首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micronutrients, applied to the soil in pot tests, differentially altered the efficacy of nine fungicides used as a seed treatment against cowpea seedling rot caused by Rhizoctonia solani. Boron improved disease control by 2-methoxyethylmercury chloride, quintozene, chloroneb and carboxin, but five other micronutrients reduced the efficacy of the fungicides to varying extents. NPK lowered the efficacy of all the fungicides tested except that of thiabendazole, but carbendazim and benomyl gave maximum disease control in soil treated with a mixture of six micronutrients and NPK. Implications of micronutrient-fungicide interactions are discussed in the context of fungicidal control of R. solani; probable mechanisms of inactivation of fungicides by micronutrients are indicated.  相似文献   

2.
Stemphylium vesicarium, the causal agent of brown spot of pear, overwinters in the leaf residues of pear and herbaceous plants of the orchard floor. Pseudothecia of the teleomorph, Pleospora allii, are formed on these residues where they produce ascospores. New methods were tested aimed at reducing this overwintering inoculum and increasing the efficacy of control of brown spot of pear. Sanitation methods were evaluated in nine trials in Girona (Spain) and Ferrara (Italy) over a 4-year period. The sanitation methods were leaf litter removal in December to February, and application of biological control agents (commercial formulates of Trichoderma spp.) to the orchard ground cover from February to May. Fungicides were also applied to the trees during the pear-growing season, scheduled according to the BSPcast model. The different methods were tested as stand-alone applications or in combination. All methods consistently reduced the disease incidence at harvest on fruit with an efficacy between 30 to 60% for leaf litter removal and more than 60% for the combination of leaf litter removal and biological control. Efficacy of sanitation alone (leaf litter removal and biological control) in reducing the brown spot level on fruit was similar in most of the trials to the efficacy obtained when fungicides were applied alone. However, integration of sanitation methods and fungicides did not improve the efficacy of disease control over the level provided by fungicides alone.  相似文献   

3.
为了明确当前市场上具有代表性的11种防治马铃薯晚疫病杀菌剂的适宜施用时期,采用人工接种马铃薯叶片的方法,测定了其中5种药剂在接种晚疫病菌前10 d内不同时间施用的预防效果和其中7种药剂在接种后24 h内不同时间施用的治疗效果。结果显示:在保证良好防治效果的前提下,药剂在病原菌接种前保护性施用的适宜时期比在接种后治疗性施用的适宜时期要长。在测试浓度下,接种前5种供试药剂保持100%防治效果的适宜施用时期为接种前3~10 d;而接种后7种供试药剂保持相同防效的适宜施用时期仅为接种后6~12 h,在生产实际中难以操作。研究结果说明,在田间马铃薯晚疫病的化学防治中,为了取得良好防治效果,每次用药均应在病菌侵入之前采用保护性施用,尽量避免在病菌侵入之后进行治疗性施用。  相似文献   

4.
Highly significant genetic variation (P<0.001) in resistance to the morpholine fungicides fenpropimorph, tridemorph and dodemorph and the piperidine fungicide, fenpropidin was found in different populations ofPyrenophore teres in North America and Europe which had not been previously exposed to these fungicides. Resistance phenotypes were continuously distributed for each fungicide in each population. Cross resistance relationships were determined by estimating genetic correlation coefficients in resistance to all pairwise combinations of fungicides. The majority of the correlation coefficients were highly positive for all fungicide combinations in all populations; eight of 36 (22%) coefficients were not significantly different from 1 (P>0.05). This result is consistent with the hypothesis that many of the same genes, or genes in gametic disequilibrium, control resistance to more than one fungicide in most populations ofP. teres and that these fungicides comprise a single cross resistance group. Three of 36 (8%) correlation coefficients were not significantly different from 0 (P>0.05) indicating that, in these populations, independent genes controlled resistance to these fungicides. The results of this study indicate that although most of the same genes control resistance to morpholine and piperidine fungicides inP. teres, differences in frequencies of these genes among populations can result in different cross resistance relationships from one population to another.  相似文献   

