首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We identified four putative AtFRD3-like genes (OsFRDL) in the rice genome that exhibited 39.1 to 56.7% amino acid sequence similarities to Arabidopsis FRD3. Of these, we cloned three OsFRDL genes from a cDNA library prepared from iron-deficient rice roots: OsFRDL1, OsFRDL2, and OsFRDL3. OsFRDL1 was expressed weakly in Fe-sufficient roots, and slight expression was induced in the roots of Fe-deficient plants. OsFRDL2 was expressed constitutively in both roots and leaves, and Fe deficiency reduced its expression in leaves. OsFRDL3 was expressed in leaves, but not in roots; Fe deficiency induced slight expression in leaves. An OsFRDL1-sGFP fusion protein was localized in the plasma membrane in onion epidermal cells. The promoter GUS analysis showed that OsFRDL1 was localized in the cells involved in long-distance transport, in both Fe-sufficient and Fe-deficient plants. Furthermore, OsFRDL1 expression was observed during the reproductive stage. These results suggest that OsFRDL1 is a transporter that resides in the plasma membrane of cells involved in long-distant transport.  相似文献   

2.
The diurnal pattern in concentrations of phytosiderophores (PS) and its precursor nicotianamine (NA) was studied in different root and shoot zones of iron (Fe)‐sufficient and Fe‐deficient barley (Hordeum vulgare L. cv. Europa) grown in nutrient solution. Roots were separated into apical (0–3 cm) and basal zones (>3 cm) and shoots into young (3 cm basal zones of youngest two leaves) and old (remaining zones of youngest two leaves and oldest leaf) parts. The main PS in barley was identified as epi‐hydroxymugineic acid (epi‐HMA). Regardless of the sampling zone and time of day, epi‐HMA concentrations were several times higher in Fe‐deficient than in Fe‐sufficient plants and several times higher in the roots than in the shoots. In roots and shoots, epi‐HMA concentrations were always higher in the younger compared with the older zones. In both root zones of Fe‐deficient plants, an inverse diurnal rhythm occurred in epi‐HMA concentrations and in its release by the roots. In contrast, such a rhythm was absent in roots of Fe‐sufficient plants and in the shoots regardless of the Fe nutritional status. Nicotianamine concentrations in roots were not affected by the Fe nutritional status in apical zones but slightly enhanced under Fe deficiency in basal zones. In contrast to roots, NA concentrations in both shoot parts were lower in Fe‐deficient than in Fe‐sufficient plants. Regardless of the Fe nutritional status in roots and shoots, NA concentrations were higher in young than in old parts and no consistent diurnal variations were observed. The results suggest that PS are also synthesized in the shoot, although at much lower rates than in roots. As with roots, PS synthesis in the shoot is enhanced under Fe deficiency and is mainly localized in young growing tissue. The distinct diurnal rhythm in PS release in roots is apparently not regulated by variation in the rate of PS synthesis during the day.  相似文献   

3.
Silicon (Si) can enhance the resistance of plants to many abiotic stresses. To explore whether Si ameliorates Fe2+ toxicity, a hydroponic experiment was performed to investigate whether and how Si detoxifies Fe2+ toxicity in rice (Oryza sativa L.) roots. Results indicated that rice cultivar Tianyou 998 (TY998) showed greater sensitivity to Fe2+ toxicity than rice cultivar Peizataifeng (PZTF). Treatment with 0.1 mmol L-1 Fe2+ inhibited TY998 root elongation and root biomass significantly. Reddish iron plaque was formed on root surface of both cultivars. TY998 had a higher amount of iron plaque than PZTF. Addition of Si to the solution of Fe treatment decreased the amount of iron plaque on root surface by 17.6% to 37.1% and iron uptake in rice roots by 37.0% to 40.3%, and subsequently restored root elongation triggered by Fe2+ toxicity by 13.5% in the TY998. Compared with Fe treatment, the addition of 1 mmol L-1 Si to the solution of Fe treatment increased xylem sap flow by 19.3% to 24.8% and root-shoot Fe transportation by 45.0% to 78.6%. Furthermore, Si addition to the solution of Fe treatment induced root cell wall to thicken. These results suggested that Si could detoxify Fe2+ toxicity and Si-mediated amelioration of Fe2+ toxicity in rice roots was associated with less iron plaque on root surface and more Fe transportation from roots to shoots.  相似文献   

