首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The development and survival of the mycoparasite Coniothyrium minitans associated with sclerotia of the plant pathogen Sclerotinia sclerotiorum was studied in pasteurised and non-sterile (untreated) soil. Using scanning electron microscopy, developing pycnidia were first seen within the sclerotial medulla at 7 days post-inoculation with the mycoparasite in pasteurised soil. However, by 14 days post-inoculation, pycnidia had developed fully in both pasteurised and non-pasteurised treatments, and conidial droplets were exuded onto the outer surface of the infected sclerotia. Thirty days post-inoculation, irrespective of soil treatment, the majority of the sclerotial medulla had been converted to pycnidia, with the sclerotial rind remaining largely intact. The pycnidia and dried intact droplets were still observed 6 months post-inoculation with C. minitans, although the conidia on the outer surface of the dried droplets had largely collapsed by this stage. Germinability studies at 10 months post-inoculation showed that approximately 13% of the conidia in dried droplets were still viable. This work shows the potential for infected sclerotia of S. sclerotiorum to provide a unique reservoir for the survival of C. minitans.  相似文献   

2.
Direct observation of washed conidia of Cylindrocladium scoparium on non-sterile soils, air dried and rewetted immediately before deposition of conidia, indicated that peak germination (33–58%) occurred after 24 h incubation at 26°C. Peak germination on continually moist soils was lower (18–26%) than on rewetted soils. Lysis of germ tubes and germinating conidia on continually moist soils at 26°C was evident with 48 h. Conidia did not germinate on continually moist soils at 6°C and lysis did not become apparent until 168 h. Conidia germinated at a high level (93–99%) in axenic culture in the absence of exogenous C and N sources. The inhibition of conidial germination on soils may be attributed, in part, to the presence of soil volatiles. Germination of conidia placed on washed agar disks and exposed to volatiles from four soils ranged from 51 to 86% of the no-soil controls. Addition of carbon (13 ng C per conidium as glucose) and nitrogen (65 pg N ng?1 C as NH4C1) nullified the inhibitory effect of the soil volatiles. Germinability assayed on a selective medium at 26°C of conidia in artificially infested soils (approximately 104 conidia g?1 soil) decreased progressively during incubation at 26°C from 1 week to 4 months. No germinable conidia were recovered from artificially infested soils after 2 months incubation at 6°C. Conidia of C. floridanum and C. crotalariae responded similarly to C. scoparium in many assays.  相似文献   

3.
Relationship between the biocontrol fungus Trichoderma harzianum ThzID1-M3 and the plant pathogen Fusarium solani f.sp. pisi (Fsp) was determined in this study. Dual culture assay indicated the competitive interaction between ThzID1-M3 and Fsp. Alginate pellets of ThzID1-M3 and Fsp conidia were added to non-sterile soil with pea seeds. The interaction between Trichoderma and Fsp adversely affected their establishment in soil. The addition of ThzID1-M3 significantly reduced the Fsp population, as well as the colonization of roots by Fsp. In contrast, the added Fsp significantly reduced the proliferation of ThzID1-M3 and Trichoderma spp. The results suggest that the competition may be the main mechanism of the antagonistic activity of Trichoderma against Fsp.  相似文献   

