首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Landuse can alter soil organic carbon (SOC) fractions by affecting carbon inflows and outflows. This study evaluated changes in SOC fractions in response to different landuses under variable rainfalls. We compared cropland, grassland and forest soils in high rainfall (Islamabad ~1142 mm) and low rainfall (Chakwal ~667 mm) areas of Pothwar dryland, Pakistan. Forest soils in both rainfall areas had highest SOC (11.32 g kg?1), particulate organic carbon (POC, 1.70 g kg?1), mineral-associated organic carbon (MOC, 7.17 g kg?1) and aggregate-associated organic carbon (AOC, 7.86 g kg?1). However, in rangeland and cropland soils, these varied with rainfall. Under high rainfall, SOC and MOC were 12% and 17% higher in rangeland than in cropland while POC and AOC were equal. Under low rainfall, SOC and MOC were higher in rangeland than in cropland by 7.21 and 1.79 g kg?1 at 0–15 cm and equal at 15–30 cm depth. POC and AOC were higher in rangeland than in cropland, in both depths. Averagely, SOC, POC, MOC and AOC were 26%, 68%, 76% and 30% higher in high rainfall than in low rainfall soils. Sensitivity of SOC fractions to landuses observed under different rainfalls could provide useful information for soil management in subtropical drylands.  相似文献   

2.
为揭示不同沙地生境下灌丛化草地土壤有机碳及其组分的分布特征,以宁夏盐池县沙化草原不同沙地生境(丘间低地、固定沙地、半固定沙地、流动沙地)下不同发育期的柠条灌丛斑块及其对应的草地斑块为研究对象,对土壤颗粒组成、土壤有机碳(soil organic carbon,SOC)、颗粒有机碳(particulate organic carbon,POC)及易氧化有机碳含量(labile organic carbon,LOC)进行分析。结果表明:1)各沙地生境发育中期灌丛斑块的SOC、POC、LOC及POC/SOC极显著高于草地斑块(P0.01),而LOC/SOC在灌丛和草地斑块间差异性不显著;2)从丘间低地、固定沙地、半固定沙地到流动沙地,灌丛斑块及其对应的草地斑块SOC、POC、LOC及LOC/SOC均在固定沙地出现峰值,然后呈下降趋势,表明固定沙地及不同沙地生境发育中期的灌丛斑块和草地斑块是SOC、LOC及POC变化的临界点;3)相关分析发现,发育中期2种斑块SOC与POC及LOC间及SOC与LOC/SOC间均呈极显著相关(P0.01),但土壤黏粉粒与各组分有机碳及其分配比率间没有显著相关,因此LOC和POC可作为表征草地退化最敏感的指标。研究可为沙化草原土壤恢复研究提供理论依据。  相似文献   

3.
深松和秸秆还田对旋耕农田土壤有机碳活性组分的影响   总被引:4,自引:4,他引:4  
土壤有机碳(soil organic carbon,SOC)及其活性组分能够敏感响应耕作方式变化及有机物输入。为对比长期旋耕农田进行深松后土壤有机碳各活性组分及比例变化,该研究基于连续7a的旋耕转变为深松和秸秆管理长期定位试验,对比了旋耕无秸秆还田处理(rotary tillage with straw removal,RT)、旋耕秸秆还田处理(rotary tillage with straw return,RTS)、旋耕转变为深松无秸秆还田处理(rotary tillage conversion to subsoiling with straw removal,RT-DT)、旋耕转变为深松秸秆还田处理(rotary tillage conversion to subsoiling with straw return,RTS-DTS)下土壤有机碳(soil organic carbon,SOC)、颗粒有机碳(particulate organic carbon,POC)、易氧化有机碳(readily oxidizable organic carbon,ROC)、微生物生物量碳(microbial biomass carbon,MBC)、溶解性有机碳(dissolved organic carbon,DOC)、活性有机碳(labile organic carbon,LOC)在土壤有机碳中比例的变化及各组分间的相互关系。研究结果表明,耕作方式从旋耕转变为深松和秸秆还田对SOC及其各活性组分均产生显著影响,耕作方式转变、秸秆还田及两者的交互效应是影响SOC及其活性组分的主要因素。秸秆还田显著提高了RTS处理和RTS-DTS处理的SOC含量,分别比RT和RT-DT处理高6.1%~15.6%和19.1%~32.3%。并且转变耕作方式后RTS-DTS处理比于RTS处理SOC含量提高16.9%~20.0%。同时,RTS-DTS处理的POC含量比RTS处理高13.6%~53.8%;但RT-DT和RTS-DTS处理的土壤ROC含量较RT和RTS处理都呈下降趋势,RTS-DTS处理的ROC含量比RTS处理下降4.6%~10%;MBC含量降低23.8%~30.6%。虽然秸秆还田显著提高了各处理的DOC含量,但RTS转变为RTS-DTS处理后,其3个土层的DOC含量下降了8%~41%。相比于RT和RTS处理,RT-DT和RTS-DTS处理0~30 cm各土层中LOC在SOC中的比例显著下降。相关性分析结果表明,除POC与ROC之间无显著性相关关系外,SOC及各组分间均呈显著(P<0.05)或极显著(P<0.01)的相关关系。耕作方式转变为深松和秸秆还田提高了SOC含量的同时,显著降低了SOC中的活性有机碳组分,这更有利于SOC的有效积累,促进土壤碳库的稳定固存。  相似文献   

