首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Forage sorghum (Sorghum bicolor (L.) Moench) is an important annual forage crop but prone to high nitrate concentration which can cause toxicity when fed to cattle (Bos taurus and Bos indicus). Two field experiments were conducted over six site-years across Kansas to determine the optimum nitrogen (N) rate for no-till forage sorghum dry matter (DM) yield and investigate the effect of N fertilization on sorghum forage nitrate content. A quadratic model described the relationship between sorghum DM and N rate across the combined site-years. Maximum DM yield of 6530?kg ha?1 was produced with N application rate of 100?kg N ha?1. The economic optimum N rate ranged from 55 to 70?kg N ha?1 depending on sorghum hay price and N fertilizer costs. Crude protein concentration increased with N fertilizer application but N rates beyond 70?kg N ha?1 resulted in forage nitrate concentrations greater than safe limit of 3000?mg kg?1. Nitrogen uptake increased with N fertilizer application but nitrogen use efficiency and N recovery decreased with increasing N fertilizer rates. In conclusion, forage sorghum required 55–70?kg N ha?1 to produce an economic optimum DM yields with safe nitrate concentration.  相似文献   

2.
Sorghums of the Sudan: analysis of regional diversity and distribution   总被引:1,自引:0,他引:1  
Sorghum [Sorghum bicolor (L.) Moench] is a very important crop in the Sudan serving as a primary source of food, beverage, and total livelihood for millions of people in the country. The crop originated in the Northeast quadrant of Africa, and the Sudan is widely recognized as a major center of diversity. Although Sudanese sorghum germplasm has been assembled and stored over the last 50 years, careful analysis of this valuable germplasm has not been made. The objectives of this study were to assess phenotypic diversity and compare pattern of distribution among Sudanese sorghum landraces collected from different geographical regions. Phenotypic diversity among landraces was high, as expressed by the large range of variation for mean quantitative traits and the high (0.81) Shannon-Weaver diversity index. Landraces from Gezira-Gedarif tended to be shorter in stature, earlier in maturity and less sensitive to changes in photoperiod. They also had long, narrow and compact panicles that may result from adaptation to low rainfall and early adoption of mechanized farming practices. In contrast, taller and later maturing plant types characterized sorghums from Equatoria, most of which delayed their flowering in response to increased day-length. These sorghums included many genotypes with small and light kernels. Collections from Kassala showed a higher frequency of landraces with kernels that were more difficult to thresh. Landraces from Blue Nile tended to have greater agronomic eliteness with higher proportion of landraces with white kernels, poorly covered and that were easy to thresh. Sorghums from the Upper Nile tended to have loose panicles with poorly covered kernels that may result from adaptation to high rainfall of the Southern region. Although distinct distributions of types were represented by geographical origin, a high level of within-region diversity was present among all Sudanese sorghums.  相似文献   

3.
In this study, it was verified whether silicon (Si) affected plant hydraulic resistance, which was one of the significant factors affecting water uptake. Sorghum bicolor (L.) Moench. was grown hydroponically under varying silicon levels and exposed to osmotic stresses. Under osmotic stress, reduction in growth, photosynthesis, and transpiration were alleviated as supplied silicon levels increased. These alleviative effects were ascribed to enhancement of water uptake. Although shoot/root ratio was not affected by silicon, estimated apparent hydraulic resistance was lower in silicon-supplied sorghum than silicon-deficient one under osmotic stress. Simultaneous measurement of transpiration and water uptake rates indicated that under osmotic stress silicon-deficient sorghums showed unbalanced water relation that transpiration rate exceeded water uptake rate, while they were balanced in silicon-supplied sorghums. The results indicated that silicon improved hydraulic resistance, allowing sorghum to avoid from decrease in water uptake rate that happens to silicon-deficient sorghum under water stress.  相似文献   

