764 to 1792 and 603 to 1008 kg ha?1 with an average yield of 1458 and 805 kg ha?1 over a period of 13 years, respectively. Of the tillage practices, conventional tillage (CT) maintained 11.0% higher yields (1534 kg ha?1) over the minimum tillage (MT) (1382 kg ha?1) practice. Among the conjunctive nutrient management treatments, the application of 2 t Gliricidia loppings + 20 kg nitrogen (N) through urea to sorghum crop recorded significantly highest grain yield of 1712 kg ha?1 followed by application of 4 t compost + 20 kg N through urea (1650 kg ha?1) as well as 40 kg N through urea alone (1594 kg ha?1). Similar to sorghum, in case of mung bean also, CT exhibited a significant influence on mung bean grain yields (888 kg ha?1) which was 6.7% higher compared to MT (832 kg ha?1). Among all the conjunctive nutrient management treatments, 2 t compost + 10 kg N through urea and 2 t compost + 1 t Gliricidia loppings performed significantly well and recorded similar mung bean grain yields of 960 kg ha?1 followed by 1 t Gliricidia loppings + 10 kg N through urea (930 kg ha?1). The soil nitrogen chemical fractions (SNCFs) were also found to be significantly influenced by tillage and conjunctive nutrient management treatments. Further, a significant correlation of SNCF with total soil nitrogen was observed. In the correlation study, it was also observed that N fraction dynamically played an important role in enhancing the availability pool of N in soil and significantly influenced the yield of sorghum grain and mung bean.  相似文献   

12.
《Journal of plant nutrition》2013,36(7):1183-1197
Abstract

Nitrogen (N) fertilization continues to be of primary importance in the economically successful production of cotton (Gossypium hirsutum L.). Profit margins of producers might be expanded by increasing the uptake efficiency of applied N. Recently, N fertilization of crops grown in the Mississippi River Delta has been suspected to impact water quality in the Gulf of Mexico. Improving efficiency of N uptake could alleviate some environmental concerns by increasing the retention of N at the site of application. The objective of this study was to determine the impact of replacing preplant N applications with postemergent N applications on the growth and yield characteristics of cotton. Delayed applications of the recommended rate of N fertilizer (112 kg N ha?1) were tested for four years under irrigated and dry land production conditions. The N rate was applied either preplant, after crop emergence, or at first square. Further, 112 kg N ha?1 was split applied evenly at preplant + first square, and after emergence + first square. The five 112 kg ha?1 N treatments were compared to an unfertilized control. Yield tended to be maximized with N treatments that included a first square application. Yields were usually lowest in the unfertilized control and the 112 kg N ha?1 preplant treatments. Not surprisingly, both yield and plant growth was influenced more by irrigation than N fertilization. Years when drought conditions caused water stress and limited plant growth, dry land cotton had only limited response to the N fertilization treatments. Irrigated cotton responded to N treatments all years with increased growth and yield. Optimizing agronomic considerations, the best N fertilization timing was an after emergence + first square split application.

  相似文献   

13.
Leaching of nutrients in soil can change the surface and groundwater quality. The present study aimed at investigating the effects of raw and ammonium (NH4+)-enriched zeolite on nitrogen leaching and wheat yields in sandy loam and clay loam soils. The treatments were one level of nitrogen; Z0: (100 kg (N) ha?1) as urea, two levels of raw zeolite; Z1:(0.5 g kg?1 + 100 kg ha?1) and Z2: (1 g kg?1 + 100 kg ha?1), and two levels of NH4+-enriched zeolite; Z3: (0.5 g kg?1 + 80 kg ha?1) and Z4: (1 g kg?1 + 60 kg ha?1). Wheat grains were sown in pots and, after each irrigation event, the leachates were collected and their nitrate (NO3?) and NH4+ contents were determined. The grain yield and the total N in plants were measured after four months of wheat growth. The results indicated that the amounts of NH4+ and NO3? leached from the sandy loam soil were more than those from the clay loam soil in all irrigation events. The maximum and minimum concentrations of nitrogen in the drainage water for both soils were observed at control and NH4+-zeolite treatments, respectively. Total N in the plants grown in the sandy loam was higher compared to plants grown in clay loam soil. Also, nitrogen uptake by plants in control and NH4+-zeolite was higher than that of raw-zeolite treatments. The decrease in the amount of N leaching in the presence of NH4+-zeolite caused more N availability for plants and increased the efficiency of nitrogen fertilizers and the plants yield.  相似文献   

14.
Experiments were conducted to test the superiority of treatment combinations of nitrogen (N; 0, 50, 100, 150, 200 kg ha?1), phosphorus (0, 30, 60, 90 kg ha?1) and potassium (0, 30, 60 kg ha?1) for finger millet during 2005–2007. Application of 200-90-60 kg ha?1 gave maximum yield of 1666, 1426 and 1640 kg ha?1 in 3 years, respectively. The yield regression model through soil and fertilizer nutrients gave predictability of 0.98, 0.97 and 0.98, with sustainability yield index (SYI) of 50.4, 49.4 and 52.5 in 2005, 2006 and 2007, respectively. Optimum nitrogen, phosphorus and potassium (NPK) doses for attaining yields of 800 and 1200 kg ha?1 were derived at soil nitrogen, phosphorus and potassium of 75–400, 10–70 and 150–750 kg ha?1. Fertilizer nitrogen, phosphorus and potassium ranged from 30–128, 3–19, 13–25 kg ha?1 and 105–203, 4–32, 27–39 kg ha?1 for attaining 800 and 1200 kg ha?1 yield, respectively. The doses could be adopted for attaining sustainable yields under semiarid Alfisols.  相似文献   