4.
The biocontrol agents Coniothyrium minitans and Bacillus subtilis MBI 600 were added separately to three soil types that had been either sterilised, pasteurised or left non-sterile. Applied as a conidial suspension of 1×106 cfu g−1 soil, C. minitans showed good survival in all sterilised, pasteurised and non-sterile soils, remaining at the numerical level at which it was applied for the duration of the 30 d experiment. Applied at a lower rate of 1×103 cfu g−1 soil, C. minitans proliferated in sterilised soil to numbers slightly over 1×106 cfu g−1 soil, whereas no increase was seen in pasteurised or non-sterile soils from this lower application rate. However, although C. minitans was not easily recovered on plates from non-sterile soil, it did survive at the lower numerical level in pasteurised soil, and was recoverable throughout the experiment at the rate at which it was applied. B. subtilis MBI 600 survived well following introduction as a cell suspension into sterilised soil at a rate of 1×106 cfu g−1 soil. Spores were formed rapidly and, after 14 d, the introduced microorganism survived in this form rather than as vegetative cells. However, in non-sterile soil, the introduced microorganism did not compete well and decreased in number, with spores being formed in low numbers. Survival of B. subtilis MBI 600 in pasteurised soil was variable, but resembled the survival seen in non-sterile soil more than that seen in sterilised soil. More B. subtilis MBI 600 spores were formed in pasteurised soil than in non-sterile soil, however, and may have been important for survival in pasteurised soil. In conclusion, this work has shown that the biocontrol agent C. minitans can survive well in soil irrespective of whether the soil has been pasteurised or not and shows good promise as a soil inoculant for control of Sclerotinia sclerotiorum. Although soil pasteurisation does improve establishment of B. subtilis MBI 600 compared to non-sterile soil, survival is relatively poor when applied as cells. The best survival of B. subtilis MBI 600 occurred as spores in sterilised soil, and spore applications to pasteurised soil in an integrated control strategy may allow sufficient establishment of the biocontrol agent to target pathogens causing damping-off.  相似文献   

5.
Litter decomposing basidiomycetous fungi produce ligninolytic oxidases and peroxidases which are involved in the transformation of lignin, as well as humic and fulvic acids. The aim of this work was to evaluate their importance in lignin transformation in forest litter. Two litter decomposing basidiomycete species differing in their abilities to degrade lignin - Hypholoma fasciculare, and Gymnopus erythropus - were cultured on sterile or non-sterile oak litter and their transformation of a 14C-labelled synthetic lignin (dehydrogenation polymer 14C-DHP) was compared with that of the indigenous litter microflora. Both in sterile and non-sterile litter, colonisation by basidiomycetes led to higher titres of lignocellulose-degrading enzymes, in particular of laccase and Mn-peroxidase (MnP). The titres of the latter were 6 to 40-fold increased in the presence of basidiomycetes compared to non-sterile litter. During 10 weeks, G. erythropus mineralised over 31% of 14C-DHP in sterile litter and 23% in non-sterile litter compared to 14% in the non-sterile control. Lignin mineralization by H. fasciculare was comparable to the non-sterile control, 12% in sterile litter and 16% in the non-sterile litter. The largest part of 14C from 14C-DHP was transformed into humic compounds during litter treatment with both fungi as well as in the control. In addition to the fast lignin mineralization, microcosms containing G. erythropus also showed a lower final content of unaltered lignin and 23-28% of the lignin was converted into water-soluble compounds with relatively low molecular mass (<5 kDa). Both G. erythropus and H. fasciculare were also able to further mineralise humic compounds. During a 10-week fungal treatment of an artificial 14C-humic acid (14C-HA) supplemented to the natural humic material of a forest soil, the fungi mineralised 42% and 19% of the labelled material, respectively, under sterile conditions. The 14C-HA mineralization by introduced basidiomycetes in microcosms containing non-sterile humic material, however, did not significantly differ from that of a non-sterile control and was around 12%. Altogether the results show that saprobic basidiomycetes can considerably differ in their rates of lignin and humic substance conversion. Furthermore, lignin degradation in forest soil can rather slow down by interspecific competition than it is accelerated by cooperation of different microorganisms occupying specific nutritional niches. Therefore, the overall contribution of saprobic basidiomycetes depends on their particular eco-physiological status and the competitive pressure, and may be often lower than initially expected. Significant lignin transformation including partial mineralization is seemingly not exclusively dependent on exceptional high titres of ligninolytic enzymes but also on so far unknown factors. Higher endocellulase production and subsequent weight loss was found in microcosms where saprobic basidiomycetes were combined with indigenous microbes. Potentially, lignin degradation by the basidiomycetes may have increased cellulose availability to the indigenous microbes.  相似文献   