5.
铁皮石斛黑斑病菌室内药效试验   总被引:9,自引:1,他引:9       下载免费PDF全文
通过供试的18种药剂对铁皮石斛黑斑病菌体外抑制作用测试结果表明,除克菌特外,所有药剂对其孢子萌发都有显著的抑制作用,其中代森锰锌、易保、代森锌和炭疽福美可完全抑制孢子萌发,霉克特、扑海英、使百克、新太生、甲基托布津和世高对孢子萌发有较强烈的抑制作用。与对照比较,克菌特促进孢子萌发率高于对照23.34%,克菌特和庄园乐都能促进芽管生长。18种药剂对石斛黑斑病菌菌丝体的抑制作用测定结果显示,所有药剂对菌丝生长都有显著的抑制作用,其中使百克和世高对菌丝体抑制效果最好,抑菌率都达91.28%,其次是施佳乐、福星和扑海英。  相似文献   

6.
In this study, the sensitivity of 218 isolates of Colletotrichum musae to imazalil and thiabendazole was evaluated, as well the fitness and competitive ability of less sensitive isolates. There was a positive correlation between the sensitivity to the two fungicides, but the isolates were more sensitive to imazalil. The estimated effective concentration of the fungicide able to inhibit mycelial growth by 50% (EC50) was used to select four isolates with the lowest and the highest values for both fungicides, which were considered as sensitive (S) and less sensitive (LS), respectively. The level of sensitivity was maintained after 10 successive transfers on fungicide-free medium. Both fungicides were effective in controlling the disease caused by S isolates of Cmusae in detached banana fruit when recommended doses were used. However, only imazalil was able to control the disease caused by LS isolates. For both fungicides, analysis of fitness-related variables (mycelial growth, sporulation, germination, and virulence) showed no difference between the groups of S and LS isolates, but a large variation was observed within the group. The LS isolates to thiabendazole that showed a mutation (F200Y) in the β-tubulin gene did not have fitness penalties. Our results allow a better understanding of the sensitivity and fitness of isolates of Cmusae from Brazil, and demonstrate the importance of periodic monitoring to determine the frequency of LS isolates in populations, aiming at more effective management of anthracnose in banana orchards in Brazil.  相似文献   

7.
Persistence of resistance to fungicides in Sphaerotheca fuliginea   总被引:2,自引:0,他引:2  
Isolates ofSphaerotheca fuliginea collected in 1981–1983 in cucumber glasshouses in the Netherlands were tested for their sensitivity to benzimidazole fungicides, dimethirimol, dinocap and pyrazophos.Resistance to dinocap was not observed, although this fungicide has been used for over 30 years. Resistance to benzimidazole fungicides and dimethirimol has been persistent since these fungicides were withdrawn for control of cucumber powdery mildew more than 10 years ago. Although pyrazophos has only been used incidentally after 1977, the level of resistance has not decreased.Factors possibly involved in the persistence of resistance and implications for disease control in practice are discussed.Samenvatting De gevoeligheid voor twee benzimidazool-fungiciden en dimethirimol, dinocap en pyrazofos werd getoetst vanSphaerotheca fuliginea isolaten die in 1981–1983 verzameld waren in komkommerkassen in Nederland. Resistentie tegen dinocap werd niet waargenomen, ofschoon dit fungicide al meer dan 30 jaar wordt gebruikt.De resistentie tegen benzimidazool-fungiciden en dimethirimol, die meer dan 10 jaar geleden werden teruggetrokken voor de bestrijding vanS. fuliginea, was persistent. Hoewel pyrazofos slechts incidenteel gebruikt is sinds 1977, is het resistentieniveau niet teruggelopen. Factoren die mogelijk betrokken zijn bij de persistentie van resistentie en de gevolgen voor de ziektebestrijding worden besproken.  相似文献   

