首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The priming effect (PE) plays a critical role in the control of soil carbon (C) cycling and influences the alteration of soil organic C (SOC) decomposition by fresh C input.However,drivers of PE for the fast and slow SOC pools remain unclear because of the varying results from individual studies.Using meta-analysis in combination with boosted regression tree (BRT) analysis,we evaluated the relative contribution of multiple drivers of PE with substrate and their patterns across each driver gradient.The results showed that the variability of PE was larger for the fast SOC pool than for the slow SOC pool.Based on the BRT analysis,67%and 34%of the variation in PE were explained for the fast and slow SOC pools,respectively.There were seven determinants of PE for the fast SOC pool,with soil total nitrogen (N) content being the most important,followed by,in a descending order,substrate C:N ratio,soil moisture,soil clay content,soil pH,substrate addition rate,and SOC content.The directions of PE were negative when soil total N content and substrate C:N ratio were below 2 g kg~(-1)and 20,respectively,but the directions changed from negative to positive with increasing levels of this two factors.Soils with optimal water content (50%–70%of the water-holding capacity) or moderately low pH (5–6) were prone to producing a greater PE.For the slow SOC pool,soil p H and soil total N content substantially explained the variation in PE.The magnitude of PE was likely to decrease with increasing soil pH for the slow SOC pool.In addition,the magnitude of PE slightly fluctuated with soil N content for the slow SOC pool.Overall,this meta-analysis provided new insights into the distinctive PEs for different SOC pools and indicated knowledge gaps between PE and its regulating factors for the slow SOC pool.  相似文献   

2.
The community structure of methanogenic archaea is relatively stable,i.e.,it is sustained at a high abundance with minimal changes in composition,in paddy field soils irrespective of submergence and drainage.In contrast,the abundance in non-methanogenic oxic soils is much lower than that in paddy field soils.This study aimed to describe methanogenic archaeal community development following the long-term submergence of non-methanogenic oxic upland field soils in pot and field experiments.In the pot experiment,a soil sample obtained from an upland field was incubated under submerged conditions for 275 d.Soil samples periodically collected were subjected to culture-dependent most probable number(MPN)enumeration,polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE)analysis of archaeal 16 S r RNA gene,and quantitative PCR analysis of the methyl-coenzyme M reductase alpha subunit gene(mcr A)of methanogenic archaea.The abundance of methanogenic archaea increased from 102 to 103 cells g-1 dry soil and 104 to 107 copies of mcr A gene g-1 dry soil after submergence.Although no methanogenic archaeon was detected prior to incubation by the DGGE analysis,members from Methanocellales,Methanosarcinaceae,and Methanosaetaceae proliferated in the soils,and the community structure was relatively stable once established.In the field experiment,the number of viable methanogenic archaea in a rice paddy field converted from meadow(reclaimed paddy field)was monitored by MPN enumeration over five annual cycles of field operations.Viability was also determined simultaneously in a paddy field where the plow layer soil from a farmer’s paddy field was dressed onto the meadow(dressed paddy field)and an upland crop field converted from the meadow(reclaimed upland field).The number of viable methanogenic archaea in the reclaimed paddy field was below the detection limit before the first cultivation of rice and in the reclaimed upland field.Then,the number gradually increased over five years and finally reached 103–104 cells g-1 dry soil,which was comparable to that in the dressed paddy field.These findings showed that the low abundance of autochthonous methanogenic archaea in the non-methanogenic oxic upland field soils steadily proliferated,and the community structure was developed following repeated and long-term submergence.These results suggest that habitats suitable for methanogenic archaea were established in soil following repeated and long-term submergence.  相似文献   

3.
芥菜种质资源分类研究进展   总被引:1,自引:0,他引:1  
芥菜是十字花科芸薹属的重要作物,是我国重要的加工和鲜食蔬菜[1]。中国芥菜资源之丰富堪称世界之首,目前对菜用芥菜的应用研究工作主要集中在以芥菜作为重要加工蔬菜的西南地区和浙江一带,研究重点放在选育品质优良、抗性好的加工、食用芥菜,对于芥菜的基础研究远远落后于同属的白菜和甘蓝[2]。  相似文献   

