首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
外界铁浓度调控缺磷植物铁吸收相关基因的表达量   总被引:1,自引:0,他引:1  
黄洁雪  闫明科  薛彩雯  沈仁芳  兰平 《土壤》2018,50(5):866-873
磷和铁都是植物必需营养元素,缺磷和缺铁都会严重影响植物生长发育导致作物产量和品质下降。前期研究表明缺磷会导致植物铁吸收基因的表达量下降,但这种下降与外界铁浓度是否相关还不清楚。本文检测了缺磷和正常磷条件下不同铁浓度对植物铁吸收基因的表达变化。结果显示,缺磷导致植物主根生长受到显著抑制,但该抑制现象和铁浓度显著相关,在铁浓度下降到一定范围后该抑制作用消失。qPCR结果显示,缺磷显著诱导缺磷响应基因IPS、SPX3、PHT1;4表达量增加,且这种表达量增加仅受缺磷诱导,和铁浓度无关。缺磷也显著诱导铁吸收相关基因FRO2、IRT1和CYP82C4的表达量下降,但这种下降具有明显铁浓度依赖性。随着铁浓度升高,缺磷诱导的铁吸收基因的表达量下降幅度随之增大,这可能是由于缺磷导致培养基中铁的有效性增加所致。本研究结果为土壤磷、铁肥料管理提供了新的视角。  相似文献   

2.
Time course of changes in extractable root phosphoenolpyruvate carboxylase (PEP C) activity was investigated in wheat, barley, and tomato plants fed with different nitrogen sources. Ammonium-fed plants exhibited a 2–2.5-fold higher PEPC activity than nitrate-fed plants at 7 d after the onset of nitrogen supply. Western blot analysis revealed that the amounts of PEPC subunit proteins increased gradually as reflected in the extractable PEPC activity. These results suggest that the increase in PEPC activity may be due to de novo protein synthesis. PEPC was SO-fold purified from tomato roots after several chromatographic steps. Metabolite effects on the partially purified enzyme were also investigated under optimal or suboptimal conditions in terms of pH and concentrations of phosphoenolpyruvate. Organic acids and acidic amino acids inhibited the enzyme activity, while hexose phosphates stimulated it. Glutamine and asparagine produced in the course of ammonium assimilation hardly affected the activity.  相似文献   

3.
ABSTRACT

This study investigated the effect of liquid fertilizer treatments on growth, flowering, leaf mineral content, and rhizome production during forcing of Curcuma alismatifolia ‘Chiang Mai Pink’ and C. thorelii ‘Chiang Mai Snow’. Plants were irrigated with 200 mL of 1.3 g L?1 of 15 nitrogen (N) -7 phosphorus (P) -14 potassium (K) water soluble fertilizer at 0, 1.3, 2.7, 4.0, 5.3, or 6.6 g L?1 weekly. Days to flower, flower stem length, and leaf length were recorded, the mineral contents in leaves were analyzed, and the number of rhizomes with tuberous roots were recorded at harvest. Flowering of the first inflorescence in both C. alismatifolia ‘Chiang Mai Pink’ and C. thorelii ‘Chiang Mai Snow’ was significantly delayed when plants received 6.6 g L?1 fertilizer as compared to the control plants. The number of rhizomes with more than 4 tuberous roots was highest when plants received 2.7 g L?1 fertilizer. No medium-sized rhizomes with more than seven tuberous roots were produced when ‘Chiang Mai Pink’ plants received 0, 4.0, 5.3, and 6.6 g L?1 fertilizer. Based on the production of rhizomes with four to six tuberous roots, optimum concentration of 15N -7P -14K water soluble fertilizer is 2.7 g L?1 for C. alismatifolia ‘Chiang Mai Pink’ and 1.3 to 4.0 g L?1 for C. thorelii ‘Chiang Mai Snow’. Although high boron content occurred only in the outer part of the second leaf when fertilizer concentrations were increased, leaf-margin burn (LMB) symptoms were not observed in both species and this could not be related to the production of rhizomes.  相似文献   