8.
Articles on chemigation with fungicides targeting foliage have been reviewed. They included 23 fungicides tested on 10 crops. Many studies compared chemigation to a check treatment, while others also included conventional methods. Chlorothalonil, followed by mancozeb, fentin hydroxide and captafol were the most studied fungicides, while peanut (Arachis hypogaea), potato (Solanum tuberosum), tomato (Lycopersicon esculentum ), and dry beans (Phaseolus vulgaris) were the most studied crops. Center pivot, followed by solid set, were the irrigation systems most frequently used. The minimum volume of water applied by some center pivots (25 000 litre ha−1 ) is 25 times the maximum volume of water used by conventional ground sprayers. The reduction of fungicide residue on foliage caused by the very large volume of water used by chemigation might be offset by the following factors: (1) fungicide application at the time of maximum leaf wetness when fungi are most active, (2) complete coverage of plants, (3) reducing greatly the inoculum on plant and soil surface, (4) better control of some soil pathogens, and (5) more uniform distribution of fungicides by center pivot. Furthermore, chemigation avoids mechanical damage and soil compaction. Additionally, some systemic fungicides seem to be absorbed rapidly by the leaves, by root uptake from the soil, or by both. In general, all fungicides applied through irrigation water can lessen disease severity. However, when compared to conventional methods, chemigation with fungicides can be less, equally or more effective depending on crop, pathogen, disease severity, fungicide and volume of water. For Cercosporidium personatum control on peanuts, application of protectant fungicides through irrigation water is less effective than conventional methods, but the results with some systemic fungicides mixed with non-emulsified oil and applied through a relatively low volume of water (2.5 mm) are encouraging. Important diseases of potato and tomato can be controlled nearly as well by chemigation as by conventional methods without impairing yield. The main advantage of chemigation for these crops is avoiding a large number of tractor trips through the field and reduced costs of fungicide application. Chemigation has also been shown to be a good option for control of white mold [ Sclerotinia sclerotiorum] on dry beans. © 1999 Society of Chemical Industry  相似文献   

9.

BACKGROUND

A reduction in chasmothecia, an important inoculum of grape powdery mildew (Erysiphe necator Schwein.), is essential for disease control in vineyards; the use of fungicides during the formation of chasmothecia on vine leaves, late in the growing season, may accomplish this. Inorganic fungicides, such as sulphur, copper, and potassium bicarbonate, are very useful for this purpose because of their multisite mode of action. The aim of this study was to evaluate chasmothecia reduction using different fungicide applications late in the growing season in commercially managed vineyards and in an exact application trial.

RESULTS

Chasmothecia on vine leaves were reduced in commercial vineyards by four copper (P = 0.01) and five potassium bicarbonate (P = 0.026) applications. The positive effect of potassium bicarbonate was also confirmed in the application trial, where two applications showed lower chasmothecia numbers than the control (P = 0.002).

CONCLUSION

The application of inorganic fungicides reduced the amount of chasmothecia as the primary inoculum source. Potassium bicarbonate and copper are of further interest for disease control as these fungicides can be used by organic and conventional wine growers. The application of these fungicides should be carried out as late as possible before harvest to reduce chasmothecia formation and, consequently, the potential for powdery mildew infestation in the subsequent season. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

10.
Botrytis cinerea is an ubiquitous pathogen which causes severe losses in many fruit, vegetable and ornamental crops. The pathogen infects leaves, stems, flowers and fruits. The complexity of diseases caused by B. cinerea in greenhouses makes this pathogen one of the most important diseases of vegetable crops in greenhouse in many countries. In general, epidemics occur in cool and humid conditions, which favour infection and may also predispose the host to become susceptible. High relative humidity in the greenhouse and free moisture on plant surfaces are considered the most important environmental factors which influence infection by B. cinerea. In this review we specify the factors affecting the development of diseases incited by B. cinerea and discuss different approaches for its suppression. Chemical and non-chemical controls are outlined and their integration is discussed. Finally, achievements, gaps in knowledge, and future needs are indicated. The most common means for disease management is by application of chemical fungicides. Both spraying of fungicides and application of fungicides directly to sporulating wounds is practiced. However, high activity of several fungicides is being lost, at least in part, due to the development of resistance. As fungicides still remain an important tool for control of epidemics caused by B. cinerea, it is important to monitor populations of the pathogen for their resistance towards potential fungicides. Cultural measures can be a powerful means to suppress plant diseases in greenhouses where the value of crops is high and the farmers make considerable efforts during long cropping seasons. Such measures are usually aimed at altering the microclimate in the canopy and around susceptible plant organs, prevention of inoculum entrance into the greenhouse and its build up, and, rendering the host plants less susceptible to diseases. Calcium loading of plant tissues and alteration of nitrogen fertilization reduce susceptibility to Botrytis. Cultivars resistant to B. cinerea are not available. Another alternative methods to control B. cinerea is by means of biological control agents. At least one preparation is already available in the market and in many cases it was as effective as the conventional fungicides. A decision support system was recently developed for integration of chemical and biological controls. Adaquate suppression of B. cinerea diseases in greenhouse crops is an attainable goal. In our opinion this goal can be reached by considering the ecology of the pathosystem in its broader sense and by integration of all possible control measures. This implies optimization of plant nutrition, microlimate and control (cultural, biological, physiological and, if necessary, chemical) measures. Moreover, Botrytis management must be incorporated in a more holistic system that is compatible with insect control, crop production systems and profitability of the crop.  相似文献   