15.
Abstract

The aim of this study was to evaluate the impact of land use on nitrate nitrogen (NO3-N) in shallow groundwater (G-N) and total nitrogen (N) in river water (R-N). The study area consisted of 26 watersheds (1342 km2) covering 72% of Kagawa Prefecture in Japan. We estimated G-N specific concentrations, which showed the magnitude of the upland fields, paddy fields, forests and urban land-use contributions to watershed-mean G-N. G-N specific concentrations were gained as partial regression coefficients using a multiple regression analysis of the watershed-mean G-N concentrations and the land-use ratios in each of the 26 watersheds. The results showed that the G-N specific concentration, which was gained as the partial regression coefficient for the multiple regression analysis, was 15.2 mg L?1, 10.3 mg L?1, 2.3 mg L?1 and 2.5 mg L?1 for the upland fields, paddy fields, forests and urban land-use types, respectively. R-N pollution load runoff to the river mouth was calculated by multiplying R-N specific concentration (previously reported) by river flow at the river mouth. Similarly, G-N pollution load arrival to groundwater was calculated by multiplying G-N specific concentration by the groundwater flow. The R-N pollution load runoff was 19.3 kg ha?1 y?1, 7.7 kg ha?1 y?1, 1.7 kg ha?1 y?1 and 7.6 kg ha?1 y?1, while the G-N pollution load arrival was 7.3 kg ha?1 y?1, 5.0 kg ha?1 y?1, 1.1 kg ha?1 y?1 and 1.2 kg ha?1 y?1, for upland fields, paddy fields, forests and urban areas, respectively. These results showed that the N in river water and groundwater was derived mainly from runoff and leaching from croplands. Therefore, the relationships between watershed-mean non-absorbed, applied nitrogen (NAA-N: nitrogen applied to cropland via fertilizer and manure without being absorbed by crops), R-N concentration and watershed-mean G-N concentration were investigated. A curvilinear correlation was observed between NAA-N and R-N concentrations (r2 = 0.68) except for one small, high-density, urban watershed, and a weak linear correlation was observed between NAA-N and G-N concentrations (r2 = 0.42).  相似文献   

16.
Excessive nitrogen (N) fertilizer application is common in the central Zhejiang Province area, China. A three-year (2009–11) experiment was conducted to determine the optimum N application rate for this area by studying the effects of various N rates on rice (Oryza sativa L.) yield, N-use efficiency (NUE), and quality of paddy field water. Results showed that no significant yield differences were observed under N rates from 180 to 315 kg ha?1. The NUE could be improved by reducing N application rates without significantly decreasing yield. Due to high ammonia (NH4+-N) and nitrate (NO3N) concentrations, 5–7 days after N application was a critical stage for reducing N pollution. The N rate for the greatest yield was 176 kg ha?1, accounting for 65 percent of the conventional N rate (270 kg ha?1). The N-rate reduction in this area may be necessary for maintaining high yield, improving NUE, and reducing environmental pollution.  相似文献   

17.

Purpose

Superabsorbent polymers, new water-saving materials and soil conditioners, are used widely in dry-farming agriculture. However, little is known about their effects on the soil physical properties under dry-farming conditions. To elucidate the effects of two SAPs (Wote and microbe) at different doses on the soil bulk density, water status, potato growth, yield, and economic benefit in a dry-farming region, we conducted a 2-year fixed field position experiment in the semiarid drought-prone area of Ningxia, China.

Materials and methods

The two SAPs were diluted 1:10 (product:soil) and applied at different rates before planting, i.e., Wote SAP 30 kg ha?1, Wote SAP 60 kg ha?1, Wote SAP 90 kg ha?1, microbe SAP 30 kg ha?1, microbe SAP 60 kg ha?1, and microbe SAP 90 kg ha?1. The treatment without SAP was used as the control.

Results and discussion

The tilth soil bulk density decreased under different SAP doses compared with the control, and the soil total porosity improved greatly, where the Wote SAP treatments had the greatest effects. The soil bulk density (0–60 cm) under Wote SAP 90 kg ha?1 was significantly decreased by 6.4% compared with the control. The Wote SAP treatments had the greatest effects on water conservation during the critical potato growth stage, where the soil water storage (0–100 cm) was significantly higher than the control. The Wote SAP treatments promoted potato growth in the later period, where the plant height and stem diameter were higher than the control. Higher yield and commodity rate improvements were achieved by the application of Wote and microbe SAP compared with the control, where the optimum dose was 60–90 kg ha?1 for Wote SAP. The application of Wote SAP 90 kg ha?1 significantly increased crop water use efficiency compared with no SAP, and the commodity rate was highest with Wote SAP 60 kg ha?1. The mean potato yield, commodity rate, and net income increased significantly using Wote SAP at 60 and 90 kg ha?1, i.e., by 38.2 and 50.5%, 18.5 and 14.1%, and 28.5 and 35.0%, respectively, compared with no SAP.