4.
Little information is available on the response of grain sorghum [Sorghum bicolor (L.) Moench] genotypes differing in nitrogen (N) use efficiency (NUE) (g DM g N‐1) to added N fertilizer. Such knowledge is important for reducing the reliance upon fertilizer N. A dryland field experiment was conducted in 1993 and 1994 at Mead, NE evaluating the agronomic responsiveness of 13 sorghum genotypes differing in NUE to three N rates (0, 50 and 100 kg N ha‐1) and also to determine physiological factors that contribute to improved NUE. The experiment was conducted on a fine montmorillonitic, mesic, Typic Argiudoll soil. Total N at maturity, dry matter, and grain yield were used to calculate NUE terms. Genotype differences were found for all measured variables both years, but no N rate by genotype effects were significant. Nitrogen fertilizer enhanced plant N contents and grain yield, but decreased NUE for total biomass and grain production. An early freeze in 1993 markedly reduced the later maturing genotype grain yields which, in turn, influenced NUE group comparisons. All genotypes in the study attained their full yield potential in 1994. The linear response to N rate of the N non‐responsive group was significantly less than the moderately responsive or N responsive group. High NUE sorghums had greater yields than low NUE types averaged over N levels only in 1994 since Naga White, a high NUE type, did not reach maturity in 1993. There was no difference in the linear response to N between these two groups. A linear increase in grain yield with increasing N rate was significantly greater for hybrids than lines. The results suggest that specific selection for high NUE sorghums will not diminish responsiveness to applied N.  相似文献   

5.
Kisra is a naturally lactic acid bacteria‐ and yeast‐fermented sorghum thin pancake‐like flatbread produced in Sudan. Kisra has considerable potential as the basis for development of a gluten‐free sandwich wrap. To help direct cultivar selection for commercial production of these products, two white, tan plant non‐tannin Type I, one white Type II tannin, and one red Type III tannin sorghum cultivars were evaluated with respect to kisra protein quality and physical characteristics. Kisra from the non‐tannin sorghums were flexible and had an open‐textured structure with many regular gas cells, whereas those from the tannin sorghums were more brittle, denser in structure, and contained far fewer and smaller gas cells. Kisra from the tannin sorghums had the lowest reactive lysine content, in vitro protein digestibility, and Protein Digestibility Corrected Amino Score (PDCAAS), with values being lowest for the Type III sorghum. PDCAAS of kisra from the Type III sorghum was only 0.12, less than half of that from the Type I sorghums. As the tannins in tannin sorghums adversely affect kisra protein quality and physical characteristics, white tan plant, non‐tannin sorghum cultivars are most suitable for kisra production and for development of wrap‐type sorghum‐based baked goods.  相似文献   

6.
Diagnosing nutrient insufficiencies or toxicities in sorghum through foliar analysis is still unusual and mainly used for grain sorghum. The influences of the combinations of four nitrogen (N) rates with three sodium chloride (NaCl) rates on the leaf N, phosphorus (P), calcium (Ca), magnesium (Mg), potassium (K), and sodium (Na) concentrations of sweet sorghum [Sorghum bicolor (L.) Moench ssp. saccharatum], cropped for ethanol production, and on biomass and sugar yields were evaluated in three consecutive years of an experiment established on a Eutric Fluvisol equipped with a trickle irrigation system (“triple emitter source”). The relationships among leaf nutrient concentrations, dry matter, and sugar yields were also examined. Nitrogen, much more than salinity, affected leaf nutrient concentration, stem dry weight, and sugar yield. Leaf N concentration was the best indicator for predicting sugar production of sweet sorghum.  相似文献   

7.
Aluminum (Al) has many detrimental effects on plant growth, and shoots and roots are normally affected differently. A study was conducted to determine differences among sorghum [Sorghum bicolor (L.) Moench] genotypes with broad genetic backgrounds for growth traits of plants grown at 0,200,400,600, and 800 μM Al in nutrient solutions (pH 4.0). Genotypes were categorized into “Al‐sensitive”, “intermediate Al‐tolerant”, “Al‐tolerant”, and SC 283 (an Al‐tolerant standard). As Al increased, shoot and root dry matter (DM), net main axis root length (NMARL), and total root length (TRL) became lower than controls (0 Al). Aluminum toxicity and/or nutrient deficiency symptoms become more severe, and shoot to root DM ratios and specific RL (TRL/root DM) values also changed as Al in solution increased. Root DM had greater changes among genotypes than shoot DM, and NMARL at 400 μM Al, and TRL at 200 μM Al had greater differences among genotypes than root DM, ratings for toxicity and/or deficiency symptoms, and other DM and RL traits. The wide differences among genotypes for NMARL and TRL could be used more effectively to evaluate sorghum genotypes for tolerance to Al toxicity than the other growth traits.  相似文献   