6.
Epi-fluorescence microscopy facilitated observations of the colonization of hyphae and conidia of C. sativus and other plant pathogenic fungi in soil. Of six fluorochromes examined, acridine orange and europium chelate effectively differentiated cells of bacteria and actinomycetes from the melanized fungal structures. Under u.v. radiation, the colonizing organisms fluoresced intensively while the pigmented conidia appeared dark. Periodic observations of hyphal fragments and conidia of C. sativus incubated in nonsterile soil revealed rapid colonization of their surface primarily by bacteria. Whereas up to 80% of the hyphal fragments of C. sativus were lysed after 32 days' incubation in soil, the conidia remained intact. However, disorganization of protoplasts and disappearance of conidial septa were evident after the fourth week. After 2, 3 and 5 weeks incubation of the plant pathogens in soil, no significant difference was noticed between microbial colonization of conidia on 8.0 μm pore size “Nucle-pore” membranes and those placed directly on the soil surface.  相似文献   

7.
《Applied soil ecology》2006,31(1-2):159-168
Survival of conidia of eight species of Bipolaris, Curvularia, and Exserohilum in soil was compared to identify the species most suitable for use in experiments to assay fungitoxicity of soils amended with animal wastes and agricultural byproducts. Conidia produced on cellulose-containing substrates were added to soil between porous nylon mesh membranes, incubated for 0–12 weeks, retrieved, and plated on cornmeal agar to induce germination as an indicator of viability. In three experiments, significant variation in spore germination was attributed to fungal species, incubation time in soil, and species × time interactions. Few or no differences in viability of conidia of the eight species were evident prior to incubation in soil, but numerous significant differences (P = 0.05) were observed between species after incubation for 2–12 weeks in soil. Survival of conidia usually was greatest for C. lunata, B. sorokiniana, and B. stenospila; least for B. cynodontis, B. hawaiiensis, and E. rostratum; and intermediate or inconsistent for B. spicifera and C. geniculata. C. lunata, B. sorokiniana, and B. stenospila appear most capable of survival in soil as conidia and most suitable for use as test organisms to evaluate fungitoxicity of amended soils. When conidia of these species were incubated for 4–8 weeks in three soils with and without previous commercial swine waste applications, survival was often significantly (P = 0.05) reduced across soils or in individual soils that had received swine waste. The most frequent and strong reductions in survival of conidia in waste-amended soils were observed with B. stenospila. Results indicate that the eight species of fungi studied differ significantly in ability of conidia to survive in soil, that three species exhibit the greatest potential for survival, that these species may be used to bioassay soils for fungitoxicity, and that conidia of these species exhibit slight to strong reductions in survival in soils that previously received commercial applications of liquid swine waste.  相似文献   

8.
Conidia of Cochlioholus sativus were placed onto natural soil, incubated for periods up to 100 days, recovered and examined by scanning and transmission electron microscopy. Lysis of conidia and their colonization by soil microorganisms were studied.  相似文献   

9.
Fipronil, (±)-5-amino-1-(2,6-dichloro-∝,∝,∝-trifluoro-p-tolyl)-4-trifluoromethysulfinylpyrazole-3-carbonitrile, is used as an effective insecticide for the control of rice pests in China. Although many studies examining the fate of fipronil in the soilenvironment have been conducted, there are no studies on the microbial degradation of fipronil in the soil environment. Fipronil was degradedby microorganisms in the non-sterile clay loam soil, which resulted in the formation of metabolite, MB45950. The degradation of fipronil in non-sterile clay loam soil was mainly influenced by the soil microbes. The half-lives in non-sterile clay loam soil were 9.72 and 8.78 d at 25 and 35 °C, respectively compared to 33.51 and 32.07 d at 25 and 35 °C, respectively in the sterile soil. The microbial viability test showed that non-sterile clay loam soil had viable microorganisms throughout the experiment. Fipronil did not adversely affect the microbes once soil microbes adapted to the presence of fipronil in the clay loam soil.  相似文献   