4.
杨梅(Myricarubra Sieb.etZucc)是我国亚热带理想的生态经济型树种,是南方特有的山地水果,也是我省极具区域优势的绿色农产品,近年来发展迅猛。但生产上常因管理不当造成杨梅减产、大小年结果或品质下降等现象,现已成为多数杨梅产区果农急待解决的技术难题。  相似文献   

5.
Increasing temperatures and variability of precipitation events due to climate change will lead in the future to higher irrigation demands in agroecosystems.However,the use of secondary treated wasterwater(TWW)could have consequences for the receiving soil environment and its resident microbial communities.The objective of this study was to characterize the importance of soil properties and habitats to the response of soil bacteria and archaea to irrigation with TWW.Two agricultural soils with contrasting textures(loamy sand or silt loam)and,for each,three variants differing in soil organic carbon and nitrogen,as generated by long-term fertilization,were analyzed.For each of these six soils,prokaryotic communities from two habitats,i.e.,root-free bulk soil and the rhizosphere of developing cucumber plants in the greenhouse,were characterized.Communities were analyzed by the quantity and diversity of their polymerase chain reaction(PCR)-amplified 16S rRNA genes.To account for TWW-associated nutrient effects,potable water(PW)served as a control.Amplicon sequence analysis showed that prokaryotic communities mainly consisted of bacteria(99.8%).Upon irrigation,regardless of the water quality,prokaryotic diversity declined,p H increased,and no bacterial growth was detected in bulk soil.In contrast,the growth of cucumbers was stimulated by TWW,indicating that plants were the main beneficiaries.Moreover,strong responses were seen in the rhizosphere,suggesting an indirect effect of TWW by altered rhizodepositions.The main bacterial responders to TWW were Proteobacteria,Bacteroidetes,Actinobacteria,and Planctomycetes.Changes in bacterial communities due to TWW were less pronounced in all variants of the silt loam,indicating the importance of clay and soil organic carbon for buffering effects of TWW on soil bacterial communities.Hence,soil organic carbon and soil texture are important parameters that need to be considered when applying TWW in agriculture.  相似文献   

6.
Iron and steel slags are smelting wastes, mainly including blast furnace slag(BFS) and steel slag(SS) produced in the iron and steel industry. Utilization of iron and steel slags as resources for solving the problem of slag disposals has attracted much attention with increasing iron and steel smelting slags in China. Because the iron and steel slags contain calcium(Ca), magnesium(Mg), phosphorus(P), and silicon(Si), some have tried to use them as Si-and P-fertilizers, for producing Ca-Mg-P fertilizers, or as soil amendments in agriculture. However, in the iron metallurgical process, several pollutants in iron ores can inevitably transfer into iron and steel slags, resulting in the enrichment of pollutants both in BFS(mainly nickel(Ni), copper(Cu), mercury, zinc(Zn),cadmium(Cd), chromium(Cr), arsenic, lead, selenium, fluorine(F), and chlorine(Cl)) and in SS(mainly Ni, Cr, Cd, Zn, Cu, F, and Cl), in which some of pollutants(especially Cr, Ni, F, and Cl) exceed the limits of environmental quality standards for soils and groundwater. The elements of manganese, barium,and vanadium in iron and steel slags are higher than the background values of soil environment. In order to ensure soil health, food safety, and environmental quality, it is suggested that those industrial solid wastes, such as iron and steel slags, without any pretreatment for reducing harmful pollutants and with environmental safety risk, should not be allowed to use for soil remediation or conditioning directly in farmlands by solid waste disposal methods, to prevent pollutants from entering food chain and harming human health.  相似文献   