4.
To evaluate the role of NH4 + assimilates in dark carbon fixation in roots in providing carbon skeletons expended for NH4 + assimilation, the rate of dark carbon fixation in roots was measured using NaH14CO3. The 14C-metabolites were analyzed in wheat (Triticum aestivum L.) plants grown in NH4 + media for various periods of time with or without methionine sulfoximine (MSX) treatment. The dark carbon fixation rate in the roots of wheat plants that had been grown with NH4 + for 1 d was approximately 6-fold higher than the rate in control roots. The stimulation of dark carbon fixation in NH4 +-grown plants, however, was not observed in MSX-treated roots. In the roots of NH4 +-grown plants, the concentration and 14C-Iabeling of acidic metabolites such as citrate and malate considerably decreased whereas those of basic metabolites, especially asparagine, increased noticeably. With MSX treatment, the incorporation of 14C into basic metabolites was negligible. In response to NH4 +, phosphoenolpyruvate carboxylase (PEPC) activity increased, and PEPC proteins accumulated in wheat roots. Neither activity nor amounts of PEPC in roots increased in the presence of MSX. These findings suggest that primary assimilation of NH4 + in roots is essential for the stimulation of dark carbon fixation, which coincides with the increased activity of root PEPC, to sufficiently replenish carbon skeletons necessary for NH4 + assimilation.  相似文献   

5.
‘Lvbao-701’ is a cultivar of Chinese flowering cabbage(Brassica parachinensis) that exhibits low cadmium(Cd) accumulation and high Cd tolerance.In this study, this cultivar was compared with a high-Cd accumulating cultivar, ‘Chixin-4’, to characterize the mechanisms influencing Cd accumulation in B. parachinensis. Root cell walls were isolated by dissolving the cytoplasm with an organic solvent, and root Cd and phytochelatin(PC) contents were analyzed. In addition, a PC synthase gene fragment was cloned and expressed under Cd stress conditions. The proportions of Cd bound to root cell walls were higher in the ‘Lvbao-701’ plants(68.32%–76.80%) than in the ‘Chixin-4’ plants(35.36%–54.18%) after exposure to Cd stress. The proportions of Cd bound to root cell walls measured using cell walls isolated with a non-destructive method were higher than those obtained using a conventional method that required grinding and centrifugation. Exposure to Cd stress induced the PC production and resulted in higher PC contents in the ‘Lvbao-701’ plants than in the ‘Chixin-4’ plants. Cloning and expression analysis of a B. parachinensis PC synthase cDNA fragment indicated that PC synthase gene expression was induced by Cd and occurred mainly in the roots of both ‘Lvbao-701’ and ‘Chixin-4’ plants. However, the PC synthase gene expression level was higher in the‘Lvbao-701’ roots than in the ‘Chixin-4’ roots. Therefore, a higher abundance of Cd in the root cell walls of ‘Lvbao-701’ and up-regulated PC production in the roots are probably the main reasons why ‘Lvbao-701’ exhibits lower Cd translocation to the shoots and higher tolerance to Cd than ‘Chixin-4’.  相似文献   

6.
In this work, we have compared the physiological responses of alfalfa plants inoculated with either Sinorhizobium meliloti strain S412 (Cu-tolerant) or S112 (Cu-sensitive) in the presence or absence of 0.5 mM of CuSO4. The addition of copper (Cu) introduced a decrease of nodule number and their dry weight (DW) in both symbioses. The interaction established with the Cu-sensitive strain is more affected by Cu than that with the tolerant one. In fact, plants inoculated with the sensitive strain revealed a decrease of shoot and root DW, larger than that found in plants inoculated with the tolerant strain. However, under copper supply, Medicago sativa with the Cu-tolerant strain did not show any significant changes in both shoot and root biomass production. Under Cu excess, high levels of Cu were detected in different parts of the plant in the two symbioses and a high translocation of Cu to aerial parts was shown with the strain S412. Plants with S412 were able to accumulate large quantities of calcium (Ca) in their roots and nodules. While Ca content decreased drastically in shoot at 0.5 mM of Cu treatment. Moreover, nodulation with S412 allowed plants to maintain high levels of magnesium (Mg) in all tissues and high iron (Fe) levels in nodules. Results suggest that this symbiotic pair could be used in phytostabilization of Cu-contaminated soils.  相似文献   

