首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of NaCl on the seed germination and growth of Casuarina equisetifolia seedlings and multiplication of the Frankia Ceq1 strain isolated from the root nodules of C. equisetifolia were examined. The germination rate of the seeds markedly decreased as the NaCl concentration increased and germination did not occur at 300 mM NaCl. The fresh weight of both shoots and roots of the seedlings treated with NaCl for 6 weeks apparently decreased as the NaCl concentration increased. However, root nodules were formed by inoculation with the Frankia Ceq1 strain in some seedlings treated with 300 mM NaCl and the viability of the seedlings at 500 mM NaCl was almost the same as that of the seedlings not subjected to the NaCl treatment. The Na+ concentration in the shoots sharply increased with the elevation of the NaCl concentration in the ambient solution, but the level was approximately 300 mM even in the seedlings treated with 500 mM NaCl for 6 weeks. On the other hand, the increase of the Na+ concentration in the roots by the NaCl treatment was much smaller than that in the shoots and the level was less than 150 mM. The growth of the free-living Frankia Ceq1 strain was approximately linearly suppressed as the NaCl concentration in the medium increased and the hyphae became somewhat thicker and shorter or disintegrated in the medium containing NaCl at a concentration above 150 mM. The Na+ concentration in the cells increased as the NaCl concentration in the medium increased, but the level was maintained at less than 30 mM even in the medium containing 500 mM NaCl. The cells whose growth was suppressed by the NaCI treatment grew actively again at almost the same rate as the control cells (not subjected to the NaCl treatment) when they were transferred to NaCl-free medium. These results strongly suggested that both C. equisetifolia seedlings and Frankia Ceq1 strain are highly tolerant to salt and this symbiotic system is useful for the recovery of the vegetation in areas with severe salt accumulation.  相似文献   

2.
Nonexchangeable potassium (K-ne), i.e. 1 M NH4OAc-nonexchangeable K, often contributes significantly to plant nutrition. However conventional extraction methods often extract much more K-ne than plants even after intensive cropping, suggesting the difficulty in evaluating the amount of readily available soil K-ne. In this study, we used a milder extraction method (0.01 M HCl method) to examine its applicability to evaluate the amount of readily available K-ne in soil. In the first experiment, the concentration of K-ne in twenty surface soils sampled from agricultural fields in Japan and K-bearing minerals was determined by the 0.01 M HCl method, i.e. sequential extraction with 0.01 M HCl over a period of 10 d after removal of exchangeable K, and by conventional methods. The average percentage of the soil K-ne extracted by the 0.01 M HCl method amounted to 0.66% of the total K amount, and was much lower than that by a single extraction with 1 M HNO3 (2.0%) or with 0.2 M sodium tetraphenylboron for 2 d (22%). In the second experiment, the amount of K-ne removed by chemical extractions was compared with that of K-ne removed by maize plants grown for 29 d in five of the above soils. The amount of the K-ne evaluated by the 0.01 M HCl method gave the highest correlation (p < 0.05) with that of the K-ne utilized by plants among the extraction methods applied. The amount of soil K-ne extracted by the 0.01 M Hel method could therefore become a suitable index of the amount of readily available K-ne in soil. Extraction of K-ne in soils after maize planting further indicated that plants had removed K-ne more intensively than the 0.01 < HCl method probably only from the rhizosphere, although a high correlation was observed between the amount of K-ne removed by the 0.01 M Hel method and that by plants. This implies that the estimation of the amount of K-ne utilized by plants requires not only soil chemical analysis but also the evaluation of the percentage of the soil volume where the plant-induced release of K-ne actually occurs.  相似文献   

3.
In this paper are described the properties of filmy gel substances occurring in the Imaichi (Imaichi-tsuchi) and Shichihonzakura (formerly called Jobukanuma-tsuchi (2,5)) pumice beds. The properties of such filmy materials from the Kanuma (Kanuma-tsuchi) , Imaichi, and Kitakami pumice beds have been described by many investigators (1,8, 9, 10,12, 13, 14, 15, 19, ). KANNO et al. (9) concluded that they were a mixture of poorly crystalline montmorillonite, allophane, and free sesquioxides. However, the presence of montmorillonite as an important constituent has been disproved by MIYAUCHIA nd AOMINE (12), ho concluded that the gel films from the Kitakami and Kanuma pumice beds consist principally of imogolite.  相似文献   