8.
ABSTRACT

In order to understand how soil microbial biomass was influenced by incorporated residues of summer cover crops and by water regimes, soil microbial biomass carbon (C) and nitrogen (N) were investigated in tomato field plots in which three leguminous and a non-leguminous cover crop had been grown and incorporated into the soil. The cover crops were sunn hemp (Crotalaria juncea L., cv ‘Tropic Sun’), cowpea (Vigna unguiculata L. Walp, cv ‘Iron clay’), velvetbean (Mucuna deeringiana (Bort) Merr.), and sorghum sudangrass (Sorghum bicolor × S. bicolor var. sudanense (Piper) Stapf) vs. a fallow (bare soil). The tomato crop was irrigated at four different rates, i.e., irrigation initiated only when the water tension had reached ?5, ?10, ?20, or ?30 kPa, respectively. The results showed that sorghum sudangrass, cowpea, sunn hemp, and velvetbean increased microbial biomass C by 68.9%, 89.8%, 116.8%, and 137.7%, and microbial N by 58.3%, 100.0%, 297.3%, and 261.3%, respectively. A legume cover crop, cowpea, had no statistically significant greater effect on soil microbial C and N than the non-legume cover crop, sorghum sudangrass. The tropical legumes, velvetbean and sunn hemp, increased the microbial biomass N markedly. However, the various irrigation rates did not cause significant changes in either microbial N or microbial C. Soil microbial biomass was strongly related to the N concentration and/or the inverse of the C:N ratio of the cover crops and in the soil. Tomato plant biomass and tomato fruit yields correlated well with the level of soil microbial N and inversely with the soil C:N ratio. These results suggest that cover crops increase soil microbiological biomass through the decomposition of organic C. Legumes are more effective than non-legumes, because they contain larger quantities of N and lower C:N ratios than non-legumes.  相似文献   

9.
Field water stress is a common problem in crop production, especially in arid and semi-arid zones and it is widely hypothesized that silicon (Si) could reduce water stress in plants. We set up a greenhouse study to evaluate some silicon sources—potassium silicate (K2SiO3), calcium silicate (CaSiO3) and silica gel for growth and nutrient uptake by four grass species under adequate and deficit irrigation. The four species studied were Rhodes grass (Chloris gayana), Timothy grass (Phleum pratense), Sudan grass (Sorghum sudanense) and Tall fescue (Festuca arundinacea). For all species, the biomass yield response to applied silicon under deficit irrigation was significantly better than under adequate irrigation. The yield response of Rhodes grass across silicon sources was 205% under deficit irrigation compared with only 59% under adequate irrigation; for Sudan grass it was 49% compared with 26% and for Timothy, it was 48% compared with a mere 1%. The higher responses under deficit irrigation suggest that the plants relied more on silicon to endure drought stress. Biomass yield of individual plants also differed according to soil water levels with Timothy grass being the most sensitive to water stress as it exhibited the highest yield response (209%) to adequate irrigation. This was followed by tall fescue (122%) and Rhodes grass (97%). Sudan grass was the least affected by deficit irrigation, possibly on account of improved root mass and its natural drought tolerance. Strong associations were noted between the uptake of silicon and those of nitrogen (N) and phosphorus (P) irrespective of soil water condition, but the uptake of potassium (K) was more strongly correlated with that of Si under deficit than adequate irrigation. Improvements in plant growth following Si application could therefore be linked to enhanced uptake of major essential nutrients.  相似文献   

10.
Abstract

Sweet sorghum [Sorghum bicolor (L.) Moench] cultivars have been bred for high sugar content; with accompanying adequate forage yield, the crop may offer potential for ensiling. “Wray”; sweet sorghum, a good sugar producer, was grown under field conditions to determine nutritional quality and subsequent animal performance of silage from the yield. In one experiment, “Wray”; was compared to “FS‐5”;, medium‐tall forage sorghum, at four reproductive stages of growth, in regard to agronomic characteristics and chemical composition. In another study, the “Wray”; sweet sorghum was harvested in early and late reproductive stages and stored in experimental silos. Ensiling losses were measured; in addition, the silages were offered to sheep to determine in vivo digestibility (IVODMD) and intake. In the first experiment, dry matter yields of both sweet and forage sorghum increased during the reproductive period, from 6.2 to 11.9 and 7.7 to 13.9 Mg/ha, respectively; at maturity, grain yields were 651 and 3,526 kg/ha, respectively. Total available carbohydrates tended to be higher in the forage type (23.4%) than in the sweet sorghum (19.9%). Average in vitro dry matter disappearance (IVDMD) was similar for both sorghums at 60.2%, but sweet sorghum IVDMD tended to be higher than forage sorghum at the hard‐dough stage (61.4 versus 55.1%) . In the second experiment, intake was greater when lambs were offered hard‐dough stage silage (1,240 g/lamb/day) versus bloom‐stage silage (878 g/lamb/day), even though IVODMD was similar (average 60.6%) at both harvest stages. The silages appeared to be properly ensiled, as silage pH was less than 4.0; however, effluent and dry matter losses were greater with bloom‐stage silage. These differences probably were due to the slight dry matter differential between the two <22.3 and 26.6%, respectively). To maximize yield, sweet sorghum should be ensiled at the hard‐dough stage. Resulting silage may be higher in digestible dry matter than that of medium‐tall forage sorghums, which produce grain.  相似文献   