7.
Sap mixtures of the xylem, phloem, and vacuoles from low and high Cd accumulator varieties of Brassica parachinensis L. H. Bailey were analyzed under Cd stress to understand the biochemical mechanisms of Cd accumulation in plants. Low Cd accumulator (‘Teqing-60') and high Cd accumulator (‘Chixin-2') plants were grown in Cd-treated soil in pots in a greenhouse. Percentage of cell wall-bound Cd was estimated, pH level and the concentrations of amino acids, organic acids, anions, and cations in both stem and root saps were determined for the calculation of Cd speciations using the computer program GEOCHEM. The results showed that ‘Teqing-60' had a significantly higher (P ≤ 0.05) percentage of Cd bound to cell walls in roots and a significantly higher (P ≤ 0.05) pH in the root sap. ‘Teqing-60' also contained a higher concentration of total amino acids in both roots and stems compared with the high Cd accumulator variety ‘Chixin- 2'. However, between the two accumulators, for stems and for roots, there were no significant differences in non-amino organic acids. GEOCHEM calculations showed that Cd in the root sap of ‘Teqing-60' mainly combined with amino acids, especially alanine. Compared with ‘Chixin-2', in the root sap of ‘Teqing-60', much lower levels of Cd as free ions or bound to simple ligands were found, indicating that less ‘Teqing-60' is transferred to stems and leaves. Cadmium activity in the shoot sap of ‘Teqing-60' was much lower than that in ‘Chixin-2'; therefore, ‘Teqing-60' exhibited higher Cd resistance. However, direct determination of the Cd complexes from xylem and phloem sap is needed to verify these results.  相似文献   

8.
A study was conducted from November 2000 to February 2001 to establish causes of poor protea plant growth in the Juliasdale and Norton-Darwendale commercial farming areas of Zimbabwe. Soil and leaf samples from farmer-perceived “deficient” and “normal” areas were analyzed. Soils perceived by farmers to be deficient had lower levels of phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) compared with the normal soils. In Juliasdale, all cultivars from perceived-deficient samples had lower levels of zinc (Zn) in leaves compared with normal leaves. Leucospermum cultivar ‘Tango’ and Protea cultivar ‘Moonshine’ also had low levels of P and Zn in the deficient plants compared with the normal plants. In Norton-Darwendale, the Protea cultivar ‘Moonshine’ had lower levels of nitrogen (N), P, K, and boron (B) in perceived-deficient samples compared with normal samples. Soil-analysis data were generally comparable to leaf-analysis data, indicating the potential use of leaf analysis to determine nutritional requirements of proteas.  相似文献   

9.
Own rooted olive plants (Olea europaea L.) of the cvs. ‘Megaritiki’ (M), ‘Chondrolia Chalkidikis’ (C), ‘Amfissis’ (A), ‘Kalamon’, ‘Koroneiki’, ‘Agiou Orous’, and wild olives, as well as the scion x rootstock combinations CxC, MxC, MxM, AxM, CxM, AxA, and CxA were irrigated with a nutrient solution containing 10 mg boron (B)/L for two months. In all the own rooted plants and in the rootstock—scion combinations of the same cultivar stem growth rate was decreased due to high B. The lowest B concentration in leaves and roots was found in ‘Kalamon’ and wild olives, respectively. ‘Megaritiki’ had higher leaf B concentration when grafted on ‘Megaritiki’ or ‘Chondrolia Chalkidikis’ compared to own rooted plants. The same cultivar as own rooted plant had higher root B concentration than as rootstock of the other tested cultivars.  相似文献   

10.
The effect of exposure to different vanadium (V) concentrations was studied in Nicotiana tabacum L. (cv. ‘Burley’ and cv. ‘Virginia’). In both cultivars, the vanadium did not affect the percentage of germination but root and shoot growth was inhibited, especially with the 80 μM dose. An altered root morphogenesis in vanadium growth plants was observed at the end of the experiment. The highest V accumulation was found in roots and the results showed a direct correlation between V content and V supply (P?≤?0.01). The V concentrations did not modify nicotine content in the cv. ‘Burley’, but in the cv. ‘Virginia’ the highest nicotine content was found in vanadium exposed plants (P?≤?0.05). The results suggest that these V concentrations may have a possible elicitor effect on alkaloid synthesis in N. tabacum L. cv. ‘Virginia’, and that this cultivar has a higher V sensitivity than the cv. ‘Burley’.  相似文献   

11.
Broccoli (Brassica oleracea L. var. ‘Italica’) is a recognized health-promoting vegetable and shows a moderate sensitivity to salinity. As very little is known about the effect of salt stress on broccoli plants, the objective was to evaluate nitrogen (N), phosphorous (P), and sulfur (S) nutrition in plants grown under saline conditions. For this objective, the contents of nitrate, phosphate, and sulfate, and total nitrogen, phosphorus, and sulfur, as well as related metabolic enzymes, were determined for plants grown with 0, 20, 40, 60, 80, or 100 mM sodium chloride (NaCl) for two weeks. Nitrate, phosphate, and sulfate concentration in leaves and roots showed a maximum at 40–60 mM NaCl. Up to these salt levels, broccoli plants showed a normal development, but over these salt levels, broccoli plants showed a decrease of nitrate reductase and an increase of the acid phosphatase. From 60 to 100 mM NaCl, the nutritional disorders indicated that the threshold of resistance was exceeded.  相似文献   

