首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Val-Pro-Pro (VPP) and Ile-Pro-Pro (IPP) are antihypertensive tripeptides isolated from milk fermented with Lactobacillus helveticus and inhibit angiotensin-converting enzyme (ACE). We investigated whether these peptides were generated from beta-casein by digestive enzymes and whether they were resistant to enzymatic hydrolysis, using an in vitro model. VPP and IPP were not generated from beta-casein by gastrointestinal enzymes; instead, a number of longer peptides including VPP and IPP sequences were detected. The fermentation step would therefore be necessary to produce these antihypertensive tripeptides. VPP and IPP themselves were hardly digested by digestive enzymes, suggesting that orally administered VPP and IPP remain intact in the intestine, retaining their activity until adsorption. The present study also demonstrated that various functional peptide sequences in beta-casein were resistant to gastrointestinal enzymes. There may be a strong correlation between the resistance of peptides to gastrointestinal digestion and their real physiological effects after oral administration.  相似文献   

2.
This study aimed to achieve the conversion of cereal proteins to the alternative end products glutamate or γ-aminobutyrate (GABA). Rye malt, fungal proteases, and lactobacilli were employed to convert wheat gluten or barley proteins. Glutamate and GABA formations were strain-dependent. Lactobacillus reuteri TMW1.106 and Lactobacillus rossiae 34J accumulated glutamate; L. reuteri LTH5448 and LTH5795 accumulated GABA. Glutamate and GABA accumulation by L. reuteri TMW1.106 and LTH5448 increased throughout fermentation time over 96 h, respectively. Peptides rather than amino acids were the main products of proteolysis in all doughs, and barley proteins were more resistant to degradation by rye malt proteases than wheat gluten. However, addition of fungal protease resulted in comparable degradation of both substrates. Glutamate and GABA accumulated to concentrations up to 63 and 90 mmol kg(-1) DM, respectively. Glutamate levels obtained through bioconversion of cereal proteins enable the use of hydrolyzed cereal protein as condiment.  相似文献   

3.
Gluten‐free breads, which are composed of gluten‐free flours, starch, and hydrocolloids, differ from wheat and rye breads in relation to texture, volume, and crumb structure. Moreover, the dietary fiber content is lower compared with wheat or rye breads. Cereal isolates of lactic acid bacteria frequently produce oligo‐ and homopolysaccharides from sucrose, which can improve the nutritional and technological properties of gluten‐free breads as prebiotic carbohydrates and hydrocolloids, respectively. Sorghum sourdough was fermented with Lactobacillus reuteri LTH5448 or Weissella cibaria 10M, which synthesize fructooligosaccharides (FOS) and levan, and isomaltooligosaccharides and dextran, respectively. The gluten‐free bread was produced with 14% sourdough addition. L. reuteri LTH5448 formed FOS and 1.5 g of levan/kg DM in quinoa sourdoughs. FOS were digested by the baker's yeast during proofing, and the levan could be qualitatively detected in the bread. W. cibaria 10M produced >60 g of isomaltooligosaccharides/kg DM and 0.6 g of dextran/kg DM, which could still be detected in the bread. Breads prepared with W. cibaria 10M were less firm compared with breads prepared with L. reuteri LTH5448 or a FOS and levan‐negative mutant of L. reuteri LTH5448. The addition of sourdoughs fermented with oligo‐ and polysaccharide forming starter cultures can increase the content of prebiotic oligosaccharides in gluten‐free breads.  相似文献   

4.
Angiotensin-I-converting enzyme (ACE) inhibitory activity was identified in milk proteins fermented with Lactobacillus (Lb.) helveticus NCC 2765 (Nestle Culture Collection, Vers-chez-les-Blanc, Switzerland). Hydrolyzing sodium caseinate for 1 and 2 h inhibited ACE activity, as measured by an in vitro ACE inhibition test. The hydrolysates with the highest ACE inhibitory potential were fractionated by gel permeation chromatography and their low molecular weight fractions collected. These fractions were subsequently subfractionated by reverse-phase high-pressure liquid chromatography. Several hydrophobic subfractions showed high ACE inhibitory potential, and their peptide composition was determined using an ion trap mass spectrometer equipped with an elctrospray ionization source. Analysis of the low molecular weight fraction identified 14 peptides with known antihypertensive activity and 1 with previously described opioid activity. On the basis of the peptide composition of active subfractions, two potentially active novel sequences were defined, and the following synthetic peptides were synthesized: FVAPFPEVFG (alphaS1 39-48), ENLLRFFVAPFPEVFG (alphaS1 33-48), NENLLRFFVAPFPEVFG (alphaS1 32-48), LNENLLRFFVAPFPEVFG (alphaS1 31-48), NLHLPLPLL (beta 147-155), ENLHLPLPLL (beta 146-155), and VENLHLPLPLL (beta 145-155). The ACE inhibitory potential of these synthetic peptides was assessed, and IC50 values were determined. NLHLPLPLL (beta 147-155), which was the only synthetic peptide also present in the sodium caseinate hydrolysates, and NENLLRFFVAPFPEVFG (alphaS1 32-48) showed the highest inhibition of ACE activity, with IC50 values of 15 and 55 microM, respectively. Furthermore, the stability of all synthetic peptides was assessed using an in vitro model simulating gastric digestion. The beta-casein-derived peptides remained intact following the successive hydrolysis by pepsin and pancreatin, whereas alphaS1-casein-derived peptides were degraded by pepsin.  相似文献   