11.
Among contact fungicides, dithiocarbamates have remained successful and are used worldwide. These organic sulfur fungicides, viz. mancozeb, maneb, zineb, ziram, thiram, metiram and propineb, have helped growers manage several economically important plant diseases. Their multi‐site mode of action and broad‐spectrum disease control make them some of the most common partners in mixtures of a number of single‐site fungicides as part of resistance management strategies. Indeed, it was the part played by ethylene‐bis‐dithiocarbamates such as mancozeb in delaying the evolution of phenylamide resistance in several oomycete phytopathogens that laid the groundwork for mixture strategies to become a cornerstone of anti‐resistance management in plant disease control. Dithiocarbamates, however, do not have systemic action, are only surface protectants and have to be applied prior to pathogen infection. Dithiocarbamates will likely continue play a key role as reliable resistance management tools to prolong the efficacy of single‐site fungicides. The primary metabolite ethylene thiourea produced by some of these fungicides is considered a reproductive and endocrine disrupter in animals. Therefore, dithiocarbamates need to be used at reduced rates or in slow‐release formulations. © 2017 Society of Chemical Industry  相似文献   

12.
The control of pathogens, including two bacteria, nine fungi and a virus that cause diseases of soybean seeds and seedlings is discussed. Control methods include general management practices, biocontrol agents, fungicides applied to seeds and foliage, and thermotherapy. Guidelines for the use of seed treatment and foliar fungicides are given. The fungicides commonly used are listed and the interaction between certain fungicides and Bradyrhizobium inoculant is discussed.  相似文献   

13.
The effects of a new packaging method of sealing individual fruits in film of highdensity polyethylene (HDPE), on decay control and the residue levels of various fungicides applied to the fruit, were investigated with four different citrus cultivars. HDPE seal-packaging by itself reduced the decay of Marsh grapefruit but slightly enhanced the decay of Valencia orange fruit in comparison with conventionally handled fruit. Seal-packaging of individual fruit resulted in much less decay than sealing a whole carton of fruit together. The fungicides imazalil, sec-butylamine, 2-phenylphenol, benomyl and thiabendazole markedly reduced the decay of sealed fruit in all cultivars of citrus fruits tested. Residue levels in treated fruit were below the tolerances permitted. The new method of packaging had no effect on the residue levels of benomyl, 2-phenyl-phenol and thiabendazole in the fruit; neither did it affect the extent of absorption of these fungicides into the fruit. Only the volatile fungicide sec-butylamine was found at a higher level (73% higher in the packaged fruit compared with conventionally treated fruit).  相似文献   