10.
Soil-inhabiting fungal pathogen Fusarium oxysporum often causes severe yield losses in many crops. We investigated the effect of a plant growth-promoting fungus, Penicillium sp. EU0013 on Fusarium wilt disease. In dual culture experiments, EU0013 inhibited the growth of Fusarium wilt pathogens by producing an inhibition zone. In experiments using sterile potting medium under controlled conditions, EU0013 significantly reduced the severity of Fusarium wilt on tomato (Solanum lycopersicum L.) and cabbage (Brassica oleracea L. var. capitata). In non-sterile soil, benomyl-resistant mutants of EU0013 were selected by exposing the conidial solution of EU0013 to ultraviolet light. The selected mutant EU0013_90S isolate did not show any distinct differences from EU0013 in colony characteristics, growth rate or antifungal activity against Fusarium wilt pathogens in dual culture. The effect of EU0013_90S on tomato wilt was studied under greenhouse conditions using non-sterile soil. Two-weeks old tomato seedlings were dipped in four different concentrations of EU0013_90S conidial suspension (1?×?103, 1?×?104, 1?×?105, and 1?×?106 conidia mL–1). Seedlings were then planted in soil inoculated with either F. oxysporum f. sp. lycopersici race 1 CU1 or race 2 JCM 12575 (1?×?106 bud-cells g–1). We found the greatest disease suppression occurred when seedlings were dipped in the highest concentration of EU0013_90S conidia. This same inoculum concentration of EU0013_90S also resulted in the highest disease reduction in soil infested with JCM 12575. Higher root colonization with EU0013_90S showed a significant reduction in Fusarium wilt disease, suggesting that colonization by Penicillium sp. EU0013_90S is important for efficient biocontrol of these diseases.  相似文献   

11.
Summary A microcosm has been designed for application in risk assessment. It was used to investigate the vertical distribution and survival of bacteria in a soil column. Plasmid transfer was studied in sterile and non-sterile soil, using the microcosm. The results show that bacteria can be isolated from deeper soil layers a few days after their introduction. Of the bacteria containing plasmid RP4, 14% lost their replicon within 13 days. A survival analysis of representative soil bacteria demonstrated a good survival of Bacillus subtilis and Pseudomonas fluorescens under the given conditions. The number of Escherichia coli decreased over 7 days. The conjugative plasmid RP4 was transferred between Gram-negative bacteria in sterile soil. Neither conjugation nor mobilization were observed in non-sterile soil.  相似文献   

12.
In this study, temporal changes in the extractability of 14C-pyrene, at native concentrations, were followed in two soils with differing organic matter contents, under sterile and non-sterile conditions over 24 weeks by a sequential solvent extraction scheme. No significant loss of the added 14C-pyrene was observed during the incubation. Significant decreases in methanol:water and n-butanol extractability were observed with increasing soil-pyrene contact time. Significant non-extractable residues were formed in all soils, with the largest increases found in the non-sterile soils. After 8 weeks soil-pyrene contact time, there was a significant increase in the rate and extent of sequestration of pyrene in the biologically active soils. This indicated that the aging of pyrene was initially a physical process, with active microbial communities increasing the rate and extent of residue formation after 8 weeks soil-pyrene contact time. These findings suggest that there is a need for longer term ageing experiments following the role of microbial communities on the formation of solvent non-extractable residues. The humin fraction of the soil organic matter contained the majority of the 14C-pyrene associated activity which was not extractable using the scheme of sequential solvents. Saponification of the soil humin resulted in the release of similar amounts of 14C-pyrene associated activity from sterile and non-sterile soils. Solvent extraction with methanol:water was found to significantly underestimate the bioavailable fraction, whereas n-butanol overestimated the bioavailability of the 14C-pyrene-associated activity when assessed by bacterial mineralization after 24 weeks soil-pyrene contact time.  相似文献   