4.
A characteristic gel-like substance has been noticed around weathered pumice grains in the pumice beds of Kanuma near Utsunomiya and of Kitakami, Iwate prefecture. This substance was first studied by SHIOIRI (6) in 1934, and reported as allophane according to its chemical composition, refractive index, and dye-adsorbing nature similar to the colloid of volcanic ash soils of the Onji-type. Recently, KUWANO and MATSUI (5) remarked that the colloidal film in the Kanuma and Imaichi pumice beds diffracted x-rays at about 8 and 33 Å, and they presumed that this substance might be an early transitional material from allophane to some crystalline clay minerals. KANNO (2) and KANNO et al. (3) examined this gel-like substance from Imaichi and Kitakami districts precisely by the x-ray diffraction, differential thermal, infrared spectroscopical, electron microscopical, and chemical methods, and they concluded that the substance was a mixture of poorly crystallized montmorillonite, allophane in various weathering stages, and free sesquioxide, although there was no positive evidence of montmorillonite. YOSHINAGA and AOMINE (7) noticed that the properties of imogolite designated by themselves bore a striking likeness to those of the gel-like substance reported by KANNO et al. (3), and they considered that both substances were essentially of the same kind irrespective of occurrence.  相似文献   

5.
Laminar opaline silica was first found in the 0.2 to 5 μ fraction and most abundant in the 0.4 to 2 μ fractions of young Japanese Andosols by Shoji and Masui (1969a, b). It was noted that the A horizon of a profile tends to be relatively rich in opaline silica whereas the B or C horizon, in allophane (Shoji and Masui, 1972a, b). They (I972a) distinguished four types of opaline silica particles such as circular, elliptical, rectangular, and rhombic, of which the circular and elliptical types predominate. It has been suggested that the formation of opaline silica is favored by a plentiful supply of soluble silica in the early weathering stage of Andosols, the supersaturation of silica by surface evaporation of soil solution, and the suppression of aluminum activity in the soil solution by the accumulation of soil organic matter (Shoji and Masui, 1972b; Wada and Harward, 1974). The purpose of the present short communication is to describe the occurrence of laminar opaline silica particles in some Oregon Andosols, U.S.A.  相似文献   

6.
A greenhouse experiment was conducted at Land Resources Research Institute, NARC, Islamabad to examine the impact of humic substances (HSs) coating on potassium fertilizers use efficiency. Tomato variety “Rio Grande” was used. The treatments applied were T1= Control (N, P at 250 and100?mg kg?1 respectively), T2?=?N, P?+?K at 200?mg kg?1 as SOP, T3?=?N, P?+?K at 200?mg kg?1 as NPK blend, T4?=?N, P?+?K at 200?mg kg?1 HSs coated SOP) and T5?=?N, P?+?K at 200?mg kg?1 HSs coated NPK blend. Results indicated a positive impact of sole and HSs coated products on agronomic traits, nutrient concentration, fruit quality traits, flower number, fruit umber, fruit weight, chlorophyll contents, fresh and dry biomass, tissue water contents, diameter and fruit mineral composition. The response of afore said traits to applied treatment varied.  相似文献   

7.
For the past ten years much work has been carried out on clay minerals of volcanic ash soils. Most investigators have reported that allophane is dominant among clay minerals of volcanic ash soils and crystallizes to halloysite or meta-halloysite with the advance of weathering (1–8). On the other hand, UCHIYAMA, MASUI and ONIKURA (1960) found that montmorillonite predominates in the clay fraction of volcanic ash soil in Kawatabi (9). Furthermore, MASUI, SHOJI and UCHIYAMA (1966) showed that the major crystalline clay minerals of volcanic ash soils in the Tohoku district are montmorillonite, vermiculite, intergradient montmorillonite-vermiculite and chlorite (10). They also showed that these minerals increase with the advance of weathering and that kaolin minerals are minor constituents.  相似文献   

8.
Recent studies have shown that the incorporation of ammonium nitrogen into amino acids in the leaves is strictly dependent on light (1-4). It is speculated that the effect of light on ammonium assimilation may be through the synthesis of the precursors of amino acids, or by the supply of the energy required for amination and amidation with organic acids. In the Vicia faba chloroplasts Givan et al. (1) exhibited that the synthesis of glutamic acid from a-ketoglutarate was linked with the generation of reduced pyridin nucleotide by photosynthetic electron transport. Mitchell and Stocking (2) suggested the direct coupling of glutamine formation with photophosphorylation in the pea chloroplasts. On the other hand. the processes of nitrate assimilation are more indebted to light than those of ammonium assimilation, because the former ones involve the reduction of nitrate to ammonium which is believed to be light-dependent (5). Canvin and Atkins (6). and Atkins and Canvin (7) reported that the incorporation of 15N-labeled ammonium and nitrate into amino acid fractiom was depressed by the dark treatment and by photosystem inhibitors; 3-(3′,4′-dichlrophenyl)-1-1-dimethylurea (DCMU) and carbonyl-cyanide-m-chlorophenyl-hydrazone(CCCP).  相似文献   