14.
Fusarium head blight of cereals has, in recent years, become one of the most important pre-harvest diseases worldwide. This paper examines the in vitro efficacy of fungicides to control Fusarium species in cereals and the efficacy in the field on both Fusarium infection of ripening ears as well as their impact on mycotoxin production. Field studies suggest that fungicides such as tebuconazole and metconazole give good control of both Fusarium infection of ears and control of deoxynivalenol (DON) production. However, azoxystrobin and related fungicides are less effective, and grain from treated crops has sometimes been found to have increased concentrations of DON and nivalenol. Studies of isolates of Fusarium culmorum from different parts of Europe showed that complex interactions occur between environmental factors, fungicide type and isolate in relation to growth inhibition and DON production. These studies confirmed the ineffectiveness of azoxystrobin and suggest that environmental stress factors, particularly water availability and temperature, and low fungicide doses may stimulate mycotoxin production by Fusaria in vitro and in wheat grain.  相似文献   

15.
A series of chemical and biological control agents were tested for compatibility with the Rhizoctonia-specific biocontrol fungus Verticillium biguttatum aimed at designing novel control strategies for black scurf (Rhizoctonia solani) and other tuber diseases in potato. The efficacy of chemicals, alone and in combination with V. biguttatum was tested in in vitro assays on nutrient agar plates, in bio-assays with minitubers and in the field. Generally, there were both antagonistic, neutral and additive interactions with V. biguttatum among the combinations tested; there were no indications for synergistic interactions. Broad-spectrum fungicides (azoxystrobin, chlorothalonil, thiabendazole) were fungitoxic to V. biguttatum as shown in in vitro assays, and hampered black scurf control by V. biguttatum in bio-assays. Oomycete-specific chemicals (cymoxanil and propamocarb) and various biocontrol strains (Gliocladium spp., Pseudomonas spp. and Trichoderma spp.) did not interfere with the growth of V. biguttatum on agar nutrient plates and did not affect black scurf control by V. biguttatum in co-applied treatments in the minituber bio-assay. Rhizoctonia-specific (pencycuron, flutalonil) fungicides co-applied with V. biguttatum showed additive effects on black scurf control. When combinations of V. biguttatum and cymoxanil or propamocarb were applied to immature potato tubers at green crop lifting, a reduction of both black scurf and Pythium- or Phytophthora-incited tuber rot was observed at harvest. In conclusion, the biocontrol fungus V. biguttatum is compatible with selected chemical control systems and may improve control efficacy in combination with Rhizoctonia-specific fungicides or may extend control spectrum in combination with Oomycete-specific fungicides.  相似文献   

16.
17.
The effects of seven adjuvants (at 0, 0.5, 1.0 and 2.0 g litre?1) on the efficacies of four fungicides al 0.5 g litre?1 were studied in the laboratory for the control of leaf-spot in celery (caused by Septoria apiicola) and powdery mildew on winter wheat (caused by Erysiphe graminis). The most effective fungicides for controlling leaf-spot were: tebuconazole + triadimenol = flutriafol > mancozeb + oxadixyl > prochloraz. However, addition of adjuvant to the fungicides gave a modified pattern of effectiveness. The efficacy of flutriafol was strongly enhanced by addition of all adjuvants, but those of prochloraz and mancozeb+oxadixyl only partially so. The tested adjuvants were mineral oil + surfactant, a polymer/alkoxylated alkyl ether blend, an ethoxylated alkylphenol, an ethoxylated hexitan ester blend, an ethoxylated nonylphenol and an alkylpolysaccharide- based adjuvant mixture. However, the addition of adjuvants to tebuconazole + triadimenol had a negative effect. Of all the adjuvants tested, the nonylphenol ethoxylate and a mixture of mineral oil /surfactant and alkylpolysaccharides gave the highest efficacy with the fungicides, while the mineral oil/surfactant and the alkylpolysaccharides alone were less effective. There was a positive relationship between high concentrations of adjuvants and their effectiveness, but there were some exceptions. The most effective fungicides for control of powdery mildew in wheat were prochloraz, mancozeb + oxadixyl and tebuconazole + triadimenol. There was a linear relationship between the high efficacy of the fungicide and the concentration of adjuvants to control powdery mildew in wheat. The highest concentration of adjuvant (2-0 g litre?1) gave the highest efficacy for the fungicides.  相似文献   