13.
Stenotrophomonas rhizophila DSM14405T is of high biotechnological interest as plant growth stimulator, especially for salinated conditions. The objective of this study was to determine the effect of plant species (cotton, tomato, and sweet pepper) on colonisation and plant growth promotion of this beneficial bacterium in gnotobiotic systems and in non-sterile soil. All plant structures (leaves, stems, and roots) were densely colonised by DSM14405T reaching up to 109 cells g?1 fresh weight; under gnotobiotic conditions the abundances were 4–5 orders of magnitude higher than in non-sterile soil. Under non-sterile conditions and ambient humidity, tomato shoots were more densely colonised than shoots of sweet pepper and cotton. S. rhizophila DSM14405T was shown to grow endophytically and colonise the vicinity of root hairs of tomato. Plant growth promotion was particularly apparent in tomato. In general, the impact of plant species on colonisation and plant growth promotion was more pronounced in soil than under gnotobiotic conditions and likely due to the control of diseases and deleterious microorganisms. S. rhizophila DSM14405T was shown to control diseases in sweet pepper and in cotton. Molecular profiling via single strand conformation polymorphism of internal transcribed spacers and 16S rRNA genes (PCR-single strand conformational polymorphism (SSCP)) revealed that S. rhizophila DSM14405T strongly affected fungal, but not bacterial communities in the rhizosphere of tomato and sweet pepper. Major SSCP bands related to uncultured fungi and Candida subhashii, disappeared in tomato rhizosphere after Stenotrophomonas treatment. This suggests an indirect, species-specific plant growth promotion effect of S. rhizophila via the elimination of deleterious rhizosphere organisms.  相似文献   

14.
A quantitative approach was devised to evaluate the influence of soil microbial activity as a sink for nutrients exuded by fungal spores as a factor in soil fungistasis. The approach was based on measuring the CO2 evolved from microbial respiration of 14C-labelled exudates from conidia of Cochliobolus victoriae incubated on soil. The amount of exudate lost by spores on soil was greater than the amount lost by spores incubated on a bed of sand undergoing leaching at a flow rate of 110 ml h?1. where restriction of germination was similar to that on soil. Increasing flow rates in the leaching system increased spore exudation and reduced germination. Germination of C. victoriae conidia on membrane filters floated on distilled water decreased as the volume of water increased. The results indicate that the microbial nutrient sink of soil is sufficient to impose soil fungistasis.  相似文献   

15.
Experiments were conducted to estimate the saprophytic competence of four Rhizobium japonicum strains (110, 123, 532c, and 586) in a Rossmoyne silt loam (almost free of R. japonicum) and a Miamian silt loam (containing indigenous R. japonicum strains).All strains increased about 100-fold in sterilized Rossmoyne or Miamian soil during the first 2 weeks, and the population remained constant for 26 and 6 weeks respectively. Such results indicated that abiotic factors were not limiting Rhizobium populations in these soils under laboratory conditions. There was no inter-strain competition when strains were mixed and applied to either sterilized soil.All R. japonicum strains decreased about ten-fold but survived well in non-sterile Rossmoyne soil during 26 weeks incubation. But, all strains died at varying rates in non-sterile Miamian soil during a 6 week incubation. The most rapid decline occurred with strain 123, which decreased about 1000-fold during the first 5 days, while strain 586, decreased about 1000-fold during the first 10 days. The die-back of strain 123 was found to coincide with an increase in numbers of a parasitic microorganism which passed through a 0.45 μm pore-sized filter. A bacteriophage has been implicated, although Bdellovibrio cannot be ruled out completely. This parasitic microorganism is strain specific but does not lyse a field isolate of serogroup 123.  相似文献   