5.
为筛选适用于发酵蛤蜊制备降血压活性多肽的纳豆芽孢杆菌,本试验从7种日本纳豆中初筛6株具有较高蛋白酶活性的纳豆芽孢杆菌株用于发酵蛤蜊,以体外血管紧张素转化酶(ACE)抑制率及多肽含量为评价指标筛选目的菌株。结果表明,共筛选出3株目的菌株(GL-5、GL~(-1)2和GL-25),其发酵产物对ACE抑制率分别为71.55%、78.31%、75.08%,多肽含量分别可达8.12、9.62、8.79mg·m L~(-1)。其中,GL~(-1)2发酵产物经消化酶水解后仍保持68.31%的ACE抑制率,表明其具有较强的抗消化能力。本研究结果为蛤蜊高值化利用开发具有降血压作用的功能食品提供了一定的理论依据。  相似文献   

6.
Two hundred and sixteen LAB cultures from sourdoughs and dough for bread and panettone production were screened for in vitro antifungal properties against three indicator cultures ascribed to Aspergillus japonicus , Eurotium repens , and Penicillium roseopurpureum , isolated from bakery environment and moldy panettone. Nineteen preselected isolates were subjected to minimum inhibitory concentration determination against the indicator cultures. Sourdoughs prepared with the two most promising strains, identified as Lactobacillus rossiae LD108 and Lactobacillus paralimentarius PB127, were characterized. The sourdough extracts were subjected to HPLC analysis coupled with a microtiter plate bioassay against A. japonicus to identify the active fractions. MALDI-TOF MS analysis revealed the occurrence of a series of peptides corresponding to wheat α-gliadin proteolysis fragments in the active fraction from L. rossiae LD108 sourdough. The ability to prevent mold growth on bread was demonstrated for both strains, whereas L. rossiae LD108 also inhibited mold growth on panettone.  相似文献   

7.
Bakeries use sourdoughs to improve bread properties such as flavor and shelf life. The degradation of gluten proteins during fermentation may, however, crucially alter the gluten network formation. We observed changes that occurred in the HMW glutenins during wheat sourdough fermentations. As fermentation starters, we used either rye sourdough or pure cultures of lactobacilli and yeast. In addition, we incubated wheat flour (WF) in the presence of antibiotics under different pH conditions. The proteolytic activities of cereal and sourdough‐derived proteinases were studied with edestin and casein. During sourdough fermentations, most of the highly polymerized HMW glutenins degraded. A new area of alcohol‐soluble proteins (≈30.000 MW) appeared as a result of the proteolytic breakdown of gluten proteins. Very similar changes were observable as WF was incubated in the presence of antibiotics at pH 3.7. Cereal and sourdough‐derived proteinases hydrolyzed edestin at pH 3.5 but showed no activity at pH 5.5. An aspartic proteinase inhibitor (pepstatin A) arrested 88–100% of the activities of sourdough enzymes. According to these results, the most active proteinases in wheat sourdoughs were the cereal aspartic proteinases. Acidic conditions present in sourdoughs create an ideal environment for cereal aspartic proteinases to be active against gluten proteins.  相似文献   