12.
‘Tifblue’ (V. ashei Reade) and US 280 (V. elliotti Chapman) blueberry plants were exposed to 2×2×2 factorial treatments of high and low phosphate and micronutrients (Cu, Zn, Mn, and B) and excess or stoichiometric concentrations of a chelator (EDDHA) added to Fe(NO3)3 in pH 6.8 solution cultures. Phosphorous was applied at 20 (low) or 400 (high) μM levels, micronutrients at low or high levels and either a 1:1 or 10:1 ratio of chelator to Fe concentrations.

Excess chelator in the nutrient solution always increased the severity of chlorosis except for US 280 plants grown under low P and stoichiometric chelator where neither micronutrient level resulted in chlorosis. Increased P concentration usually resulted in more severe chlorosis except for ‘Tifblue’ plants grown under low micronutrients and stoichiometric chelator where chlorosis did not develop with either P level. ‘Tifblue’ and US 280 differed in there response to excess solution Cu levels.

Unlike highbush blueberries (V. corymbosum L.), these two species of blueberries responsed to excess chelator in a manner similar to that reported for monocots.  相似文献   

13.
Most beetroot (Beta vulgaris) cultivars in South Africa are exotic and were specifically bred for root-knot (Meloidogyne species) nematode populations in their countries of origin. Due to the widespread distribution of different Meloidogyne species and races, exotic cultivars should be matched with nematode populations in importing countries. The objective of this study was to determine the interrelations between exotic beetroot cultivars ‘Detroit Red Dark’ and ‘Crimson Globe’ with Meloidogyne species in the predominant beetroot-producing regions in South Africa. Different inoculum series of M. incognita and M. javanica were used on the two beetroot cultivars. At 56 days after initiating the treatments, roots of both cultivars had small undeveloped root galls, with the reproductive factor values of M. incognita on ‘Detroit Dark Red’ being above and below unity at low (≤125 inoculation) and high (≥250 inoculation) nematode levels, respectively. Growth of ‘Detroit Dark Red’ was significantly stimulated and inhibited at low and high nematode infection levels, respectively. In contrast, RF values for M. javanica on ‘Crimson Globe’ were below unity, without any significant effects on plant growth. In conclusion, ‘Detroit Dark Red’ was tolerant to M. incognita, whereas ‘Crimson Globe’ was resistant to M. javanica.  相似文献   

14.
Nodulated plants of white clover (Trifolium repens) were established on agar slopes and then grown in batch nutrient solution. The solution contained various levels of phosphorus (P). The nodules were strong sinks for P when the supply was low, the concentrations of P in the nodules being higher than in the roots and shoots. At higher P levels, the roots and shoots came to have P concentrations equal to or higher than the nodules. The percentage of (N) in the plant parts and the activity (N fixed per unit nodule weight) of the nodules was unaffected by P supply. As the P concentration in the nodules increased with supply, their efficiency in terms of N fixed per unit of nodule P declined. It appears as if not all nodule P may be involved in N fixation, in a manner analogous to the decline in efficiency of use of P for growth as the supply increases.  相似文献   

15.
Four lettuce (Lactuca saliva L.) varieties ('Benita’, ‘Wendy’, ‘Mirena’, and ‘Jacky') were grown for 43 days in a pH‐controlled complete nutrient solution without cadmium (Cd) or with either 0.01 or 0.03 mg Cd/1 and with NH4 or NO3 as the form of nitrogen nutrition. Cadmium did not affect dry matter yield. ‘Wendy’ had a significantly higher total dry matter production when grown on NO3 compared to NH4, whereas growth of ‘Mirena’ was best on NH4 (P<0.05). Dry weights of ‘Benita’ and ‘Jacky’ were not affected by the N source. Cadmium concentrations in shoots (and roots) of plants grown on NH4 were significantly higher than in plants grown on NO3. The Zn concentrations in the shoots were also enhanced. The distribution of Cd in the lettuce varieties was independent of the form of N nutrition. It is concluded that the N source directly affects the amount of Cd taken up, without influencing the Cd distribution.  相似文献   