16.
Nutrient independent conidia of Cochliobolus victoriae and sclerotia of Sclerotium cepivorum, Macrophomina phaseolina, and Verticillium dahliae were incubated aseptically on sand through which a dilute salts solution percolated at a flow rate sufficient to inhibit germination. Propagules were then transferred to a static salts solution to assess germination. Conidia of C. victoriae and sclerotia of S cepivorum became nutrient-dependent (6% germination in salts solution) after 9 and 15 days on sand, respectively. Thirty-five days of diffusive stress were required to attenuate the nutrient-independence of M. phaseolina sclerotia. Sclerotia of V. dahliae lost little of their nutrient-independence even after 45 days of diffusive stress. Viability of C. victoriae and S. cepivorum was reduced after 45 days of diffusive stress, but viability of V. dahliae and M. phaseolina was not. Conidia of C. victoriae gradually became nutrient-dependent when incubated for several weeks on each of five soils. A loam and two sandy loam soils were more effective in decreasing the nutrient-independence of conidia than were two clay loams. Sclerotia of M. phaseolina also lost nutrient-independence when incubated on four of the five soils.Interruption of artificially imposed diffusive stress resulted in increased [14C]exudation from conidia of C. victoriae and sclerotia of M. phaseolina. Germinability on salts solution of C. victoriae conidia previously made nutrient-dependent was significantly increased, when the conidia were kept at 4°C for 3.5 days before germination assay. Conidia of C. victoriae made nutrient-dependent and then incubated on soils labeled with [14C]glucose, absorbed twice as much 14C from a loam and two sandy loam soils as from two clay loam soils. Following incubation on four of the five 14C-labeled soils, the germinability of the conidia in the absence of nutrients was significantly increased over that of conidia not incubated on these soils.The results suggest that a continued minimal stress may be needed to maintain the nutrient-dependence of some fungal propagules in soil. Interruption of nutrient stress appears to allow nutrient-dependent propagules an opportunity to recoup nutrients from the soil solution or to reorganize endogenous energy reserves whereby the potential for germination is increased.  相似文献   

17.
Results from an innovative approach to improve remediation in the rhizosphere by encouraging healthy plant growth and thus enhancing microbial activity are reported. Mixed grass-legume systems, together with microbial inoculants, were used to remediate a polycyclic aromatic hydrocarbon (chrysene) spiked agricultural soil. Inoculants were symbiotic rhizobia, which may play an important role in rhizoremediation by increasing plant and root growth. An inoculum of an isolate of Rhizobium leguminosarum bv. trifolii, selected for PAH tolerance, was produced using a peat carrier. The inoculum and white clover (Trifolium repens L.), were planted into soils with ryegrass (Lolium perenne L.). The soils spiked with chrysene (500 mg kg−1) then aged for 4 weeks. Shoot- and root-biomass of plants, and the amount of root nodulation, were determined. Rhizobial populations, soil pH and soil nitrogen were also monitored throughout the trial. In addition, the ability of the inoculated rhizobial strain to utilise chrysene as a sole carbon source was assessed. Direct uptake and/or degradation of chrysene by the clover and ryegrass did not occur to a significant degree. Enhanced losses of chrysene were seen in planted, non-sterile soils that contained a rhizobial inoculum. No direct degradation of chrysene by R. leguminosarum bv. trifolii was observed and no enhanced losses of PAHs were detected in sterile soils after inoculation with rhizobia. Results suggest that the enhanced dissipation of chrysene, observed in the non-sterile planted inoculated pots, was not a result of degradation of chrysene by R. leguminosarum bv. trifolii. The symbiotic association with R. leguminosarum bv. trifolii improved plant vigour and growth in inoculated planted treatments. This may have stimulated the rhizospheric microflora to degrade chrysene.  相似文献   