8.
Rye sourdough (RSD) gives rye bread mildly acidic taste and desired flavor. Flavor precursors (amino acids and small peptides) are generated in the proteolytic breakdown of rye proteins. Our aim was to study the protein degradation during RSD fermentations. Two sourdoughs were prepared of flours derived from two rye cultivars (Amilo and Akusti). RSD samples were collected during fermentations. Three protein fractions were obtained by sequential protein extraction and these were analyzed by SDS‐PAGE. Free amino nitrogen (FAN) was measured with a ninhydrin method. In addition, two rye incubations without starter microorganisms (with antibiotics) were made at pH 3.6 and 6.1, and proteinase profiles of the rye cultivars were analyzed at pH 4.3. SDS‐PAGE analysis showed that during RSD fermentations, rye proteins, especially the alcohol‐soluble secalins, were degraded. Secalins also evidently degraded during the incubation without starter microorganisms at pH 3.6. Aspartic proteinases were in the major proteinase group in both rye cultivars. This study confirms that endogenous proteinases of rye, mainly aspartic proteinases, hydrolyze rye proteins, especially secalins, during RSD fermentation. Protein degradation in rye sourdoughs may thus be enhanced by selecting rye flours with high proteolytic activity toward secalins.  相似文献   

9.
为获得发酵性能优良的菌株,生产优质的发酵叶用芥菜,本研究从自然发酵的芥菜中分离发酵用菌株,通过测定乳酸菌的生长、产酸和亚硝酸盐降解能力以及酵母菌的产气、产酯能力和蛋白酶活性等发酵特性进行筛选,并对筛选获得的优良发酵菌加以应用。结果表明,筛选获得的2株乳酸菌L8短乳杆菌(Lactobacillus brevis)、L9植物乳杆菌(Lactobacillus plantarum)和1株酵母菌Y9酿酒酵母菌(Saccharomyces cerevisiae)在腌制叶用芥菜中的发酵性能优良。与自然发酵的叶用芥菜相比,接菌发酵叶用芥菜的pH值和亚硝酸盐含量分别减少了2.22%和88.13%;总酸含量、氨基酸态氮含量分别增加了9.02%和28.09%。接菌发酵提高了腌制芥菜的营养品质和安全性。本研究丰富了叶用芥菜的发酵菌种,为蔬菜发酵加工产业奠定了技术基础。  相似文献   

10.
In wheat sourdoughs, the degradation of gluten proteins is favored by acidification and reducing conditions. This study aimed to determine the proteolytic degradation of egg white proteins in wheat sourdoughs acidified with lactobacilli differing in their thiol metabolism. Ovotransferrin was the only major egg white protein that degraded during sourdough fermentations. An extensive degradation of ovotransferrin required a heterofermentative lactobacilli starter, Lactobacillus sanfranciscensis, with glutathione reductase activity. Ovotransferrin was more resistant to breakdown when sourdoughs were acidified with homofermentative lactobacilli or a mutant strain of L. sanfranciscensis lacking the glutathione reductase. Its susceptibility to proteolysis in L. sanfranciscensis sourdoughs is thus attributable to thiol accumulation by L. sanfranciscensis, which apparently altered the structure of ovotransferrin through a reduction of disulfide bonds. Proteolytic degradation of ovotransferrin was attributable to wheat aspartic proteinases. In addition to the susceptibility to proteolysis, other functional properties of egg proteins may be influenced by thiol-exchange reactions.  相似文献   

11.
Autolysis of protein isolates from vascular bundle and inner tuber tissues of potato (Solanum tuberosum) enhanced the inhibition of the angiotensin converting enzyme I (ACE), a biochemical factor affecting blood pressure (hypertension). The physiological age of the tuber affected the strength of ACE inhibition, the rate of its increase during autolysis, and the tuber tissue where ACE inhibition was most pronounced. The highest inhibitory activities (50% reduction in ACE activity achieved following autolysis at a protein concentration of 0.36 mg mL (-1)) were measured in tubers after 5-6 months of storage prior to sprouting. The rate of ACE inhibition was positively correlated with protease activity in tuber tissues. Amendment of the autolysis reaction with protein substrates from which bioactive ACE-inhibitory peptides may be released, for example, a purified recombinant protein or a concentrate of total tuber proteins, also enhanced ACE inhibition. Many tuber proteins including aspartic protease inhibitors were degraded during autolysis. The data provide indications of differences in the enzymatic activities confined to different parts of the potato tuber at different physiological stages. Results suggest that native enzymes and substrate proteins of potato tubers can be utilized in search of dietary tools to manage elevated blood pressure.  相似文献   