9.
With the increased use of ammonium fertilizers a study of the absorption, retention and release of NH+ 4 by soil is gaining considerable importance. An ammonium saturated soil may hold NH+ 4 in three different forms, the free, the exchangeable and the fixed ammonium ion. The free NH+ 4 can be extracted from soil by water or alchohol; the exchangeable NH+ 4 may be replaced by simple cation exchange process using 2N-KCl whilst the fixed ammonium can not be removed even after the application of drastic treatments. Only absorbed ammonium is usually available to the plants either directly or through nitrification while free ammonium is likely to be lost through leaching with rain or irrigation water and less than 10% of the fixed ammonium is only slightly available to nitrifying bacteria or nitrate formation (ALLISON et al. 1951, HANWAY and SCOTT 1956).  相似文献   

10.
Nodule growth of a hypernodulating soybean (Glycine max (L.) Merr.) mutant line NOD1-3 was compared to that of its wild-type parent cv. Williams from 14 to 18 days after planting (DAP) in the absence of nitrate treatment (hereafter referred to as “0 mM treatment”) or with 5 mM nitrate treatment. The growth rate determined by increase in the diameter of the nodules was relatively lower in the mutant NOD1-3 than that of the parent Williams under nitrogen-free conditions (0 mM nitrate). The inhibition of nodule growth by 5 mM nitrate started at 1 d after the onset of the nitrate treatment in Williams, while the inhibition did not occur before the application of the nitrate treatment for 2 d in NOD1-3. The nodule growth was completely inhibited after 2 d in Williams and after 3 d in NOD1-3 during the 5 mM nitrate treatment period. After 4 d of 5 mM nitrate treatment, the nodule dry weight decreased by 22% in NOD1-3 and by 58% in Williams, respectively. The treatment with 5 mM nitrate decreased the acetylene reduction activity (ARA) in NOD1-3 by 60% per plant and by 50% per nodule g DW and these parameters were less sensitive to the treatment than those in Williams in which the inhibition rate was 90% per plant and 80% per nodule g DW. These results indicate that NOD1-3 is partially nitrate-tolerant in terms of individual nodule growth as well as total nodule dry weight and Nz fixation activity. A whole shoot of Williams and NOD1-3 plants was exposed to 14CO2 for 120 min followed by 0 or 5 mM nitrate treatment for 2 d, and the partitioning of the photoassimilates among the organs was analyzed. Under 0 mM nitrate treatment, the percentages of the distribution of 14C radioactivity between the nodules and roots were 63 and 37% in Williams and 89 and 11% in NOD1-3. Under the 5 mM nitrate conditions, the percentages of the distribution of 14C between the nodules and roots changed to 14 and 86% in Williams and 39 and 61% in NOD1-3, respectively. These results indicated that the hypernodulating mutant NOD1-3 supplied a larger amount of photoassimilates to the nodules than to the roots under nitrogen-free conditions, and that the nitrate depression of photoassimilate transport to the nodules was less sensitive than that of the parent line.  相似文献   

11.
Soil humus plays a significant role in the cation exchange of a soil. YOSHIDA (1) showed that, as a general rule, divalent ions such as calcium and magnesium were adsorbed more strongly onto humus than monovalent ions such as ammonium and potassium in an ion-exchange reaction. He did not, however, describe the behavior of heavy metal ions. BREMNER et al. (2) first suggested that soil organic matter forms complexes with polyvalent cations. HIMES and BARBER (3) found that soil organic matter reacts with divalent metal ions in a manner similar to the chelation reaction. Reviews of the soil organic matter-metal complex have been written by BREMNER et al. (2) and KAWAGUCHI, MATSUO and KYUMA (4).  相似文献   