11.
ABSTRACT

The influence of cadmium (Cd) on internal and external defense mechanisms of Sorghum bicolor (L.) Moench. x Sorghum sudanense was studied by electrochemical methods to infer the type of detoxification processes developed by the plant under environmental stress conditions. Hydroponic experiments with sorghum were conducted in nutrient solutions in the absence and presence of 0.1 mg Cd L?1. Plant exposure to Cd stimulated the release of root exudates with metal-binding affinity. However, their presence should not affect significantly the bioavailability of Cd, since the complex was dissociated within a very short period (≤ 50 milliseconds) in response to the consumption of the free metal ion at the root interface. The presence of Cd in the solution also stimulated a very significant increase of thiolic groups inside the plant, even at the very low concentration of 0.1 mg Cd L?1. These results suggest that the main defense mechanism developed by sorghum against metal toxicity is an internal process, i.e., the synthesis of phytochelatins.  相似文献   

12.
Manganese (Mn) toxicity can be a growth limiting constraint for many plants grown on acid soil. Plant species/genotypes tolerant to Mn could help overcome detrimental Mn toxicity effects on plants grown on high Mn soils. Thirty‐seven sorghum [Sorghum bicolor (L.) Moench] genotypes from a broad germplasm base were grown in solution culture (pH 4.5) with 0, 3.0, and 6.0 mM of added Mn above the basic solution concentration (18 μM) to determine genotypic differences in tolerance to excess Mn. Dry matter (DM) was used to evaluate 24‐day‐old plants (10 days in Mn treatments) for Mn toxicity responses. Wide variability among genotypes for differential DM was noted at 3.0 and 6.0 mM Mn. Sorghum generally tolerated high levels of Mn. Genotypes showing relatively high tolerance to excess Mn in solution were NB 9040, Wheatland, IS 7180, IS 7755, and IS 7809. Those genotypes showing relatively low tolerance to high Mn were ICA‐Nataima, Martin, IS 7173c (SC 283), IS 7321, IS 9187, IS 9785, and IS 9828. IS 7173c, an aluminum (Al)‐tolerant standard genotype, was sensitive to high Mn. Wide variability was noted among tissue culture generated lines derived from a common parent. Laboratory screening for tolerance to Mn toxicity was effective with sorghum, but results need to be verified in the field.  相似文献   

13.
Effects of Al toxicity and interaction of Al and Mg on growth of twelve sorghum (Sorghum bicolor (L.) Moench) genotypes have been studied in nutrient solutions (pH 4.2). Aluminium at 30 μM decreased biomass (dry matter yield) of the individual genotypes by factors between 1.27 and 7.36, with identical sensitivity grouping of genotypes as obtained in an earlier pot experiment with an acid soil. Resembling acid-soil stress, Al toxicity was simultaneously expressed in two independent ways, i.e. impairment of root development and induced Mg deficiency. The effect of Al on total dry matter production of the genotypes was correlated more closely with changes in specific root length (m g−1 dry root) than with changes in internal Mg status. Increased Mg concentrations in the solutions (2.5 and 7.5 instead of 0.25 mM) not only decreased Al-induced Mg deficiency but also reduced the concentrations of Al in/on the roots and its damaging effect on root development. Therefore, the sorghum genotypes were less sensitive to Al at the higher Mg levels. At a high Mg concentration in the solution (7.5 mM) dry matter yield of two genotypes was even stimulated by Al.  相似文献   