12.
In the search for novel peptides that inhibit the angiotensin I-converting enzyme (ACE), porcine skeletal troponin was hydrolyzed with pepsin, and the products were subjected to various types of chromatography to isolate active peptides. Glu-Lys-Glu-Arg-Glu-Arg-Gln (EKERERQ) and Lys-Arg-Gln-Lys-Tyr-Asp-Ile (KRQKYDI) were identified as active peptides, and their 50% inhibitory concentrations were found to be 552.5 and 26.2 microM, respectively. These are novel ACE inhibitory peptides, and the activity of KRQKYDI was the strongest among previously reported troponin-originated peptides. KRQKYDI was slowly hydrolyzed by treatment with ACE, and kinetic studies indicated that this peptide was a competitive inhibitor of the enzyme. When KRQKYDI was administered orally to spontaneously hypertensive rats (SHR) at a dose of 10 mg/kg, a temporary antihypertensive activity was observed at 3 and 6 h after administration.  相似文献   

13.
Bovine skin gelatin was hydrolyzed with sequential protease treatments in the order of Alcalase, Pronase E, and collagenase using a three-step ultrafiltration membrane reactor. The molecular weight distributions of the first, second, and third hydrolysates were 4.8-6.6, 3.4-6.6, and 0.9-1.9 kDa, respectively. The angiotensin I converting enzyme (ACE) inhibitory activity of the third hydrolysate (IC(50) = 0.689 mg/mL) was higher than that of the first and second hydrolysates. Two different peptides showing strong ACE inhibitory activity were isolated from the hydrolysate using consecutive chromatographic methods including gel filtration chromatography, ion-exchange chromatography, and reversed-phase high-performance liquid chromatography. The isolated peptides were composed of Gly-Pro-Leu and Gly-Pro-Val and showed IC(50) values of 2.55 and 4.67 microM, respectively.  相似文献   

14.
The exopolysaccharide (EPS) produced from sucrose by Lactobacillus sanfranciscensis LTH2590 is predominantly composed of fructose. EPS production during sourdough fermentation has the potential to affect rheological properties of the dough as well as the volume, texture, and keepability of bread. Its in situ production by L. sanfranciscensis LTH2590 was demonstrated during sourdough fermentation after the hydrolysis of water soluble polysaccharides. In wheat and rye doughs with sucrose addition the concentration of fructose in the hydrolysate of polysaccharides was significantly higher than that in the hydrolysate of control doughs or doughs without sucrose addition. EPS production by L. sanfranciscensis in wheat doughs was confirmed by the determination of delta (13)C values of water soluble polysaccharides after the addition of naturally labeled sucrose, originating from C(3)- and C(4)-plants. In rye doughs, evidence for EPS production with the isotope technique could be demonstrated only by the determination of delta (13)C values of fructose from water soluble polysaccharides. In addition to EPS formation from sucrose, sucrose hydrolysis by L. sanfranciscensis in wheat and rye sourdoughs resulted in an increase of mannitol and acetate concentrations and in accumulation of glucose. It was furthermore observed that flour arabinoxylans were solublized during the fermentation.  相似文献   

15.
A lung extract rich in angiotensin converting enzyme (ACE) and pure ACE were immobilized by reaction with the activated support 4 BCL glyoxyl-agarose. These immobilized ACE derivatives were used for purification of ACE inhibitory peptides by affinity chromatography. The immobilized lung extract was used to purify inhibitory peptides from sunflower and rapeseed protein hydrolysates that had been obtained by treatment of protein isolates with alcalase. The ACE binding peptides that were retained by the derivatives were specifically released by treatment with the ACE inhibitor captopril and further purified by reverse-phase C18 HPLC chromatography. Inhibitory peptides with IC50 50 and 150 times lower than those of the original sunflower and rapeseed hydrolysates, respectively, were obtained. The derivative prepared using pure ACE was used for purification of ACE inhibitory peptides from the same type of sunflower protein hydrolysate. ACE binding peptides were released from the ACE-agarose derivatives by treatment with 1 M NaCl and had an IC50 a little higher than those obtained using immobilized extract and elution with captopril. Affinity chromatography facilitated the purification of ACE inhibitory peptides and potentially other bioactive peptides present in food proteins.  相似文献   