12.
Blast disease is one of the biggest diseases of rice plant in Japan. For example, in 1953, the total area of damage by blast disease was about 160 × 104 hectare and the decreased yield of rice Was about 67.5 × 104 ton in Japan. There have been many studies on blast disease for a long time. Tanaka and Katsuki (7)studied the relation between environmental conditions and blast disease. They always used adult healthy rice plants as plant materials and have not analysed the plants damaged by blast fungus directly. They suggested the presence of growth-promoting factors of blast funngus especially in susceptible rice varieties. Tamari and Kaji (5, 6) suggested that the blast fungus produced some effective toxic substances which might cause the disease. Suzuki, Doi and Toyoda (4) continued to study the mechanism of rice blast resistance and they have proposed 3 phases of resistance. They are (a) resistance and environtmental factors, (b) resistance and host camponents and (c) relation of host variety to fungus race.  相似文献   

13.
Abstract

The presence of 4-MeGln in the tulip plant was discovered by ZACHARIUS et al. (1954), and it was found that this amide generally occurred in the leaves of almost all the species of genus Tulipa (FOWDEN and STEWARD 1957a). The 4-MeGln compound has been detected in every part of the tulip plant, i.e., bulb scales, roots, basal plate, young shoots, leaves, stern, and flower (FOWDEN and STEWARD 1957a, b; OHYAMA 1986; OHYAMA et al. 1985, 1988a, b; ZACHARIUS et al. 1954, 1957). Especially 4-MeGln was found to be a major soluble N constituent in the leaves and stem of tulip of the flowering stage (OHYAMA et al. 1985; OHYAMA 1986).  相似文献   

14.
KODAMA and SCHNITZER (1) have shown that organic substance of the fluvic acid fraction separated from a podzol soil could penetrate into the interlamellar region of montmorillonite. But the natural occurence of such a complex has not been observed yet (2).  相似文献   

15.
Barley plants were grown hydroponically at two levels of K (3.0 and 30 mm) and Fe (1.0 and 10 μm) in the presence of excess Mn (25 μm) for 14 d in a phytotron. Plants grown under adequate K level (3.0 mm) were characterized by brown spots on old leaves, desiccation of old leaves, interveinal chlorosis on young leaves, browning of roots, and release of phytosiderophores (PS) from roots. These symptoms were more pronounced in the plants grown under suboptimal Fe level (1.0 p,M) than in the plants grown under adequate Fe level (10 μm). Plants grown in 10 μm Fe with additional K (30 mm) produced a larger amount of dry matter and released less PS than the plants grown under adequate K level (3.0 mm), and did not show leaf injury symptoms and root browning. On the other hand, the additional K supply in the presence of 1.0 μM Fe decreased the severity of brown spots, prevented leaf desiccation, and increased the leaf chlorophyll content, which was not sufficient for the regreening of chlorotic leaves. These results suggested that the additional K alleviated the symptoms of Mn toxicity depending on the Fe concentration in the nutrient solution. The concentration (per g dry matter) and accumulation (per plant) of Mn in shoots and roots of plants grown in 10 μm Fe and 30 mm K were much lower than those of the plants grown in 10 μm Fe and 3.0 mm K, indicating that additional K repressed the absorption of Mn. The concentration and accumulation of Fe in the shoots and roots of the plants grown in 10 μm Fe and 30 mm K were higher than those of the plants grown in 10 μm Fe and 3.0 mm K, indicating that the additional K increased the absorption of Fe under excess Mn level in the nutrient solution. The release of PS, chlorophyll content, and shoot Fe concentration were closely correlated.  相似文献   

16.
It is well known that methyl mercaptan is porduced by the microbiological decomposition of methionine1),2),3). According to Kondo 4) and Onitake 1)not only hydrogen sulfide, but also methyl mercaptan were produced from cystine by E. coli and Proteus vulgaris in the medium containing one of glucose, lactose, sucrose, glycerin or histidine. Moreover, Onitake 1) found that methyl mercaptan was produced by the action of E. coli in the medium containing hydrogen sulfide and a trace of ethyl alcohol, and that evolution of methyl mercaptan began only 5 minutes after the start of experiment in the medium containing methionine, but it began after 12hrs in the medium containing 1-cystine and glucose. According to Birkinshaw, Findlay and Webb5) methyl mercaptan was found in the medium containing glucose, sulfate and other mineral salts, inoculated by Schizophyllum commune. In the same cultural condition as given above, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide were detected by Challenger and Chartons 5) from the data presented above, in addition to microbiological formation of methyl mercaptan from methionine, the possibility cannot be excluded of methyl mercaptan formation by microbes from cystine, sulfate or hydrogen sulfide in the medium containing one of organic compounds such as sugars, glycerin, histidine and ethyl alcohol, etc.  相似文献   