7.
Protists are essential components of soil biodiversity and ecosystem functioning. They play a vital role in the microbial food web as consumers of bacteria, fungi, and other small eukaryotes and are also involved in maintaining soil fertility and plant productivity. Protists also contribute to regulating and shaping the bacterial community in terrestrial ecosystems via specific prey spectra. They play a role in plant growth promotion and plant health improvement,mostly via nutrient cycling, grazing, and the activation of bacterial genes required for plant growth and phytopathogen suppression. Thus, protists may prove to be a useful inoculant as biofertilizer and biocontrol agent. They can also be applied as model organisms as bioindicators of soil health. Despite their usefulness and essentiality, they are often forgotten and under-researched components of the soil microbiome, as most of our research focuses on bacteria and fungi. In this review, we provide an overview of the role of protists in plant productivity and plant health management and in shifts in soil bacterial community composition, as well as their roles as bioindicator. We also discuss the perspectives of knowledge gaps and future prospects to further improve soil biology.More research in soil protistology will provide insights into sustainable agriculture and environmental health alongside the study of bacteria and fungi.  相似文献   

8.
Soil contamination by heavy metals is a problem in agricultural irrigation systems.To assess the accumulation and sources of heavy metals in the Yongji irrigation district of the Hetao area,Inner Mongolia,China,195 soil samples from 39 sites(0–100 cm)were collected,and Zn,Cu,Pb,Cr,and Cd concentrations were analyzed.The mean concentrations were 107.17,32.48,12.31,53.53,and 0.22 mg kg-1,respectively,with no significant differences between soil depths(P>0.05).Concentrations of Zn,Cu,and Cd were higher than the background levels,with moderate accumulation;the contamination factor(CF)values were 1.9,1.7,and 1.9,respectively,and the geoaccumulation index(Igeo)was>0.Concentrations of Pb and Cr were lower than,or close to,the background levels(CF<1,Igeo<0),indicating that they originated from a natural source.The monomial potential ecological risk index(Eri)for Zn,Cu,Pb,and Cr was low;Eri for Cd was 55.73,implying a moderate risk.The grade of potential ecological risk index of the five heavy metals(RI)was low,declining from south to north.The studied soils were contaminated with Zn,Cu,and Cd;principal component(PC)analysis implicated the enrichment of Cd and partial Cu(high loading in PC 2)was related to agricultural activities;Zn and partial Cu,closely associated with PC 3,may have originated from irrigation water from the Yellow River.Future agricultural development should focus on fertilizer and pesticide application and the quality of irrigation water.  相似文献   

9.
党参因产地及加工方法不同,有不同的商品名。巫溪称"大宁党"、巫山称"巫山党"、"单支党"、"条党"、"庙党",奉节称"条党"。巫溪所产党参是川党参(C.tangshen Oliv.)中的一种,即"大宁党",其名称来源于产地命名(巫溪县在明国时期为大宁县),在植物学分类上为"条党",即产于重庆、湖北、陕西交界处的党参,其形状多条状,故名"条党"。  相似文献   

10.
The sorption of cadmium(Cd) is one of the most important chemical processes in soil, affecting its fate and mobility in both soil and water and ultimately controlling its bioavailability. In order to fundamentally understand the sorption/desorption of Cd in soil systems, X-ray absorption fine structure spectroscopy(XAFS) has been applied in numerous studies to provide molecular-level information that can be used to characterize the surface adsorption and precipitation reactions that Cd can undergo. This information greatly improves our current knowledge of the possible chemical reactions of Cd in soil. This paper critically reviews the mechanisms of Cd sorption/desorption at the mineral-water interface based on XAFS studies performed over the past twenty years. An introduction to the basic concepts of sorption processes is provided, followed by a detailed interpretation of XAFS theory and experimental data collection and processing,ending finally with a discussion of the atomic/molecular-scale Cd sorption mechanisms that occur at the soil mineral-water interface. Particular emphasis is placed on literature that discusses Cd adsorption and speciation when associated with iron, manganese, and aluminum oxides and aluminosilicate minerals.Multiple sorption mechanisms by which Cd is sorbed by these minerals have been found, spanning from outer-sphere to inner-sphere to surface precipitation,depending on mineral type, surface loading, and pH. In addition, the application of complementary techniques(e.g.,113 Cd nuclear magnetic resonance(NMR) and molecular dynamics simulation) for probing Cd sorption mechanisms is discussed. This review can help to develop appropriate strategies for the environmental remediation of Cd-contaminated soils.  相似文献   