4.
Soil degradation and associated depletion of soil organic carbon (SOC) have been major concerns in intensive farming systems because of the subsequent decline in crop yields. We assessed temporal changes in SOC and its fractions under different tillage systems for wheat (Triticum aestivum L.) – maize (Zea mays L.) cropping in the North China Plain. Four tillage systems were established in 2001: plow tillage (PT), rotary tillage (RT), no‐till (NT), and plow tillage with residues removed (PT0). Concentrations of SOC, particulate organic carbon (POC), non‐POC (NPOC), labile organic carbon (LOC), non‐LOC (NLOC), heavy fraction carbon (HFC) and light fraction carbon (LFC) were determined to assess tillage‐induced changes in the top 50 cm. Concentrations of SOC and C fractions declined with soil depth and were significantly affected by tillage over time. The results showed that SOC and its fractions were enhanced under NT and RT from 0 to 10 cm depth compared with values for PT and PT0. Significant decreases were observed below 10 cm depths (P < 0.05) regardless of the tillage system. The SOC concentration under NT for 0–5 cm depth was 18%, 8%, and 10% higher than that under PT0 after 7, 9, and 12 yr of NT adoption, respectively. Apparent stratification of SOC occurred under NT compared with PT and PT0 for depths >10 cm. All parameters were positively correlated (P < 0.01); linear regressions exhibited similar patterns (P < 0.01). Therefore, to maintain and improve SOC levels, residue inputs should be complemented by the adoption of suitable tillage systems.  相似文献   

5.
Soil organic‐carbon (SOC) stocks are expected to increase after conversion of cropland into grassland. Two adjacent cropland and grassland sites—one with a Vertisol with 23 y after conversion and one with an Arenosol 29 y after conversion—were sampled down to 60 cm depth. Concentrations of SOC and total nitrogen (Ntot) were measured before and after density fractionation in two light fractions and a mineral‐associated fraction with C adsorbed on mineral surfaces. For the soil profiles, SOC stocks and radiocarbon (14C) concentrations of mineral associated C were determined. Carbon stocks and mineral‐associated SOC concentrations were increased in the upper 10 cm of the grassland soil compared to the cropland. This corresponded to the root‐biomass distribution, with 59% and 86% of the total root biomass at 0–5 cm soil depth of the grasslands. However, at the Arenosol site, at 10–20 cm depth, C in the mineral‐associated fraction was lost 29 y after the conversion into grassland. Over all, SOC stocks were not significantly different between grassland and cropland at both sites when the whole profile was taken into account. At the Arenosol site, the impact of land‐use conversion on SOC accumulation was limited by low total clay surface area available for C stabilization. Subsoil C (30–50 cm) at cropland of the Vertisol site comprised 32% of the total SOC stocks with high 14C concentrations below the plowing horizon. We concluded that fresh C was effectively translocated into the subsoil. Thus, subsoil C has to be taken into account when land‐use change effects on SOC are assessed.  相似文献   