17.
In a previous communication from this laboratory it has been indicated that mint plants respond typically to different environmental conditions (day length and temperature) by marked alterations in growth, and synthesis of essential oil (SINGH and SINGH, 1968a (1)). Similar work on M. piperita L. carried out by several workers clearly shows that the mineral nutrition and metabolism of this plant are equally affected by environmental changes (CRANE and STEWARD, 1962 (2) ; RABSON, 1965 (3) ; STEWARD et al. 1959 (4)), and the metabolic consequences which flow from deficiencies of nutrient elements are greatly influenced by these factors, e. g., lack of phosphorus under short days is accompanied by greater accumulation of amides than under long days and, therefore, causes decrease in other soluble constituents, viz. amino acids (CRANE and STEWARD, 1962).  相似文献   

18.
Phosphorus in soils is found to be present in organic combinations, inorganic form or in adsorted form on clay complex. Different forms of soil phosphorus have different solubilities and consequent availability in soils. A knowledge about the content and types of soil phosphorus enables one to understand the organic behaviour and predict the response of added phosphatic material to crops (Parker 1953). The form in which phosphorus is present in soil is directly related to pH and CaCO3 in the soil as well as the intensity of the development of the soil. Williams (1950) has found that in calcareous soils of South Australja most of the phosphorus was in combination with calcium, whereas in acid soils it forms compounds with alumina and iron. Hibbard (1931) concluded that in alkaline and calcareous soils, phosphorus exists mostly in the form of hydroxyapatite, chloroapatite, and the like. Kanwar and Grewal (1959) studied fractionation of phosphorus in Punjab soils and reported that differences in the nature and amounts of the phosphorus present in acid and alkaline soils of the State explain the causes of different phosphatic fertilizer responses to the crops. A similar report has been given by Goel and Agarwal (1959) who studied the fractionation of phosphorus in Kanpur soils and concluded that the mature soils are rich in iron and aluminium bound phosphorus and respond better to phosphatic fertilizer than the immature soils rich in Ca2+ and Mg2+ bound phosphorus. Chai Moo Cnoo and Caldwell (1959) reported that Fe3+ and Al3+ bound phosphorus was abundant in acid soils while Ca2+ and Mg2+ bound phosphorus content in alkaline soils, and organic phosphorus agreed, in general, with the content of organic matter, with some deviations.  相似文献   

19.
Abstract

Microbial metabolism in reduction process of waterlogged paddy soils has been studied by Takai, Koyama, and Kamura (1, 2, 3, 4, 5, 6), Koyama (7, 8, 9, 10, 11, 12), and others. The results indicated that microbial metabolism in waterlogged soils takes place according to the following steps: (1) In the early stage of the incubation period, dissolved O2, is consumed and the redox potential drops rapidly. (2) NO2? and NO2? are reduced to N2. (3) Mn4+ is reduced to Mn2+. (4) Fe3+ is reduced to Fe2+. (5) SO4 2? is reduced to S2?. (6) H2 and CH4 are produced. Takai and Chiang (13) reported that NH4+ and PO4 3+ in waterlogged paddy soils increase with the incubation period. Chiang and Takai (14) indicated that carbohydrates in the soil solutions almost remain constant throughout the incubation period, however, organic acids change similarly to those reported previously (5, 6).  相似文献   

20.
The soils of Rajasthan vary from desert sand to heavy clay with all intermediate stages like sandy loam, loam and clay loam. The last two textural groups are more prevalant on the eastern, northeastern and southeastern part of the Aravallies which run almost in the middle of the State from southeast to northeast. The latter groups of soils have more potential from the point of agricultural development in the State. These soils are widely termed as alluvial soils which is a general term to indicate the nontaxonomic group of soils that have parent material of alluvial origin, Riecken 17, Kelloog 8 has referred to the soils developed from the alluvium as classified under variety of world soil groups. In our country many of the alluvial soils have not yet been studied from the soil genesis point of view as a measure to classify the soils under taxonomic groups. Ray Chawdhary and Mukerji 15, concluded that the alluvial soil groups of our country are ill defined and the classification of these soils need more study. Basu 3 was able to distinguish the genetic characteristics of the soils of Deccan. Agrawal and Mukherji 1) established that distinct genetic soil types have come into expression under Gangetic alluvium. Agarwal 2 has concluded about the three types of soils in the toposequence with precipitated calcium throughout, zone of calcium accumulation in the bottom of the profile and soils free of calcium, and suggests that the soils of Gangetic plain be called as derived from alluvium. A process of reclassifying the alluvial soil series into taxonomic groups is a common trend in the United States since the last two decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号