18.
Evidence for microbial decomposition of organic acids during podzolization   总被引:2,自引:0,他引:2  
Microbial aspects of podzolization were studied by percolating organic acids through sterile and non-sterile soil in columns. Six columns containing sand from a fluvioglacial sediment were percolated (90 mm d?1) with mor extract and an oxalate-citrate solution. In three of these, sterilized soil solutions were used. Weathering was enhanced by organic acids which formed complexes with aluminium and iron. In the non-sterile soil columns weathering by organic acids was inhibited at 7–8 cm because the acids were degraded by microorganisms. Weathering was evident from colour change, contents of extractable aluminium and iron, and the micromorphology. Enhanced weathering in the sterile columns was also suggested by larger amounts of aluminium, iron, silica and base cations leached from the columns. Comparison of the output of aluminium, iron and silica from the sterile soil with that from the non-sterile soil, suggests that probably an aluminium-iron-silicate phase was formed in the deeper parts of the non-sterile columns.  相似文献   

19.
Arbuscular Mycorrhizae Fungi (AMF) inoculations may improve growth and nutrient uptake of cotton (Gossypium hirsutum L.) plant. Although the importance of mycorrhizal symbioses for growth and nutrient acquisition of cotton plant is known, less is known about mycorrhizal dependency on P and Zn nutrition under low Zn fertile soil conditions. A greenhouse experiment was conducted to investigate the effect of different of P and Zn fertilizer addition on cotton plant growth as well as Zn and P uptake. Sterilized and non-sterilized low Zn fertile Konya series soil was treated with different levels of P and Zn. Soils were inoculated with two mycorrhizae species like Funneliformis mosseae and Claroideoglomus etunicatum after sterilization. Results showed that mycorrhizal inoculation on plant growth and nutrient uptake has significant effect when soil was sterilized. Cl. etunicatum mycorrhizae species has greater effect than Fu. mosseae mycorrhizae species. Root colonization increased 23–65% due to mycorrhizal amendment. The shoot: root ratio increased by 13 and 22% for non-sterile and sterile condition respectively in mycorrhiza amended soil. Mycorrhizal dependency varies 1–55% and 3–64% for non-sterile and sterile soil respectively on mycorrhizae, P and Zn amended soil. Mycorrhizal dependency analysis showed that cotton plant in both sterile and non-sterile soil conditions depends on mycorrhizae species, P nutrition, however is less depend on Zn nutrition. This study concluded that the inoculation of cotton plant with selected mycorrhizae is necessary under both sterile and non-sterile soil conditions.  相似文献   

20.
The quantity and quality of peanut yields are seriously compromised by consecutive monoculture in the subtropical regions of China. Root exudates, which represent a growth regulator in peanut–soil feedback processes, play a principal role in soil sickness. The growth inhibition of a species in an in vitro bioassay enriched with root exudates and allelochemicals is commonly viewed as evidence of an allelopathic interaction. However, for some of these putative examples of allelopathy, the results have not been verified in more natural settings with plants continuously growing in soil. In this study, the phenolic acids in peanut root exudates, their retention characteristics in an Udic Ferrosol, and their effects on rhizosphere soil microbial communities and peanut seedling growth were studied. Phenolic acids from peanut root exudates were quickly metabolized by soil microorganisms and did not accumulate to high levels. The peanut root exudates selectively inhibited or stimulated certain communal bacterial and fungal species, with decreases in the relative abundance of the bacterial taxa Gelria glutamica, Mitsuaria chitosanitabida, and Burkholderia soli and the fungal taxa Mortierella sp. and Geminibasidium hirsutum and increases in the relative abundance of the bacterial taxon Desulfotomaculum ruminis and the fungal taxa Fusarium oxysporum, Bionectria ochroleuca and Phoma macrostoma. The experimental application of phenolic acids to non-sterile and sterile soil revealed that the poor performance of the peanut plants was attributed to changes in the soil microbial communities promoted by phenolic acids. These results suggest that pathogenic fungal accumulation at the expense of such beneficial microorganisms as plant growth promoting rhizobacteria, mycorrhizal fungi induced by root exudates, rather than direct autotoxicity induced by root exudates, might represent the principal cause underlying the soil sickness associated with peanut plants. We hope that our study will motivate researchers to integrate the role of soil microbial communities in allelopathic research, such that their observed significance in soil sickness during continuous monocropping of fields can be further explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号