14.
Soil acidity is often associated with toxic aluminum (Al), and mineral uptake usually decreases in plants grown with excess Al. This study was conducted to evaluate the effects of Al (0, 35, 70, and 105 μM) on Al, phsophorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn,) and copper (Cu) uptake in shoots and roots of sorghum [Sorghum bicolor (L.) Moench, cv. SC283] colonized with the vesicular‐arbuscular mycorrhizal (VAM) fungi isolates Glomus intraradices UT143–2 (UT143) and Glomus etunicatum UT316A‐2 (UT316) and grown in sand (pH 4.8). Mycorrhizal (+VAM) plants had higher shoot and root dry matter (DM) than nonmycorrhizal (‐VAM) plants. The VAM treatment had significant effects on shoot concentrations of P, K, Ca, Fe, Mn, and Zn; shoot contents of P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu; root concentrations of P, S, K, Ca, Mn, Zn, and Cu; and root contents of Al, P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu. The VAM effects on nutrient concentrations and contents and DM generally followed the sequence of UT316 > UT143 > ‐VAM. The VAM isolate UT143 particularly enhanced Zn uptake, and both VAM isolates enhanced uptake of P and Cu in shoots and roots, and various other nutrients in shoots or roots.  相似文献   

15.
Abstract

Determination of the nutrient requirements of sorghum [Sorghum bicolor (L.) Moench] grown on acid soils is, a critical step in the development of plants which are adapted to these problem soils. Sorghum genotype, environment, and soil type interact with the uptake of elements and affect plant growth and production. This study compared the yields of a sorghum grain hybrid grown on a sandy loam soil at four acid pH levels. Nutrient concentrations in sorghum leaves on these soil regimes were also investigated. Grain yields declined 96% as soil pH decreased from 5.5 to 4.4. Leaf element analysis revealed that as pH decreased from 5.5 to 4.4, there was an increase in plant Al, Fe, Mn, K, P and a decrease in Cu, Zn, Mg, Ca. Interactions among several of these elements were readily apparent. Additional data involving different sorghum genotypes and different soil types are needed to establish a consistent pattern of element uptake on acid soils in relation to yield and plant production.  相似文献   

16.
Plant growth, leaf chlorosis, root reductive capacity, rhizosphere pH, and phytosiderophore release capacity were used as indices to evaluate the responses of maize (Zea mays L. cv ‘clipper'), millet (Pennisetum glaucum L. cv. ‘Dwarf Gero'), sorghum (Sorghum bicolor L. cv. YG 5760), barnyard grass (Echinochloa crus galli L. cv: unknown), wheat (Triticum aestivum L. cv. ‘tonic'), and white lupin (Lupinus albus L. cv ‘lucky') to iron‐deficiency stress. Generally, root and shoot dry matter increased with iron treatment and leaves became less chlorotic. Neither the order nor the magnitude of the root reductive capacities of the monocots studied was affected by iron deprivation, but these reductive capacities and the changes in rhizosphere pH differed markedly. Significant iron stress‐induced phytosiderophore release was observed only in wheat and sorghum in which accompanying increases in rhizosphere pH were also evident. Such phytosiderophore release matched the severity of leaf chlorosis and iron uptake and depended on the form in which the element was supplied. These results, from experiments conducted in non‐axenic hydroponic cultures, indicate that in iron‐ deficiency stress mechanisms ‐ similar to those found in dicots ‐could account for iron uptake in some graminaceous monocots, and that strategy II‐type response proposed for all in this category of plants would be an over simplification.  相似文献   

17.
Relatively low amounts of the phosphorus (P) added to soils is recovered by plants. Many plants show differences in their ability to take up and use P, but the mechanisms for these differences are not fully understood. The purpose of this study was to determine differences among sorghum [Sorghum bicolor (L.) Moench] genotypes for P uptake rates and distribution in plant parts.

Differences in P uptake rates were determined for six sorghum genotypes at 24, 38, and 52 days of age at three P levels. Larger differences were noted among genotypes in 24‐day‐old plants than for older plants. Uptake rates were 6‐ to 14‐times higher (dependent on genotype) in 24‐day‐old plants than in 52‐day‐old plants. NB9040 which had the highest dry matter yield at each age had the lowest rate of P uptake, and CK60‐Korgi which had the lowest dry matter yield at each age had the highest rate of P uptake.