4.
The expression of two barley genes, Ids1 and Ids2, that were induced specifically by iron (Fe) deficiency stress in solution culture, was examined in two barley genotypes differing in manganese (Mn) efficiency. Plants were grown in a calcareous soil supplied with two levels of Mn (15 and 100 mg/kg soil). Ids1 was expressed at equal levels in the roots of both genotypes, and this expression was not affected by Mn supply. These results suggest that the expression of Ids1 probably does not contribute to Mn efficiency. A contrasting result was obtained for Ids2, which was expressed at a higher level in the roots of the Mn‐inefficient genotype than in the Mn‐efficient genotype. However, the expression levels also were not affected by Mn supply. The differential expression of Ids2 may indicate that this gene plays a role both in the Fe deficiency response and in the Mn efficiency mechanism. An interesting observation made on the time course of expression of the two genes. Initially, both genes had low expression in two week old plants and then much higher expression in three week old plants. The timing of this increase probably relates to the exhaustion of the seed Fe reserves. Therefore, our results indicate a need to consider the effect of seed nutrient content in research on the molecular basis for micronutrient acquisition.  相似文献   

5.
Iron (Fe) deficiency is a difficult nutrient problem particularly in crop plants grown on calcareous soils. Recently, phytosiderophore (PS) release has been linked to the ability of graminaceous species and genotypes to withstand Fe-deficiency chlorosis. So enhancing PS release is a critical step to improve iron efficiency of plants grown on iron stressed soils. The effects of alien cytoplasm on PS release in spring wheat were studied by analyzing PS release from twenty wheat genotypes, including two spring wheat 881 and 352-35, and their 18 alloplasmic lines with the participation of cytoplasms from the Aegilops and Triticum species. Different genotypes were grown in iron sufficient and deficient nutrient solution under controlled environmental conditions. PS release rates were determined at two or three days intervals after onset of iron deficiency symptoms by the measurement of iron mobilizing capacity of root exudates from freshly precipitated FeIII hydroxide. High amounts of phytosiderophores were released from roots of all wheat genotypes without iron supplied, and the amount progressively increased with the development of iron deficiency chlorosis. The results revealed that (1) the release rate of phytosiderophores from roots of common wheat could be considerably influenced by alien cytoplasms. Some alien cytoplasms exerted positive effects, some ones did negative effects, and the other ones had no significant effects. (2) the same alien cytoplasm could affect similarly or oppositely the phytosiderophores release from different wheat. (3) some alien cytoplasms, such as Chinese Spring, Ae. speltoides Tausch and Ae. cylindrica Host showed promising and potential in improving the rate of phytosiderophore release in common wheat. These cytoplasms which showed the desired effect should be given priority in interspecific and intergeneric hybridization to develop and reconstruct the needed wheat cultivars.  相似文献   

6.
ABSTRACT

Indian mustard (Brassica juncea Czern) is a promising species for the phytoextraction of zinc (Zn), but the effectiveness of this plant can be limited by iron (Fe) deficiency under Zn-contaminated conditions. Our objectives were to determine the effects of root-applied Fe and Zn on plant growth, accumulation of Zn in plant tissues, and development of nutrient deficiencies for B. juncea. In the experiment, B. juncea was supplied 6 levels of iron ethylenediamine dihydroxyphenylacetic acid (Fe-EDDHA; 0.625 to 10.0 mg L?1) and two levels of Zn (2.0 and 4.0 mg L?1) for 3 weeks in a solution-culture experiment. Nutrient solution pH decreased with decreasing supply of Fe and increasing supply of Zn in solution, indicating that B. juncea may be an Fe-efficient plant. If plants were supplied 2.0 mg Zn L?1, plant growth was stimulated by increases in Fe supply, but plant growth was not influenced by Fe treatments if plants were supplied 4.0 mg Zn L?1. Zinc concentration in roots and shoots was suppressed by increasing levels of Fe in solution. Leaf concentrations of Cu, Mn, and P were suppressed also as Fe supply in solutions increased. Iron additions to the nutrient solution were not effective at increasing the Zn-accumulation potential of B. juncea unless plants were supplied the higher level of Zn in solution culture. Even under these conditions, Fe additions were effective only if supplied at low levels in solution culture (1.25 mg Fe L?1). Results suggest that Fe fertility has limited potential for enhancing Zn phytoextraction by B. juncea, even if plants suffer a suppression in growth from Fe deficiency.  相似文献   