6.
Land use change is a key factor driving changes in soil organic carbon (SOC) around the world. However, the changes in SOC following land use changes have not been fully elucidated, especially for deep soils (>100 cm). Thus, we investigated the variations of SOC under different land uses (cropland, jujube orchard, 7‐year‐old grassland and 30‐year‐old grassland) on hillslopes in the Yuanzegou watershed of the Loess Plateau in China based on soil datasets related to soils within the 0–100 cm. Furthermore, we quantified the contribution of deep‐layer SOC (200–1,800 cm) to that of whole soil profiles based on soil datasets within the 0–1,800 cm. The results showed that in shallow profiles (0–100 cm), land uses significantly (p  < 0·05) influenced the distribution of SOC contents and stocks in surface layer (0–20 cm) but not subsurface layers (20–100 cm). Pearson correlation analysis indicated that soil texture fractions and total N were significantly (p  < 0·05 or 0·01) correlated with SOC content, which may have masked effects of land use change on SOC. In deep profiles (0–1,800 cm), SOC stock generally decreased with soil depth. But deep soils showed high SOC sequestration capacity. The SOC accumulated in the 100–1,800 m equalled 90·6%, 91·6%, 87·5% and 88·6% of amounts in the top 100 cm under cropland, 7‐year‐old grassland, 30‐year‐old grassland and jujube orchard, respectively. The results provide insights into SOC dynamics following land use changes and stressed the importance of deep‐layer SOC in estimating SOC inventory in deep loess soils. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Wetland soils (WS) can store a significant amount of soil organic carbon (SOC) and total nitrogen (TN). Surface soils (0–20 cm) were sampled in WS, 20-yr-old conventionally tilled soils (CTS20), 2-yr-old abandoned tilled soils (ATS2), and 6-yr-old abandoned tilled soils (ATS6) to estimate changes in SOC and TN contents due to cultivation and abandonment. Our results showed that SOC and TN contents were significantly higher in WS than those in CTS20, ATS2, and ATS6. As a result of 20-yr cultivation, SOC and TN contents decreased from 43.75 to 24.06 g kg?1 and from 4.96 to 2.32 g kg?1, respectively. However, after the abandonment of cultivated wetlands, SOC and TN contents showed a slow increase but the change was not significant among CTS20 and ATS2. The findings of this study suggest that SOC and TN contents in top 20 cm soils of wetlands can be reduced significantly by cultivation, but they are restored slowly after abandonment.  相似文献   

8.
黄土台塬不同林分结构土壤有机碳质量分数特征   总被引:2,自引:0,他引:2  
为探讨林分结构对土壤有机碳固定的影响,本文以黄土台塬的油松、 沙棘、 刺槐和侧柏纯林及其混交林为对象,对土壤有机碳、 易氧化态、 轻组、 颗粒态以及可溶性有机碳进行了分析。结果表明, 1)混交林可有效增加土壤不同组分有机碳含量,侧柏混交林与纯林相比增加最为明显,其土壤有机碳增加了123%和160%,易氧化态有机碳增加了161%和304%,轻组有机碳增加了1399%和482%,颗粒态有机碳增加了454%和436%,可溶性碳增加了138%和170%(05 cm土层); 刺槐-沙棘、 油松-沙棘-刺槐混交林相对改良效果较差。2)各活性有机碳间相比较,混交林对土壤易氧化态碳含量增加效果最显著,而对土壤颗粒有机碳的改善效果不甚明显。3)在0100 cm土层,轻组有机碳敏感性指标分别是总有机碳、 可溶性和易氧化态有机碳的1.00~10.58、 3.83~10.19和1.78~5.10倍。4)有机碳与活性有机碳组分均呈线性极显著正相关关系; 轻组有机碳与颗粒有机碳二者之间的相关性大于其与其他,易氧化态碳与可溶性有机碳二者之间的相关性大于其与其他。  相似文献   