Only small differences were noted among genotypes for distribution of P within plant parts for younger plants. Older plants showed differences in P distribution, and NB9040 translocated more P from lower to upper leaves, had higher efficiency ratios (dry matter produced/unit P), and had a larger root system than CK60‐Korgi.

The sorghum genotypes that produced more dry matter under low P conditions had lower uptake rates of P and had the ability to distribute P from older to younger developing tissues. When grown in soils, plants that have lower P uptake rates, greater ability to distribute P, and larger root systems may not deplete P from soil solutions as rapidly, could explore more soil, and possibly use P more efficiently than plants that do not possess these traits.  相似文献   


18.
Plant nitrogen (N) uptake, growth, and N use efficiency may be affected by N form (NO3 or NH4 +) available to the root. The objectives of this study were to determine the effect of mixed N form on dry matter production and partitioning, N uptake, and biomass N use efficiency defined as total dry matter produced per unit plant N (NUE1) in U.S. and tropical grain sorghums [Sorghum bicolor (L.) Moench]. The U.S. derived genotype CK 60 and three tropical genotypes, Malisor‐7, M 35–1, and S 34, were evaluated in a greenhouse trial using three nutrient solutions differing in their NO3 /NH4 + ratio (100/0, 75/25, 50/50). Shoot and root biomass, N accumulation, and NUE, were determined at 10‐leaf and boot stages. Averaged over all genotypes, shoot and root biomass decreased when NH4 + concentration was increased in the solution. Shoot biomass was reduced by 11% for 75/25 and 26% for 50/50 ratios, as compared to 100/0 NO3 /NH4 +. Similarly, root biomass reduction was about 34% and 45% for the same ratios, respectively. Increasing NH4 + concentration also altered biomass partitioning between shoot and root as indicated by decreasing root/shoot ratio. Total plant N content and NUE1 were also reduced by mixed N source. Marked genotypic variability was found for tolerance to higher rates of NH4 +. The tropical line M 35–1 was well adapted to either NO3 as a sole source, or to an N source containing high amounts of NH4 +. Such a characteristic may exist in some exotic lines and may be used to improve genotypes which do not do well in excessively wet soil conditions where N uptake can be reduced.  相似文献   

19.
Abstract

Planting and harvesting high‐yielding forage grasses may remove phosphorus (P), copper (Cu), and zinc (Zn) from surface soils with a long history of broiler litter application. A study was conducted in Alabama's Sand Mountain region from 1998 to 2000 to determine tillage and forage systems best suited for removing nutrients from such overloaded soils. Tillage treatments included no‐till, moldboard plowing, chisel plowing, and each combined with paraplowing. Forage treatments included bermudagrass (Cynodon dactylon (L.) Pers.) cv. Russell, tall fescue (Festuca arundinacea Schreb.) cv. Kentucky‐31, and an annual rotation of ryegrass (Lolium multiflorum Lam.) and sorghum sudangrass (Sorghum bicolor L. Moench×Sorghum vulgare sudanense). The annual rotation produced highest yields and P uptake. Moldboard plowing the annual rotation further increased yields. It appears the annual rotation best removes P, Cu, and Zn via plant uptake. Tillage reduced P concentrations in the soil surface in the following order: moldboard>chisel>no‐till.  相似文献   

20.
The availability of soil nitrogen (N) is usually quantified by the amount of mineralized N as determined after several weeks of soil incubation. Various alternative methods using chemical solvents have been developed to extract the available organic N, which is easily mineralized. We compared one such solution, neutral phosphate buffer (NPB), with conventional incubation and 0.01 M–CaCl2 extraction, as measures of soil N available to two major cereal crops of the semiarid tropics, based on the total N uptake by plants in a pot experiment. Mineralized N had the highest correlation with N uptake by pearl millet (Pennisetum glaucum L., r = 0.979***) and sorghum (Sorghum bicolor [L.] Moench, r = 0.978***). NPB‐extractable N was also highly correlated with N uptake (pearl millet, r = 0.876***; sorghum, r = 0.872***). Only one major peak was detected when NPB extracts were analyzed using size‐exclusion high‐performance liquid chromatography, regardless of soil properties. In addition, the organic N extracted with NPB was characterized by determining the content of peptidoglycan, the main component of bacterial cell walls. Although the characteristics of NPB‐extractable organic N are still unclear, it offers a promising quick assay of available N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号