11.
Periphytic biofilms exist widely in paddy fields, but their influences on the hydrolysis of organic phosphorus(P) have rarely been investigated. In this study,a periphytic biofilm was incubated in a paddy soil solution, and hydrolysis kinetic parameters(half-saturation constant(Km) and maximum catalytic reaction rate(Vmax)), optimal environmental conditions, substrate specificity, and response to different P regimes of the phosphatase activities in the periphytic biofilm were determined, in order to characterize extracellular phosphatase activities in periphytic biofilms from paddy fields. The results indicated that the periphytic biofilm could produce an acid phosphomonoesterase(PMEase), an alkaline PMEases, and a phosphodiesterase(PDEase). These three phosphatases displayed high substrate affinity, with Km values ranging from 141.03 to 212.96 μmol L-1. The Vmax/Km ratios for the phosphatases followed the order of alkaline PMEase > acid PMEase > PDEase, which suggested that the PMEases, especially the alkaline PMEase, had higher catalytic efficiency. The optimal pH was 6.0 for the acid PMEase activity and 8.0 for the PDEase activity, and the alkaline PMEase activity increased with a pH increase from 7.0 to 12.0. The optimal temperature was 50℃ for the PMEases and 60℃ for the PDEase. The phosphatases showed high catalytic efficiency for condensed P over a wide pH range and for orthophosphate monoesters at pH 11.0, except for inositol hexakisphosphate at pH 6.0. The inorganic P supply was the main factor in the regulation of phosphatase activities. These findings demonstrated that the periphytic biofilm tested had high hydrolysis capacity for organic and condensed P,especially under P-limited conditions.  相似文献   

12.
Conventional clear-cut timber harvest is a widespread industrial practice across the Pacific Northwest;however,information regarding how these practices impact soil microbial community structure at the regional scale is limited.With evidence of consistent and substantial impact of harvest on soil microbial functional profiles across the region(despite a range of environmental conditions),the objective of this study was to determine the extent to which harvest also influences the structure of prokaryotic and fungal soil microbial communities,and how generalized these trends are throughout the geographic region.Paired soil samples were collected one year before and after harvest across nine second-growth Douglas-fir forests in the Pacific Northwest.Total community DNA was extracted from the soils,and high-throughput targeted gene sequencing of the 16 S r RNA gene for prokaryotes and the internal transcribed spacer(ITS)gene for fungi was performed.Alpha diversity was consistently and significantly higher after harvest;it was moderately so for fungal communities(+14.6%),but only marginally so for prokaryotic communities(+2.0%).Similarly,on average,a greater proportion of the variation in the community structure of fungi(20.1%)at each site was associated with forest harvest compared to that of prokaryotes(13.2%).Overall,the greatest influence of timber harvest on soil microbial communities appeared to be a relative depletion of ectomycorrhizal fungi,with a concomitant enrichment of saprotrophic fungi.Understanding the short-term responses of soil microbial communities across the region,particularly those of tree root-associated symbionts,may aid our understanding of the role soil microbial communities play in ecological succession.  相似文献   