9.
This paper investigates effects of cropping abandonment and perennial grass growing on soil organic C and N pools and aggregate stability, by comparing soils under native grassland, crop cultivation, perennial grass growing and cropping abandonment, in degraded cropland at a sub‐alpine site in north‐western China. The pools of total and particulate organic C (115 and 37 Mg ha−1) in the 0–30 cm soil layer of native grassland were reduced by 31 and 54% after 30 years of crop cultivation. After 4 years of conversion from cropland to perennial grass growing total and particulate organic C pools were increased by 29 and 56%, whereas 4 year cropping abandonment increased particulate organic C by 36%. Rapid increases in total and particulate N were also found in perennial grass growing and cropping abandonment soils. The native grassland soil and soils of cropping abandonment and perennial grass growing had higher carbohydrate C concentrations in the 0–10 cm layer than the cropped soil. The rapid recovery of particulate organic fraction and carbohydrates in the re‐vegetated soils were probably due to higher plant biomass inputs and lower organic matter decomposition compared with those in the cropped soil. Aggregate stability of the 0–30 cm soil layer was significantly decreased by crop cultivation but showed a good recovery after 4 year re‐vegetations. This study suggests that reduction of soil organic matter and aggregate stability under crop cultivation may be remedied by cropping abandonment or perennial grass growing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Land‐use change often affects the sizes of soil organic carbon (SOC) stocks and the activities of soil enzymes. Responses of relevant soil quality indices caused by farmland conversion to orchard are largely unknown in the semiarid loess regions. This study was conducted at orchard sites, which have been under very intensive cultivation, to evaluate the impacts of farmland conversion to apple (Malus domestica) orchard on SOC stocks and soil enzyme activities in the semiarid loess region of Weibei, Shaanxi province, China. The spatial and temporal changes in a variety of soil quality indices were measured for the 0–100 cm soil profile in apple orchards of three age groups (< 10 y, juvenile; 10–15 y, mature; > 15 y, over‐mature) and adjacent farmlands (control). After farmland conversion, total SOC (TOC) content and density and soil alkaline phosphatase activity significantly decreased, while soil catalase activity increased for the 0–100 cm soil profile. The labile SOC (LOC) content, its proportion to TOC content, and carbon management index (CMI, changes in the total content and lability of SOC) significantly increased in the 0–40 cm soil layer, whereas soil urease and invertase activities only increased in the 0–20 cm layer (P < 0.05). With increasing age of apple orchards, SOC stocks significantly increased after 10 y, being more than 10% larger in mature and over mature orchards than in adjacent farmlands. The LOC content and CMI value also had an increasing trend, while soil enzyme activities showed different response patterns. There were significant correlations between soil enzyme activities, SOC fractions, and CMI value (P < 0.05). We concluded that farmland conversion to apple orchard affected soil quality by reducing SOC stocks in the soil profile and changing SOC content as well as soil enzyme activities at various depth intervals. Long‐term apple cultivation was effective to restore SOC stocks, although it took over a decade to rebuild a new increasing trend after farmland conversion.  相似文献   

11.
Abstract

Distribution of dissolved (DOC) and soil organic carbon (SOC) with depth may indicate soil and crop‐management effects on subsurface soil C sequestration. The objectives of this study were to investigate impacts of conventional tillage (CT), no tillage (NT), and cropping sequence on the depth distribution of DOC, SOC, and total nitrogen (N) for a silty clay loam soil after 20 years of continuous sorghum cropping. Conventional tillage consisted of disking, chiseling, ridging, and residue incorporation into soil, while residues remained on the soil surface for NT. Soil was sampled from six depth intervals ranging from 0 to 105 cm. Tillage effects on DOC and total N were primarily observed at 0–5 cm, whereas cropping sequence effects were observed to 55 cm. Soil organic carbon (C) was higher under NT than CT at 0–5 cm but higher under CT for subsurface soils. Dissolved organic C, SOC, and total N were 37, 36, and 66%, respectively, greater under NT than CT at 0–5 cm, and 171, 659, and 837% greater at 0–5 than 80–105 cm. The DOC decreased with each depth increment and averaged 18% higher under a sorghum–wheat–soybean rotation than a continuous sorghum monoculture. Both SOC and total N were higher for sorghum–wheat–soybean than continuous sorghum from 0–55 cm. Conventional tillage increased SOC and DOC in subsurface soils for intensive crop rotations, indicating that assessment of C in subsurface soils may be important for determining effects of tillage practices and crop rotations on soil C sequestration.  相似文献   