16.
Nitrogen (N) supply increased yield, leaf % N at 10 days after silking (DAS) and at harvesting, the contents of ribulose‐1,5‐bisphosphate carboxylase (RUBISCO) and soluble protein, and the activities of phosphoenolpyruvate carboxylase (PEPC), and ferredoxin‐glutamate synthase (Fd‐GOGAT), but not of glutamine synthetase (GS) for six tropical maize (Zea mays L) cultivars. Compared to plants fertilized with 10 kg N/ha, plants inoculated with a mixture of Azospirillum sp. (strains Sp 82, Sp 242, and Sp Eng‐501) had increased grain % protein, and leaf % N at 10 DAS and at harvest, but not grain yield. Compared to plants fertilized with either 60 or 180 kg N/ha, Azospirillum‐inoculated plants yielded significantly less, and except for GS activity, which was not influenced by N supply, had lower values for leaf % N at 10 DAS and at harvest, for contents of soluble protein and RUBISCO, and for the activities of PEPC and Fd‐GOGAT. Yield was positively correlated to leaf % N both at 10 DAS and at harvest, to the contents of soluble protein and RUBISCO, and to the activities of PEPC and Fd‐GOGAT, but not of GS, when RUBISCO contents and enzyme activities were calculated per g fresh weight/min. However, when enzyme contents and enzyme activities were expressed per mg soluble protein/min, yield was correlated positively to RUBISCO and PEPC, but negatively to GS. These results give support to the hypothesis that RUBISCO, Fd‐GOGAT, and PEPC may be used as biochemical markers for the development of genotypes with enhanced photosynthetic capacity and yield potential.  相似文献   

17.
外源铁对不同品种番茄光合特性、品质及镉积累的影响   总被引:1,自引:0,他引:1  
【目的】在人工模拟镉污染土壤条件下,讨论了叶面喷施Fe对番茄Cd积累及化学形态的影响,旨在为镉污染土壤上番茄的安全生产提供理论依据。【方法】采用土培试验研究了在重金属Cd(10 mg/kg)污染条件下,叶面喷施不同浓度Fe(0、200和400μmol/L,Fe SO4·7H2O)对2个番茄品种(‘4641’和‘渝粉109’)生长、光合特性、品质及果实Cd形态和Cd积累量的影响。【结果】叶面喷施Fe提高了番茄的根、茎、叶、果实干重及植株总干重,增幅分别为20.4%~48.6%、13.3%~56.0%、16.0%~63.1%、9.8%~16.5%和21.6%~40.3%,随着喷施Fe浓度的增加,番茄各部位干质量及总干质量呈先增加后降低的趋势,比较两个番茄品种,‘4641’耐Cd性更强,而‘渝粉109’对Fe的反应更为敏感;随着喷施Fe浓度的增加,2个番茄品种的叶片净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)呈先增加后降低趋势,在Fe 200μmol/L时最大,品种‘4641’的Pn、Gs和Tr较对照分别增加了8%、11%和2.9%,而‘渝粉109’较对照分别增加了28.7%、15.5%和18.8%。而喷Fe处理却降低了番茄叶片胞间CO2浓度(Ci),比较2个供试番茄品种,‘4641’光合作用和蒸腾作用强度均高于‘渝粉109’;喷Fe提高了2种番茄果实的硝酸盐含量以及渝粉‘109’还原糖含量,降低了‘渝粉109’果实氨基酸含量,喷施高浓度Fe(400μmol/L)能提高2种番茄果实Vc含量,与对照相比,‘4641’和‘渝粉109’果实硝酸盐增加的幅度分别为18.1%~22.2%、2.3%~22.0%,Vc较对照分别增加了8.2%和13.2%;番茄果实中Cd的主要存在形态为残渣态,其次为盐酸提取态,去离子水提取态和乙醇提取态所占比例较小,残渣态Cd(FR)和盐酸提取态Cd(FHCl)为活性偏低形态Cd,占Cd提取总量的70.8%,去离子水提取态(FW)和乙醇提取态(FE)为活性较高形态Cd,仅占Cd提取总量的11.8%,有效地抑制了Cd的毒害作用。叶面喷施Fe降低了番茄果实各形态镉含量;番茄中Cd主要积累在叶和茎中,而果实和根的积累量较少;喷Fe降低了番茄叶、根、茎、果实的Cd含量,降低幅度分别为7.1%~21.9%、35.6%~50.4%、13.0%~37.0%和2.8%~8.2%,但喷施高浓度Fe(400μmol/L)相比低Fe(200μmol/L)时的番茄各部位Cd含量有所增加,无论是非否喷施Fe,叶、茎、果实中的Cd积累量以及总Cd积累量总是以‘4641’‘渝粉109’,表明在Cd污染土壤上种植‘4641’较‘渝粉109’风险更大。【结论】叶面喷施适量Fe能够促进番茄的光合作用和蒸腾作用,提高了番茄各部位的干重,降低了Cd对番茄的毒害效应,同时减少了番茄各部位Cd含量。  相似文献   