16.
Angiotensin converting enzyme (ACE) inhibitory peptides prepared from soy protein by the action of alcalase enzyme was tested for its hypotensive effect on spontaneously hypertensive rats (SHR). Captopril, an ACE inhibitor used widely for hypertension treatment, was also applied in comparison. A significant (p < 0.05) decrease in systolic blood pressure of SHR was observed when soy ACE inhibitory peptides were orally administrated at three different dose levels (100, 500, and 1000 mg/kg of body weight/day), whereas little change occurred in the blood pressure of normotensive rats even at the highest dose. After a month-long feeding, blood pressure readings of SHR fell by approximately 38 mmHg from the original level at the lowest dose; a steadily and progressively hypotensive effect existed for these soy ACE inhibitory peptides administration groups. An obvious fluctuation was observed at the third week, although Captopril had a stronger hypotensive effect. The ACE activity of serum, aorta and lung, and lipid content of serum of SHR upon administration of soy ACE inhibitory peptides did not show a significant difference from that of the control group, whereas the serum ACE activity increased and the aorta ACE activity decreased significantly (p < 0.05) for the Captopril group. Serum Na(+) concentration decreased significantly in both the peptides-treated groups and the Captopril-treated group in comparison with the control group, whereas no lowering effect was observed for serum K(+) and serum Ca(2+) concentrations. These results suggested that the hypotensive effect of ACE inhibitory peptides derived from soy protein could be at least partly attributed to the action on salt/water balance.  相似文献   

17.
The effect of various sourdoughs and additives on bread firmness and staling was studied. Compared to the bread produced with Saccharomyces cerevisiae 141, the chemical acidification of dough fermented by S. cerevisiae 141 or the use of sourdoughs increased the volume of the breads. Only sourdough fermentation was effective in delaying starch retrogradation. The effect depended on the level of acidification and on the lactic acid bacteria strain. The effect of sourdough made of S. cerevisiae 141-Lactobacillus sanfranciscensis 57-Lactobacillus plantarum 13 was improved when fungal alpha-amylase or amylolytic strains such as L. amylovorus CNBL1008 or engineered L. sanfranciscensis CB1 Amy were added. When pentosans or pentosans, endoxylanase enzyme, and L. hilgardii S32 were added to the same sourdough, a greater delay of the bread firmness and staling was found. When pentosans were in part hydrolyzed by the endoxylanase enzyme, the bread also had the highest titratable acidity, due to the fermentation of pentoses by L. hilgardii S32. The addition of the bacterial protease to the sourdough increased the bread firmness and staling.  相似文献   

18.
Angiotensin I converting enzyme (ACE) inhibitory activity was determined in the soy protein isolate (SPI) digest produced by in vitro pepsin-pancreatin sequential digestion. The inhibitory activity was highest within the first 20 min of pepsin digestion and decreased upon subsequent digestion with pancreatin. An IC(50) value of 0.28 +/- 0.04 mg/mL was determined after 180 min of digestion, while no ACE inhibitory activity was measured for the undigested SPI at 0.73 mg/mL. Chromatographic fractionation of the SPI digest resulted in IC(50) values of active fractions ranging from 0.13 +/- 0.03 to 0.93 +/- 0.08 mg/mL. Although many of the fractions showed ACE inhibition, peptides with lower molecular masses and higher hydrophobicities were most active. The findings show that many different peptides with ACE inhibitory activities were produced after in vitro pepsin-pancreatin digestion of SPI and lead to the speculation that physiological gastrointestinal digestion could also yield ACE inhibitory peptides from SPI.  相似文献   

19.
Naturally occurring ACE (angiotensin converting enzyme) inhibitory peptides have a potential as antihypertensive components in functional foods or nutraceuticals. These peptides have been discovered in various food sources from plant and animal protein origin. In this paper an overview is presented of the ACE inhibitory peptides obtained by enzymatic hydrolysis of muscle protein of meat, fish, and invertebrates. Some of these peptides do not only show in vitro ACE inhibitory activity but also in vivo antihypertensive activity in spontaneously hypertensive rats. To focus on new sources of ACE inhibitory peptides, more specifically insects and other invertebrates, we compared the vertebrate and invertebrate musculature and analyzed phylogenetic relationships.  相似文献   

20.
酸马奶酒中微生物的分离鉴定及抗菌特性的研究   总被引:27,自引:3,他引:27  
从内蒙古锡盟不同地区采集15份酸马奶酒样品,经分离纯化、归属种鉴定,并单菌发酵液经调pH值、蒸发酒精、浓缩后,对李斯特杆菌、金黄色葡萄球菌、大肠杆菌进行抑菌研究。结果表明,酸马奶酒是由多种乳酸菌和酵母菌共同发酵的乳饮料。其中乳酸菌中有球菌5个属,杆菌6个属,酵母菌6个属。乳酸菌中有9株乳球菌和12株乳杆菌对李斯特杆菌有抑制作用,对大肠杆菌和金黄色葡萄球菌无抑制作用。酵母菌中有4株对大肠杆菌有抑菌作用,其中有2株同时对金黄色葡萄球菌有抑制作用,对李斯特杆菌无抑制作用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号