7.
两种基因型豌豆根系质外体铁的积累与消耗   总被引:1,自引:0,他引:1  
采用两种基因型豌豆,在水培条件下研究了根系质外体铁的积累和利用。结果发现供铁后短时间内豌豆根系质外体铁就大量积累,铁效率不同的豌豆基因型根系质外体铁的积累量没有明显差异,根系质外体铁的利用速率与根系缺铁适应性反应强弱有关。  相似文献   

8.
Sugar beets were grown at four concentrations of added Fe (0.00, 0.02, 0.2 and 2.0 mg L‐1) in nutrient solutions. The pH increased similarly in solutions at the two higher Fe concentrations and decreased moderately and negligibly respectively at the lowest added Fe and no Fe concentrations. Chlorosis was pronounced in plants of the latter two treatments and was accompanied by marked reductions in the chlorophyll content of apical leaves, in the size of young expanded leaves, and in the fresh and dry mass of roots and shoots. The decreases in these parameters were greater for plants at no Fe than at 0.02 mg Fe L‐1 The riboflavin content in the nutrient solutions increased only negligibly with maximum iron, increased slightly with 0.2 mg Fe L‐1, and increased substantially with 0.02 mg Fe L‐1 and no Fe, but was lower in the latter. The cumulative amounts of riboflavin excreted and the times of maximum excretion varied within replicates of solutions containing both low Fe and no Fe. The maximum riboflavin concentrations were not consistently associated with the lowest solution pH values of single plants within a treatment, nor of plants at different iron concentrations at all sampling times. The release of riboflavin from roots may depend more upon the amount formed than upon root acidification.  相似文献   

9.
Tomato (Lycopersicum esculentum), cucumber (Cucumis sativus), pepper (Capsicum annuum), and lettuce (Lactuca sativa) were grown on rockwool or perlite substrate with nutrient solution. Fe was administered as the Fe complex of the chelator ethylenediamine di-(o-hydroxyphenylacetic acid) (EDDHA) or Fe(NH4)2(SO4)2 in the nutrient solution or as inorganic iron in the substrate. Roots and leaves of plants grown on Fe-EDDHA contained EDDHA in quantities up to 0.27 × the amount of Fe, which is interpreted as an indication of the contribution of passive chelate absorption to Fe uptake. Fruits of tomato and pepper, and leaves of lettuce contained only traces of EDDHA. Breakdown of the chelator in leaves of pepper and tomato is estimated to have been between 0.5 and 2% per day. In tomato fruits, lycopene content was lowered in plants growing on Fe-EDDHA. Cucumber growing on Fe-EDDHA suffered from serious infection by the mildew Sphaerotheca fusca; the plants growing on an inorganic source of iron were resistant. These results exemplify physiological effects of EDDHA other than those directly associated with iron nutrition.  相似文献   

10.
Seedlings of sour orange (Citrus aurantium L.) and Carrizo citrange (C. sinensis L. cv. Washington navel x Poncirus trifoliata)] were grown in plastic pots containing a sand: perlite mixture and watered with a modified Hoagland No 2 nutrient solution throughout the experiment. Three-months-old plants were divided in three groups and sprayed with 0.018 M iron sulfate (FeSO4 .7H2O), 0.018 M manganese sulfate (MnSO4 .H2O), or deionized water. Two months later, plants were harvested and divided into top leaves that grown after the treatments, basal leaves that existed prior to the treatments, stems that partially came in contact with the spray, and roots. The manganese (Mn) spray resulted in a significant increase of Mn concentrations in top leaves, basal leaves, stems and roots of sour orange, and in top leaves, basal leaves, and stems of Carrizo citrange. The iron (Fe) spray significantly increased the concentrations of Fe in the stems and basal leaves of both genotypes. For both genotypes, transport of Mn from basal (sprayed) leaves to top (unsprayed) ones was found. However, the results of this experiment did not give any evidence neither for Mn translocation from sprayed tissues to roots nor for Fe transport from sprayed tissues to unsprayed ones (top leaves, roots). Mn and Fe were found to be relatively mobile and strictly immobile nutrients, respectively, within citrus plants after their foliar application as sulfate salts.  相似文献   