18.
ABSTRACT

A greenhouse experiment with four bread wheat [Triticum aestivum L.] genotypes, ‘Rushan,’ ‘Kavir,’ ‘Cross,’ and ‘Falat,’ and a durum wheat [Triticum durum L.] genotype, ‘Dur-3,’ at two zinc (Zn) rates (0 and 15 mg Zn kg?1 dry soil) and four salinity levels (0, 60, 120, and 180 mM NaCl) was conducted. After 45 d of growth, the shoots were harvested, and Zn, iron (Fe), potassium (K), sodium (Na), and cadmium (Cd) concentrations were determined. In the absence of added Zn, visual Zn deficiency symptoms were observed to be more severe in ‘Dur-3’ and ‘Kavir’ than in other genotypes. The effect of Zn deficiency on shoot dry matter was similar to its effect on visual deficiency symptoms, such that shoot growth was most depressed in ‘Kavir’ and ‘Dur-3.’ At the 180 mM treatment, Zn fertilization had no effect on shoot dry matter of genotypes. Genotypes with high Zn efficiency had greater shoot Zn content than genotypes with low Zn efficiency. In the absence of added Zn, the Dur-3, and ‘Cross’ genotypes had the highest and lowest Cd concentrations, respectively. Application of Zn had a positive effect on salt tolerance of plants.  相似文献   

19.
Abstract

Two greenhouse studies were conducted to evaluate the effect of B, Mn and Zn on nodulation and N2‐fixation of southernpea (Vigna unguiculata (L.) Halp.) cultivars ‘Freezegreen’, ‘Mississippi Silver’ and ‘Pinkeye Purple Hull’. The cultivars were grown in plastic pots with a Norfolk sandy loam (fine, loamy siliceous thermic, Typic Paleudult) soil treated with B, Mn and Zn at rates of 0, 5, 10 and 20 kg/ha each at pH levels 5.5, 6.0 and 6.5. At pH 6.5 all micronutrient treatments significantly increased nodulation and N2‐fixation over the control (no micronutrient applied). The effects of B, Mn and Zn on nodulation and N2‐fixation depended on the cultivar and soil pH. For plants given the 5 kg/ha B and Mn treatments, ‘Mississippi Silver’ produced the highest number of nodules and ‘Pinkeye Purple Hull’ the least. At 20 kg/ha Zn, nodulation of ‘Freezegreen’ was highest and ‘Pinkeye Purple Hull’ the lowest. As a whole, maximum nodulation was at 5 kg/ha B and Mn and 20 kg/ha for Zn. Nitrogen fixation rates responded similarly except that the optimum rate for Zn was 10 kg/ha. Seed yield of plants peaked at 5 kg/ha for B and 10 kg/ha for Zn, indicating a possible relation of N2‐fixation to seed yield.  相似文献   

20.
Soybean (Glycine max (L.) Merrill) plants grown under normal nutrient conditions remobilize a high percentage of the total P absorbed from leaves to developing seeds. This study was conducted to determine the effect of P nutrition on dry matter production and P accumulation, distribution and remobilization during reproduction in soybean. Williams 82 soybeans were established in hydroponic culture in the greenhouse at four levels of P (0.45 mM, 0.20 mM, 0.10 mM or 0.05 mM) and harvested four times during reproductive growth. Dry matter production and P accumulation were reduced in the 0.05 mM P treatment to levels that were 10% of the 0.45 mM P treatment. The proportion of total plant P retained by nodules of low P plants was greater than that retained by nodules of high P plants (8.9% vs 4.2%). The 0.05 mM P plants partitioned a greater percentage of their P to seeds (74% vs 63%) than did the 0.45 mM P plants. Remobilization of P began in the 0.05 mM P plants earlier than in plants grown with 0.45 mM P. Restriction of P supply resulted in a greater percentage of plant P being retained by roots and nodules, and also in an increased percentage of plant P remobilized to the seed. Increased P remobilization indicates the importance of P in the life cycle of the plant. Increased P retention by nodules suggests that root nodule bacteroids exert demands on P irrespective of plant P status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号