Conclusions

The application of SAPs can decrease soil bulk density and significantly improve soil porosity and soil water conservation capacity, thereby promoting potato growth. The application of Wote SAP 60–90 kg ha?1 significantly increased potato yield and net income in a dry-farming region of Ningxia, China.
  相似文献   

18.
To evaluate the effect of seed and nitrogen rates on weed species composition, density, biomass and diversity in two sesame (Sesamum indicum L.) varieties, a field experiment was conducted in 2009, 2010 and 2011 rainy seasons at Samaru, Nigeria. Four seed rates, 2, 4, 6 and 8 kg ha?1, four nitrogen rates, 0, 30, 60 and 90 kg N ha?1 and two sesame varieties NCRIBEN 01M and E8 were arranged as factorial in a split plot design. Weeds with the highest important values in sesame field were Dactyloctenium aegyptium, Ludwigia decurrens, Ageratum conyzoides and Cyperus esculentus. Year had a significant effect on weed density, biomass, diversity, evenness and richness. Weed density, biomass, diversity and richness were lowest in the 2011 trial and weed species evenness in 2009. Variety E8 reduced weed biomass better than NCRIBEN 01M. Averaged over years, weed diversity and evenness were lowest at 4 kg seeds ha?1. Seed × nitrogen rates effect of 4 kg seed ha?1 and 30 kg N ha?1 produced the lowest weed species diversity and evenness. The result suggests that variety E8 at 4 kg seed ha?1 and 30 kg N ha?1 with hoe weeding at 3 and 6 WAS may provide better weed control, and it is recommended in sesame production.  相似文献   

19.
Abstract

The experiment was conducted at Kulumsa, South East Ethiopia, using four levels of nitrogen (N) (0, 50,100 and 150?kg N ha?1) and four levels of phosphorus (P) (0, 35, 70 and 105?kg P2O5 ha?1) fertilizers arranged in 4?×?4 factorial arrangements in randomized complete block design with three replications. The available P was increased after harvest due to the application of N and P fertilizer at the rates of 100 or 150?kg N ha?1 and 70 or 105?kg P2O5 ha?1. More specifically, nutrients concentration and nutrient uptake were significantly (p?<?.01) varied among treatment combinations and nutrient use efficiency was declined by increasing N and P after optimum rates. The higher physiological efficiency of N (53.47?kg kg?1) and P (580.41?kg kg?1) and the highest apparent recovery of N (19.62%) and P (2.47%) was recorded from application of 50?kg N ha?1 and P at 70?kg P2O5 ha?1 and the highest agronomic efficiency of N (10.78?kg kg?1) and P (15.25?kg kg?1) was recorded from N at the rate of 50?kg N ha?1 and P at 35?kg P2O5 ha?1, respectively. The combination of N at 100?kg N ha?1 and P at 70?kg P2O5 ha?1 was promising combination that generated highest net benefit 488,878.5 ETB (Ethiopian birr) ha?1 with the highest marginal rate of return (36638%) and gave the highest seed yield (1858.82?kg ha?1) with yield increment of about 57.72% over the control.  相似文献   

20.
Excessive and inappropriate use of fertilizers is a key factor of low sugarcane yield and degradation of soil. A two-year (2013–14 and 2014–15) field study was conducted to assess the impact of combined application of organic and inorganic fertilizers on sugarcane at research farm of Shakarganj Sugar Research Institute, Jhang, Pakistan. Experiment was conducted under randomized complete block design with three replications. Treatments were used as control (no exogenous application), spent wash (160 t ha?1), (nitrogen, phosphorus and potassium) NPK (168:112:112 kg ha?1), spent wash (120 t ha?1) + NPK (42:28:28 kg ha?1), spent wash (80 t ha?1) + NPK (84:56:56 kg ha?1), spent wash (40 t ha?1) + NPK (126:84:84 kg ha?1), and spent wash (160 t ha?1) + NPK (42:28:28 kg ha?1). Application of spent wash @ 80 t ha?1 + NPK @ 84:56:56 kg ha?1 resulted maximum crop growth rate (11.35 g m?2 d?1), leaf area index (7.78), and net assimilation rate (2.53 g m?2 d?1). Maximum number of millable canes (14), weight per stripped cane (0.90 kg), stripped cane yield (117.60 t ha?1) and unstripped cane yield (141.25 t ha?1) were observed with spent wash @ 80 t ha?1 + NPK @ 84:56:56 kg ha?1, followed by sole fertilizer application @ 168:112:112 kg NPK ha?1 and spent wash @160 t ha?1 + NPK @ 42:28:28 kg ha?1. Similar trend was observed regarding quality parameters. The maximum benefit–cost ratio (1.80) was achieved with integrated application of spent wash @ 80 t ha?1 + NPK @ 84:56:56 kg ha?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号