11.
ABSTRACT

Microbial siderophore-chelated Fe(III) is suggested to be an important source of Fe for plants, although it is hardly reduced by plant roots. Here, we investigated the efficacy of the easily reducible artificial microbial siderophore tris[2-{(N-acetyl-N-hydroxy)glycylamino}ethyl]amine (TAGE)-Fe(III) as an alternative Fe source to correct Fe deficiency in rice plants, and compared it to that of the natural siderophore deferoxamine B (DFOB)-Fe(III). We also evaluated the absorption of Fe from TAGE-Fe(III) by the Strategy I-like system of gramineous plants using nicotianamine aminotransferase 1 (naat1) mutant rice, which does not synthesize phytosiderophores. Fe(III)-siderophores were synthesized in vitro. Nipponbare rice and its naat1 mutant were reared in soil and gel cultures to determine Fe availability. Hydroponically grown naat1 mutant seedlings were used for reducibility assays to determine the ability of rice roots to reduce Fe(III) chelated by TAGE or DFOB. The expression of a Fe-deficiency inducible gene was also determined, as well as chlorophyll and Fe concentrations. Reduci bility assays on naat1 mutant seedlings revealed that the reduction level of TAGE-Fe(III) was approximately three times higher than that of DFOB-Fe(III). Application of TAGE-Fe(III) to both culture medium and alkaline soil improved Fe chlorosis, growth, and Fe concentration in both naat1 and wild type plants, whereas application of DFOB-Fe(III) only did so in wild type plants. Easily reducible Fe(III)-chelates such as TAGE-Fe(III) can be a better source of Fe for rice plants than most natural microbial siderophores-Fe(III). Our study also demonstrated that rice plants have the ability to utilize microbial siderophores-Fe(III) as the Fe source through the Strategy I-like Fe acquisition system.  相似文献   

12.
The objective of this study was to establish whether the iron‐stress responses observed in T203 soybean (Fe‐inefficient) with active nodules are products of the nodules or of the entire root system. A split‐root system was used in which half the roots of each plant were inoculated and actively fixing nitrogen and the other half were not. Soybean cultivar T203 is normally Fe‐inefficient and does not exhibit the Fe‐stress responses, however an iron‐stress response did occur during active N2 fixation in earlier studies. This implies that the active nodules influenced the plant's ability to respond to Fe‐deficiency stress. In this study, the Fe‐stress response (H+ and reductant release) observed in T203 soybean was limited to the inoculated side of the split‐root system. The severe Fe chlorosis which developed in these plants was overcome in a manner similar to Fe‐efficient cultivars undergoing normal Fe‐stress response and the T203 plants completely regreened. Exudation of H+ ions was similar in both the presence and absence of Fe, and was generally limited to inoculated roots. Reductant release was nearly nonexistent from the non‐inoculated roots and was greater for the Fe‐stressed (‐Fe) plants than for non‐stressed (+Fe) plants. Thus, the response observed, which alleviated Fe chlorosis, appeared to be associated with N2 fixation of the active nodules.  相似文献   

13.
Abstract

A hydroponic experiment was conducted in a phytotron at pH 5.5 to study the effects of nickel (Ni) on the growth and composition of metal micronutrients, such as copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn), of barley (Hordeum vulgare L. cv. Minorimugi). Four Ni treatments were conducted (0, 1.0, 10, and 100 μM) for 14 d. Plants grown in 100 μM Ni showed typical visual symptoms of Ni toxicity such as chlorosis, necrosis of leaves, and browning of the root system, while other plants were free from any symptoms. Dry weights were the highest in plants grown in 1.0 μM Ni, with a corresponding increase in the chlorophyll index of the plants, suggesting that 1.0~10 μM Ni needs to be added to the nutrient solution for optimum growth of barley plants. The increase of Ni in the nutrient solutions increased the concentrations of Cu and Fe in roots, while a decrease was observed in shoots. The concentrations of Mn and Zn in shoots and roots of plants decreased with increasing Ni supply in the nutrient solution. Shoot concentrations of Cu, Fe, Mn, and Zn in plants grown at 100 μ M Ni were below the critical levels for deficiency. Plants grown at 1.0 μ M Ni accumulated higher amounts of Cu, Fe, Mn and Zn, indicating that nutrient accumulation in plants was more influenced by dry weights than by nutrient concentrations. The translocation of Cu and Fe from roots to shoots was repressed, while that of Mn and Zn was not repressed with increasing Ni concentration in the nutrient solution.  相似文献   