13.
Trace metal contamination in soil is of great concern owing to its long persistence in the environment and toxicity to humans and other organisms.Concentrations of six potentially toxic trace metals,Cr,Ni,Cu,As,Cd,and Pb,in urban soils were measured in Dhaka City,Bangladesh.Soils from different land-use types,namely,agricultural field,park,playground,petrol station,metal workshop,brick field,burning sites,disposal sites of household waste,garment waste,electronic waste,and tannery wast,and construction waste demolishing sites,were investigated.The concentration ranges of Cr,Ni,Cu,As,Pb,and Cd in soils were 2.4–1258,8.3–1044,9.7–823,8.7–277,1.8–80,and 13–842 mg kg^-1,respectively.The concentrations of metals were subsequently used to establish hazard quotients(HQs)for the adult population.The metal HQs decreased in the order of As>Cr>Pb>Cd>Ni>Cu.Ingestion was the most vital exposure pathway of studied metals from soils followed by dermal contact and inhalation.The range of pollution load index(PLI)was 0.96–17,indicating severe contamination of soil by trace metals.Considering the comprehensive potential ecological risk(PER),soils from all land-use types showed considerable to very high ecological risks.The findings of this study revealed that in the urban area studied,soils of some land-use types were severely contaminated with trace metals.Thus,it is suggested that more attention should be paid to the potential health risks to the local inhabitants and ecological risk to the surrounding ecosystems.  相似文献   

14.
Ralf CONRAD 《土壤圈》2020,30(1):25-39
Microbial methanogenesis is a major source of the greenhouse gas methane(CH4).It is the final step in the anaerobic degradation of organic matter when inorganic electron acceptors such as nitrate,ferric iron,or sulfate have been depleted.Knowledge of this degradation pathway is important for the creation of mechanistic models,prediction of future CH4 emission scenarios,and development of mitigation strategies.In most anoxic environments,CH4 is produced from either acetate(aceticlastic methanogenesis)or hydrogen(H2)plus carbon dioxide(CO2)(hydrogenotrophic methanogenesis).Hydrogen can be replaced by other CO2-type methanogenesis,using formate,carbon monoxide(CO),or alcohols as substrates.The ratio of these two pathways is tightly constrained by the stoichiometry of conversion processes.If the degradation of organic matter is complete(e.g.,degradation of straw in rice paddies),then fermentation eventually results in production of acetate and H2 at a ratio of>67%aceticlastic and<33%hydrogenotrophic methanogensis.However,acetate production can be favored when heterotrophic or chemolithotrophic acetogenesis is enhanced,and H2 production can be favored when syntrophic acetate oxidation is enhanced.This typically occurs at low and elevated temperatures,respectively.Thus,temperature can strongly influence the methanogenic pathway,which may range from 100%aceticlastic methanogenesis at low temperatures to 100%hydrogenotrophic methanogenesis at high temperatures.However,if the degradation of organic matter is not complete(e.g.,degradation of soil organic matter),the stoichiometry of fermentation is not tightly constrained,resulting,for example,in the preferential production of H2,followed by hydrogenotrophic methanogenesis.Preferential production of CH4 by either aceticlastic or hydrogenotrophic methanogenesis can also happen if one of the methanogenic substrates is not consumed by methanogens but is,instead,accumulated,volatilized,or utilized otherwise.Methylotrophic methanogens,which can use methanol as a substrate,are widespread,but it is unlikely that methanol is produced in similar quantities as acetate,CO2,and H2.Methylotrophic methanogenesis is important in saline environments,where compatible solutes are degraded to methyl compounds(trimethyl amine and dimethyl sulfide)and then serve as non-competitive substrates,while acetate and hydrogen are degraded by non-methanogenic processes,e.g.,sulfate reduction.  相似文献   