12.
黄土丘陵区不同退耕还林地土壤有机碳库差异分析   总被引:8,自引:2,他引:6  
为揭示不同人工还林地影响土壤碳库储量、质量的效应及差异特征,探讨了黄土丘陵区不同退耕还林地土壤有机碳及其组分质量分数、密度及碳库管理指数(CMI)的变化情况。结果表明:退耕12a后,与坡耕地相比,不同还林地主要提高了0~40cm土层总有机碳质量分数,增幅总体为沙棘>刺槐>山杏>杨树>撂荒,且在0~10cm土层增幅最高(71.1%~156.9%),20~40cm土层增幅最低(23.5%~68.9%)。这也使不同还林地0~100cm土壤总有机碳密度均显著增加。0~100cm土层活性有机碳密度增幅为山杏、杨树(平均106.8%)>刺槐、沙棘(平均55.4%)>撂荒(9.9%),而非活性有机体碳密度增幅则为沙棘(43.0%)>刺槐、山杏、杨树(平均22.1%)>撂荒(14.2%),这与不同还林地影响各土层活性与非活性有机碳质量分数和分布差异大有关。与坡耕地相比,山杏、沙棘及刺槐使0~20cm土层CMI平均增加1.28倍,杨树和山杏则使20~100cm土层CMI增加1.20~2.49倍。综上所述,退耕还林具备提升土壤碳库及其质量的潜力,且短期内总体以沙棘提升碳库效果较佳,山杏改良碳库质量较好。  相似文献   

13.
石羊河流域干旱荒漠区人工梭梭林对土壤碳库的影响   总被引:3,自引:0,他引:3  
采用野外调查与室内分析相结合的方法,研究石羊河流域民勤干旱沙区种植人工梭梭林4,13,36年后的土壤有机碳(Soil organic carbon,SOC)、无机碳(Soil inorganic carbon,SIC)、全氮(Total nitrogen,TN)和总碳(soil total carbon,TC)含量及储量变化特征。结果表明:流动沙地种植梭梭后,0-50cm层灌丛下和行间SOC和TN含量总体随造林年限增加而增加,5-50cm层灌丛下SIC含量在13年梭梭林地最高。36,13年林地0-50cm层灌丛下SOC和TN储量均高于行间,而13年灌丛下SIC储量低于行间,4年灌丛下5-50cm层SOC、TN和SIC储量均低于行间。0-50cm层土壤有机碳、无机碳、全氮储量增幅分别为102.44%,24.66%,54.55%,36年林地SOC和TN储量随土层加深先降低后增加,但4,13年和流动沙地SOC、SIC和TN储量均随土层加深而增加。土壤有机碳占总碳比例随造林年限增加而增加。相关分析结果表明,土壤颗粒组成、造林年限、土层深度等与土壤有机碳和全氮储量显著相关(P0.01)。民勤干旱沙区造林提高了土壤碳库截存量,并且随林龄增长而增长。  相似文献   

14.
西南喀斯特地区是我国主要的生态脆弱区之一,石漠化严重,旱涝灾害频发。植被恢复是提升脆弱生态系统土壤碳氮固持的有效方式,但该区不同植被恢复方式土壤碳氮动态监测的研究还很缺乏。本研究以典型喀斯特峰丛洼地为对象,选取人工林、牧草地、人工林+牧草地、撂荒地自然恢复4种最主要的植被恢复方式为研究对象,以耕地作为对照,对比分析退耕前(2004年)、退耕10年(2014年)和13年后(2017年)土壤碳氮储量动态变化特征。其中2004—2014年研究区未发生极端内涝灾害, 2014—2017年连续发生2次极端内涝灾害事件。研究结果表明,退耕10年后, 4种恢复方式下土壤有机碳(SOC)储量均显著增加,但退耕13年后,除撂荒地SOC持续增加外,其他3种恢复方式下SOC表现出下降趋势。植被恢复后土壤全氮(TN)储量提升相对缓慢,退耕10年仅牧草地显著增加,退耕13年后人工林+牧草和撂荒地TN增加,且撂荒地在退耕后呈持续增加趋势。相关性分析结果表明,土壤交换性Ca~(2+)与SOC、TN均呈显著正相关关系,且与2014年相比, 2017年不同植物恢复方式下土壤交换性Ca~(2+)均显著下降,这可能与研究区2015年和2016年连续内涝灾害有关。以上结果说明,不同恢复方式均能显著提升喀斯特地区土壤碳氮固持,并以自然恢复最佳,其生态系统能有效抵御极端气候灾害带来的负面影响。  相似文献   