14.
We investigated the responses to iron deficiency of four major tree species, Prosopis cineraria (local name: Ghaf), Acacia tortilis (Samar), Zizyphus spina-christi (Sidr), and Leptadenia pyrotechnica (Markh), used for revegetation of desert areas in the United Arab Emirates (UAE). The responses to iron deficiency differed among the tree species. Ghaf, Samar, and Sidr decreased the nutrient solution pH in response to iron deficiency. Markh and iron-deficient Sidr did not release protons in the CaCl2 solution. The Fe reducing capacity of the roots of Ghaf, Samar, and Sidr was significantly enhanced by iron deficiency, whereas a smaller increase in the reducing activity of the roots of Markh was observed. In all the tree species, the amount of reductant released from iron-deficient plants was higher than that from iron-sufficient ones. Markh released a small amount of reductant under irondeficient conditions. In the present study, the reductant released by all the trees was caffeic acid. Acidification treatment enhanced the amount of reductant released irrespective of iron treatments in Ghaf, Samar, and Sidr but had no effect on the amount of reductant released in iron-deficient Markh. The activity of p-coumarate hydroxylase was higher in Sidr and Ghaf than in the other trees. This activity decreased in iron-deficient Samar. Ghaf, Samar, and Sidr showed a high capacity to lower the pH of the nutrient solution, and Ghaf markedly enhanced the effectiveness of all the examined mechanisms, while Markh showed a lower ability compared to the other tree species.  相似文献   

15.
Graminaceous plants can take up iron-phytosiderophore complexes, whereas non-graminaceous plants absorb ferrous ions after the reduction of ferric compounds at the root cell membranes. The iron (Fe) in the roots may be transported to the aerial plant parts through the xylem. We compared the chemical forms in xylem sap collected from the cut stems of three graminaceous plants (rice [Oryza sativa L.], maize [Zea mays L.], barley [Hordenum vulgare L.]) and three non-graminaceous plants (tomato [Lycopersicon esculentum Mill.], soybean [Glycine max Merr.], castor bean [Ricinus communis L.]) grown in composite soils for the concentrations of iron and iron-chelating compounds (nicotianamine, phytosiderophores, citrate). We also fractionated the xylem saps by size-exclusion chromatography to gain insight into the chemical forms of iron. The Fe concentrations in the xylem sap ranged from 9 to 40 μM. Nicotianamine was found in the xylem sap from all the plants examined, with higher concentrations in the non-graminaceous plants. In contrast, phytosiderophores (2’-deoxymugineic acid and mugineic acid) were predominantly detected in the graminaceous plants. The concentrations of free citrate varied greatly (from 4 to 2200 μM) among the six plant species. The xylem sap iron in non-graminaceous plants may form two types of Fe-citrate, whereas in graminaceous plants, the bound Fe forms may be largely two types of Fe-citrate with various Fe-phytosiderophores.  相似文献   

16.
This work evaluated the effect of cadmium (Cd) on the physiological responses of corn (Zea Mays L.) and wheat (Triticum aestivum L.) to iron (Fe) deficiency. For this purpose, seedlings of corn and wheat were cultivated under controlled conditions, plants were grown in different strength Hoagland's solutions for one month. In the fifth week, some seedlings were still in full strength Hoagland's solution (+Fe) and others were in full strength Hoagland's solutions without iron (?Fe). The plants were exposed to different cadmium (Cd) concentrations for four days. The plant chlorophyll content of young leaves, Fe and Cd content in shoots and roots, biomass production, and phytosiderophores (PS) release by roots were assessed. Results showed that Cd decreased the chlorophyll content of young leaves, accompanied by a significant shoot and root biomass reduction for Fe-deficient and Fe-sufficient wheat and corn across all Cd treatments. However, chlorophyll content and shoot and root biomass of Fe-deficient wheat and corn were lower than Fe-sufficient plants at different Cd concentrations. Iron-deficiency induced Cd accumulation compared to Fe-sufficient in wheat and corn; however, a depressive effect of Cd on iron acquisition in shoots and roots of Fe-deficient and Fe-sufficient wheat and corn across all Cd treatments was observed. Cadmium also inhibited PS release in Fe-deficient and Fe-sufficient wheat and corn. Iron-deficient PS release was higher than Fe-sufficient corn and wheat across all Cd treatments. These results suggested that Cd might reduce capacity of plants to acquire iron from solution by inhibiting PS release.  相似文献   