15.
Measuring ammonia(NH3)volatilization from urea-fertilized soils is crucial for evaluation of practices that reduce gaseous nitrogen(N)losses in agriculture.The small area of chambers used for NH3volatilization measurements compared with the size of field plots may cause significant errors if inadequate sampling strategies are adopted.Our aims were:i)to investigate the effect of using multiple open chambers on the variability in the measurement of NH3volatilization in urea-amended field plots and ii)to define the critical period of NH3-N losses during which the concentration of sampling effort is capable of reducing uncertainty.The use of only one chamber covering 0.015%of the plot(51.84 m2)generates a value of NH3-N loss within an expected margin of error of 30%around the true mean.To reduce the error margin by half(15%),3–7 chambers were required with a mean of 5 chambers per plot.Concentrating the sampling efforts in the first two weeks after urea application,which is usually the most critical period of N losses and associated errors,represents an efficient strategy to lessen uncertainty in the measurements of NH3volatilization.This strategy enhances the power of detection of NH3-N loss abatement in field experiments using chambers.  相似文献   

16.
Burying a straw layer and applying flue gas desulphurization(FGD)gypsum are effective practices to ameliorate soil salinization or alkalization and to increase crop yield;however,little information exists on the effects of such integration in saline-alkali soils.A soil column experiment was conducted to investigate the effects of a straw layer plus FGD gypsum on soil salinity and alkalinity.We placed a straw layer(5 cm thick)at a depth of 30 cm and mixed FGD gypsum into the 0–20 cm soil layer at application rates of 7.5,15.0,22.5,and 30.0 t ha^-1,with no straw layer and FGD gypsum as a control(CK).The soil water content in the 0–30 cm soil layer was significantly higher(>7.8%)in the treated soil profiles after infiltration than in the CK,but decreased after evaporation.The electrical conductivity(EC)of the 10–30 cm soil layer was 230.2%and 104.9%higher in the treated soil profiles than in the CK after infiltration and evaporation,respectively,and increased with increasing rates of FGD gypsum application,with Ca^2+and SO4^2-being the main dissolved salts.Compared to those in the CK,the concentrations of Na^+,Cl^-,and HCO3-decreased in the treated soil profiles at depths above 55 cm,but the other soluble ions increased,after infiltration.A similar trend occurred after evaporation for all soluble ions except for HCO3-.The p H and exchangeable sodium percentage in the treated soil profiles were significantly lower than those in the CK over the entire profile,and decreased with increasing FGD gypsum application rates.Therefore,the incorporation of a straw layer plus FGD gypsum can reduce salinity and alkalinity,but the quantity of FGD gypsum should be controlled in saline-alkali soils.  相似文献   

17.
Drought and heat are major environmental stresses that continually influence plant growth and development. Under field conditions, these stresses occur more frequently in combination than alone, which magnifies corresponding detrimental effects on the growth and productivity of agriculturally important crops. Plant responses to such abiotic stresses are quite complex and manifested in a range of developmental, molecular, and physiological modifications that lead either to stress sensitivity or tolerance/resistance. Maize (Zea mays L.) is known for its sensitivity to abiotic stresses, which often results in substantial loss in crop productivity. Bioaugmentation with plant growth-promoting rhizobacteria (PGPR) has the potential to mitigate the adverse effects of drought and heat stresses on plants. Hence, this is considered a promising and eco-friendly strategy to ensure sustainable and long-term maize production under adverse climatic conditions. These microorganisms possess various plant growth-promoting (PGP) characteristics that can induce drought and heat tolerance in maize plants by directly or indirectly influencing molecular, metabolic, and physiological stress responses of plants. This review aims to assess the current knowledge regarding the ability of PGPR to induce drought and heat stress tolerance in maize plants. Furthermore, the drought and heat stress-induced expression of drought and heat stress response genes for this crop is discussed with the mechanisms through which PGPR alter maize stress response gene expression.  相似文献   