18.
香蕉枯萎病田间发病株的高效灭菌方法筛选   总被引:1,自引:0,他引:1  
为筛选有效防控香蕉枯萎病菌扩散蔓延的灭菌方法,采用含毒介质培养法测定咪鲜胺和多菌灵不同配比对枯萎病菌的毒力作用以筛选最佳混配液,比较最佳混配液与生石灰、草甘膦、咪鲜胺的平板抑菌和大田灭菌效果,并研究了大田不同施用方式对最佳混配液灭菌效果的影响。结果表明,咪鲜胺与多菌灵体积比为10∶1时得最佳混配液,可显著提高对香蕉枯萎病菌的抑制效果,增效系数为1.53,EC50值最小,为0.025 mg/L;4种药剂的EC50值由大到小为草甘膦生石灰咪鲜胺最佳混配液。1 000 mg/L最佳混配液喷施于大田病株5 d后根际土壤病菌含量下降了95.93%,10 d后球茎病菌含量减少了71.88%,综合灭菌效果显著优于其它处理。此外,应用打孔灌药法可显著提高最佳混配液对大田病株的灭菌效果,施用5 d后球茎病菌含量减少了95.95%。表明以打孔灌药法施用1 000 mg/L最佳混配液灭菌效果显著且操作便捷,易于推广应用。  相似文献   

19.
为筛选出有效防治番茄叶霉病的药剂,采用生长速率法及平板涂布法测定6种三唑类杀菌剂对番茄叶霉病菌菌丝生长及分生孢子萌发和芽管伸长的毒力,评价其对番茄植株的安全性和对叶霉病的田间防效。结果表明,己唑醇、苯醚甲环唑、戊唑醇和氟硅唑对番茄叶霉病菌菌丝生长的毒力均较高,EC_(50)分别为0.50、0.55、0.80、2.42 mg/L,其次为腈菌唑和四氟醚唑,EC50分别为6.92、15.08 mg/L。6种杀菌剂抑制病菌分生孢子萌发及芽管伸长的作用均较弱,对芽管伸长的抑制活性高于对孢子萌发的抑制活性;戊唑醇和四氟醚唑抑制孢子萌发的作用相对较强,100 mg/L处理的抑制率为60%~70%,戊唑醇、四氟醚唑和己唑醇抑制芽管伸长的作用相对较强,100 mg/L处理的抑制率均在70%以上。己唑醇和戊唑醇200 mg/L处理番茄植株,显著抑制其株高,苯醚甲环唑和腈菌唑对其影响相对较小,这4种杀菌剂对番茄植株的叶色及形态均无明显影响;且这4种杀菌剂对番茄叶霉病的田间预防效果均高于治疗效果,其中150 mg/L己唑醇的预防效果和治疗效果均最高,分别为90.67%和85.58%;苯醚甲环唑的最低,300 mg/L时预防效果为80.16%,治疗效果为71.68%。  相似文献   

20.
BACKGROUND: A range of botryosphaeriaceous species can cause dieback and cankers in grapevines; however, different species most commonly affect the grapevines in different grape‐growing regions and countries. They infect through wounds and sporulate on woody stems and green shoots throughout the year, so wound protection is the recommended control strategy. This research evaluated fungicides for their ability to reduce mycelial growth and conidial germination of three botryosphaeriaceous species and to protect pruning wounds against infection. RESULTS: In vitro experiments showed that nine out of 16 tested fungicides were effective at reducing mycelial growth and/or conidial germination of three isolates each of Neofusicoccum australe, N. luteum and Diplodia mutila. The species differed in their response to the fungicides, although N. luteum was usually the least sensitive. When nine selected fungicides were sprayed on cane pruning wounds on potted and field grapevines and subsequently inoculated with N. luteum conidia, some effectively protected them from infection. The most effective fungicides were flusilazole, carbendazim, tebuconazole, thiophanate‐methyl and mancozeb, as they prevented the inoculated pathogen from infecting healthy wood in 100, 93, 87, 83 and 80% of field vines, respectively. CONCLUSION: This research has demonstrated that fungicides applied after winter pruning can protect vines from infection by conidia of three botryosphaeriaceous species. Copyright © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号