15.
The Grain to Green Program in China which began in 1999 led to the conversion of 0.64 million ha of cropland to grassland on steep sloping landscapes. However, the pattern of natural vegetation succession following cropland has not been well represented in previous regional syntheses of land use change effects on soil organic carbon (SOC). A chronosequence study focusing on the vegetation succession and soil carbon stocks was conducted in the center of the Loess Plateau. The chronosequence included fields of 0, 2, 5, 8, 9, 10, 12, 15 and 25 years of self‐restoration after cropland abandonment, as well as a natural grassland reference. Plant coverage, species richness and plant biomass increased significantly with time of cropland abandonment. Over time, the species composition more nearly resembled a natural grasslands community. Cropland abandonment replenished SOC stocks by 3.6 kg C m−2 during the 25‐year self‐restoration, but the SOC accumulation was restricted to the upper soil profiles (0–60 cm). SOC accumulation rate was 88 g C m−2 y−1 in 0–30 cm and 55 g C m−2 y−1 in 30–60 cm soil depth, respectively. These carbon stocks were still significantly lower than those found in the natural grassland soil. Our results suggest that the recovery of plant communities and SOC stocks appears to be slow in this semiarid environment without revegetation effort along with appropriate field management, although the post‐agricultural soils have a high potential for carbon sequestration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.

Puddling during sawah rice cultivation destabilizes the soil structure. The re-formation of soil water-stable aggregates (WSA) following puddling and amendments, and their associated organic carbon (SOC) and total N were studied at Akaeze and Ikwo in south-eastern Nigeria. The amendments, which were randomized in triplicate, include control, NPK fertilizer, poultry dropping, rice husk powder and rice husk ashes (RHA). Soil samples from 0 to 15 cm depth were taken from the field after 2 years of cultivation. Most of the SOC were found in the very fine aggregates. There was no consistent trend in the treatment effects. However, the NPK-amended soils showed the lowest values of WSA > 2 mm in both locations, whereas the poultry dropping-amended soils showed the least and the highest mean-weight diameter (MWD) values at Akaeze and Ikwo, respectively. The SOC of the whole soil in Akaeze correlated positively with MWD (r = 0.92*). Irrespective of location, SOC in soils and WSA > 2.00 mm correlated positively with MWD (r = 0.56*; 0.65*, respectively) while SOC in WSA 0.50–0.25 mm accounted for low MWD values. More carbon was sequestered at Akaeze than at Ikwo, with the RHA-amended soils being the highest at both locations.  相似文献   

17.
Soil organic carbon (SOC) density was researched in southern NingXia with five different land uses: shrubland, farmland, grazing grassland, orchard, and artificial grassland. The results have shown that (1) content of SOC in soil 0–20 cm deep was greatest for grazing grassland and less for bush forestland, farmland, artificial grassland, and orchard; (2) content of SOC of bush forestland and orchard decreased slowly as depth of profile increased, whereas SOC of farmland, grazing grassland, and artificial grassland decreased fast; (3) SOC density of grazing grassland and farmland was greater than the bush forestland, artificial grassland, and orchard; and (4) the establishment and development of C. korshinski on eroded soil resulted in significant improvement of SOC density.  相似文献   