17.
In the present experiment, we studied the interaction between copper (Cu) and iron (Fe) in strawberry plants grown in nutrient solutions containing different concentrations of Fe. Plants grown in the absence of iron (Fe0) had the characteristic symptoms of Fe deficiency, with smaller chlorotic leaves, less biomass, acidification of the nutrient solution, and roots that were smaller and less ramified, while no symptoms of Fe deficiency were observed in plants grown with Fe. A greater amount of Cu was found in roots of chlorotic plants than in those grown with Fe, while plants grown with 20 μM of Fe (Fe20) in the nutrient solution had a greater amount of Fe compared with plants from the other treatments. Chlorotic plants (Fe0) and plants grown with the greatest level of Fe (Fe20) had a greater root ferric chelate reductase (FC-R; EC 1.16.1.17) activity compared with the other treatments with 5 or 10 μM Fe in the nutrient solution. The same pattern was obtained for relative FC-R mRNA concentration and for the sum of Fe and Cu contents in shoots (leaves plus crowns). The DNA obtained from amplification of the FC-R mRNA was cloned and several of the inserts analysed by single strand confirmation polymorphism (SSCP). Although there were different SSCP patterns in the Fe20 treatment, all the inserts that were sequenced were very similar, excluding the hypothesis of more than one FC-R mRNA species being present. The results suggest that Cu as well as Fe is involved in FC-R expression and activity, although the mechanism involved in this regulation is unknown so far. Both small contents of Fe and Cu in plants led to an over-expression of the FC-R gene and enhanced FC-R activity in strawberry roots.  相似文献   

18.
The factors that control the use of iron (Fe) provided by iron chelates in strategy I plants are not well known. In this paper, the effectiveness of low concentrations of a series of pure Fe chelates to supply Fe to cucumber plants in hydroponics was studied. The Fe Chelate Reductase (FCR) of the roots was measured using Fe- ethylene diamine tetraacetic acid (EDTA) as substrate. Despite the differences found in SPAD and biometric indexes among the treatments, FCR and Fe in xylem sap were only significantly larger for the Fe- Ethylene diamine di-(o-hydroxy-p-methylphenyl) acetic acid (EDDHMA) treatment. The trend in nutritional indexes was the opposite to the trend in the stability of the chelates, except for Fe-EDTA that gave the poorest results. A mechanism describing the uptake process, considering the re-oxidation of the Fe (II) reduced by the FCR and the formation of the Fe (II) complex is proposed.  相似文献   

19.
Abstract

The effect of additional iron (Fe) on arsenic (As) induced chlorosis in barley (Hordeum vulgare L. cv. Minorimugi) was investigated. The treatments were: (1) 0?μmol?L?1 As?+?10?μmol?L?1 Fe3+ (control), (2) 33.5?μmol?L?1 As?+?10?μmol?L?1 Fe3+ (As-treated) and (3) 33.5?μmol?L?1 As?+?50?μmol?L?1 Fe3+ (additional-Fe3+) for 14?days. Arsenic and Fe3+ were added as sodium-meta arsenite (NaAsO2) and ethylenediaminetetraacetic acid-Fe3+, respectively. Chlorosis in fully developed young leaves was observed in the As-treated plants. The chlorophyll index and the Fe concentration decreased in shoots of the As-treated plants compared with the control plants. Arsenic reduced the concentration of phosphorus, potassium, calcium, magnesium, manganese, zinc and copper. The additional-Fe3+ treatment increased the chlorophyll index in plants compared with the As-treated plants. Among the elements, Fe concentration and accumulation specifically increased in the shoots of additional-Fe3+ plants compared with As-treated plants, indicating that As-induced chlorosis was Fe-chlorosis. Arsenic and Fe were mostly concentrated in the roots of the As-treated plants. Despite inducing chlorosis in the As-treated plants, phytosiderophores (PS) accumulation in the roots and release from the roots did not increase, rather PS accumulation decreased, indicating that As toxicity hindered PS production in the roots. The PS accumulation in the roots was further reduced in the additional-Fe3+ treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号