18.
Denitrification is one of the major processes causing nitrogen loss from arable soils.This study aimed to investigate the responses of nir S-type denitrifier communities to different chronic fertilization regimes across the black soil region of Northeast China.Soil samples were collected from sites located in the north(NB),middle(MB),and south(SB)of the black soil region of Northeast China,each with four chronic fertilization regimes:no fertilizer(No F),chemical fertilizer(CF),manure(M),and chemical fertilizer plus manure(CFM).Methods of quantitative polymerase chain reaction(q PCR)and Illumina Mi Seq sequencing were applied to assess the abundance and composition of denitrifier communities by targeting the nir S gene.The results showed that the M and CFM regimes significantly increased the abundances of nir S-type denitrifiers compared with No F at the three locations.The majority of nir S sequences were grouped as unclassified denitrifiers,and the different fertilizers induced little variation in the relative abundance of known nir S-type denitrifier taxa.Over 90%of the sequences were shared among the four fertilization regimes at each location,but none of the abundant operational taxonomic units(OTUs)were shared among the three locations.Principal coordinate analysis(PCo A)revealed that the communities of nir S-type denitrifier were separated into three groups that corresponded with their locations.Although similar fertilization regimes did not induce consistent changes in the nir S-type denitrifier communities,soil p H and NO-3-N content simultaneously and significantly influenced the structure of nir S-type denitrifier communities at the three locations.Our results highlight that geographical separation rather than chronic fertilization was the dominant factor determining the nir S-type denitrifier community structures,and similar chronic fertilization regimes did not induce consistent shifts of nir S-type denitrifier communities in the black soils.  相似文献   

19.
Northern peatlands store nearly one-third of terrestrial carbon(C)stocks while covering only 3%of the global landmass;nevertheless,the drivers of C cycling in these often-waterlogged ecosystems are different from those that control C dynamics in upland forested soils.To explore how multiple abiotic and biotic characteristics of bogs interact to shape microbial activity in a northern,forested bog,we added a labile C tracer(13C-labeled starch)to in situ peat mesocosms and correlated heterotrophic respiration with natural variation in several microbial predictor variables,such as enzyme activity and microbial biomass,as well as with a suite of abiotic variables and proximity to vascular plants aboveground.We found that peat moisture content was positively correlated with respiration and microbial activity,even when moisture levels exceeded total saturation,suggesting that access to organic matter substrates in drier environments may be limiting for microbial activity.Proximity to black spruce trees decreased total and labile heterotrophic respiration.This negative relationship may reflect the influence of tree evapotranspiration and peat shading effects;i.e.,microbial activity may decline as peat dries and cools near trees.Here,we isolated the response of heterotrophic respiration to explore the variation in,and interactions among,multiple abiotic and biotic drivers that influence microbial activity.This approach allowed us to reveal the relative influence of individual drivers on C respiration in these globally important C sinks.  相似文献   

20.
Soil salinization affecting different crops is one of the serious threats to global food security.Soil salinity affects 20%and 33%of the total cultivated and irrigated agricultural lands,respectively,and has been reported to caused a global crop production loss of 27.3 billion USD.The conventional approaches,such as using salt-tolerant varieties,saline soil scrapping,flushing,leaching,and adding supplements (e.g.,gypsum and lime),often fail to alleviate stress.In this context,developing diverse arrays of microbes enhancing crop productivity under saline soil conditions without harming soil health is necessary.Various advanced omics approaches have enabled gaining new insights into the structure and metabolic functions of plant-associated beneficial microbes.Various genera of salt-tolerating rhizobacteria ameliorating biotic and abiotic stresses have been isolated from different legumes,cereals,vegetables,and oil seeds under extreme alkaline and saline soil conditions.Rapid progress in rhizosphere microbiome research has revived the belief that plants may be more benefited from their association with interacting diverse microbial communities as compared with individual members in a community.In the last decade,several salt-tolerating plant growth-promoting rhizobacteria (PGPR) that improve crop production under salt stress have been exploited for the reclamation of saline agrosystems.This review highlights that the interaction of salt-tolerating microbes with plants improves crop productivity under salinity stress along with potential salt tolerance mechanisms involved and will open new avenues for capitalizing on cultivable diverse microbial communities to strengthen plant salt tolerance and,thus,to refine agricultural practices and production under saline conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号