18.
Carbon accumulation is an important research topic for grassland restoration. It is requisite to determine the dynamics of the soil carbon pools [soil organic carbon (SOC) and soil inorganic carbon (SIC)] for understanding regional carbon budgets. In this study, we chose a grassland restoration chronosequence (cropland, 0 years; grasslands restored for 5, 15 and 30 years, i.e. RG5, RG15 and RG30, respectively) to compare the SOC and SIC pools in different soil profiles. Our results showed that SOC stock in the 0‐ to 100‐cm soil layer showed an initial decrease in RG5 and then an increase to net C gains in RG15 and RG30. Because of a decrease in the SIC stock, the percentage of SOC stock in the total soil C pool increased across the chronosequence. The SIC stock decreased at a rate of 0·75 Mg hm−2 y−1. The change of SOC was higher in the surface (0–10 cm, 0·40 Mg hm−2 y−1) than in the deeper soil (10–100 cm, 0·33 Mg hm−2 y−1) in RG5. The accumulation of C commenced >5 years after cropland conversion. Although the SIC content decreased, the SIC stock still represented a larger percentage of the soil C pool. Moreover, the soil total carbon showed an increasing trend during grassland restoration. Our results indicated that the soil C sequestration featured an increase in SOC, offsetting the decrease in SIC at the depth of 0–100 cm in the restored grasslands. Therefore, we suggest that both SOC and SIC should be considered during grassland restoration in semi‐arid regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
耕作方式转变和秸秆还田对土壤活性有机碳的影响   总被引:1,自引:3,他引:1  
深松是解决长期旋免耕后耕层浅薄化、亚表层(15~30 cm)容重增加等问题的有效方法之一,长期旋免耕后进行深松显著影响土壤有机碳及其组分的周转。为对比转变耕作方式对土壤活性有机碳(LOC)及碳库管理指数的影响,该研究基于连续6 a的旋耕转变为深松和免耕转变为深松定位试验,对比了2012-2014年长期旋免耕农田进行深松对农田土壤活性有机碳及碳库管理指数的影响。研究结果表明,耕作方式转变和秸秆还田均对土壤LOC含量、活性有机碳与有机碳的比例(LOC/SOC)和碳库管理指数产生显著影响。相对于原旋耕秸秆还田处理(RTS),虽然旋耕-深松秸秆还田处理(RTS-STS)提高了0~30 cm土层的LOC含量,但其土壤中LOC/SOC比例和碳库管理指数显著下降。而免耕-深松秸秆还田(NTS-STS)处理和耕作方式未转变的免耕秸秆还田处理(NTS)在0~10 cm土层其LOC含量无显著性差异,但NTS-STS处理显著提高LOC/SOC比例。耕作方式转变导致RTS-STS处理碳库管理指数随着土层的加深而逐渐降低,而NTS-STS处理则呈逐渐升高趋势。耕作、秸秆、年份、耕作与秸秆、耕作与年份及3者交互作用是导致耕作方式转变后各处理0~30 cm的LOC含量变化的主要作用力(P0.05)。秸秆还田条件下,将长期旋耕处理转变为深松可显著降低土壤SOC中的LOC比例,降低碳库管理指数,促进土壤碳库的稳定性;而长期免耕处理转变为深松能够显著提高土壤下层(10~30 cm)的土壤碳库活性。  相似文献   

20.
ABSTRACT

Conversion of grassland to cropland is widely reported to deplete soil organic carbon (SOC) largely due to tillage effects on the decomposition of SOC. However, most studies report on long-term changes in SOC following the conversion and little is known about the changes in the short term. Net ecosystem carbon budget (NECB) measures the difference between total C input (i.e., manure, above- and below-ground plant residues) and C loss through heterotrophic respiration (RH). However, most studies that report temporal SOC do not report other components of the NECB like RH, total C inputs and often do not include the cumulative annualized change of these components. This review evaluated the change in C input, RH, NECB and SOC after conversion of permanent/continuous grassland to cropland within 5 years after the conversion. We also reviewed and compared no-tillage and conventional tillage on SOC storage and accumulation. Total C input was higher in grassland than cropland largely due to high root biomass, as opposed to aboveground residue, and therefore grassland tended to have higher NECB. Despite higher NECB in grassland, the SOC stocks in cropland (cornfield) converted from grassland were greater than that in continuous grassland within first 2–3 years of conversion. The combination of manure C addition and tillage in cropland showed potential to maintain NECB and increase SOC. Within the continuous grassland C addition alone increased NECB but did not result in a corresponding increase in SOC. Residue retention and manure addition are recognized as good practices for increasing SOC, this study however, shows that combining them with occasional tillage, especially in managed grasslands, could increase the rate of SOC storage in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号