首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uptake and rapid translocation of 32P-orthophosphate to Pinus radiata mycorrhizas from soil by mycelial strands of Rhizopogon luteolus was demonstrated. In greenhouse material, translocation occurred from soil for at least 12 mm and some 30–80 per cent of phosphate absorbed from 5 × 10?6M as KH2PO4 was translocated. In the field, translocation occurred for 12 cm. Uptake by excised mycelial strands was metabolically mediated. Translocation occurred more rapidly when the untreated ends of strands were placed in an osmoticum: polarity in translocation was also observed. It was concluded that uptake and translocation by mycelial strands (as distinct from individual hyphae) provide an effective method for mycorrhizal exploitation of large inter-root soil volumes and assist the plants in competition for nutrients.Large differences occurred between strains of the same species in mycelial strand growth in soil. Mycelial strands of R. luteolus grew through the test soil at 1.3-2.9 mm/day and along P. radiata roots at 1.7 mm/day at 25°C day and 16°C night temperatures.  相似文献   

2.
Significant effects of two fractions of alkali-extractable soil organic matter (AEOM) extracted from three different soils (agricultural soil, soil from deciduous forest, soil from spruce monoculture) on mycelial growth of 17 isolates of ectomycorrhizal fungi were observed. Growth of Lactarius deterrimus, Meliniomyces bicolor and one of the isolates of Leccinum aurantiacum was significantly stimulated by acid-insoluble fraction extracted from all three soils. The stimulatory effects were frequent but inhibition of mycelial growth of some isolates was also observed. The fungal response to the presence of the organic extract in the nutrient medium was isolate-specific rather than species-specific. Organic matter extracted from different source soils affected differently the mycelial growth, the largest number of stimulatory effects being observed in an experiment where the extract was richest in trace elements Zn and Cu. At the same time, the observed stimulatory effects were not attributable to increased concentrations of trace elements in the nutrient medium. The results indicate that soil may be used as a source of extractable organic fractions which, when used as a cultivation medium additive, may significantly improve the growth of responsive fungal isolates. Under natural conditions, AEOM (traditionally designated humic substances) represent a potential factor affecting the composition of cenosis of ectomycorrhizal fungi in soil.  相似文献   

3.
The growth of five typical but phenetically distinct cocci and Arthrobacter strains, isolated from a pine forest soil, has been investigated. Soil reaction was found to have a marked effect on growth and unless naturally acidic soils were made more alkaline they did not support growth, even in the presence of added nutrients. However, in the presence of fungi which could use the added nutrients, e.g. chitin, mycelial fragments etc., bacterial growth was possible and could be correlated with a decrease in acidity, especially around particles of organic matter. Where the pH rose above 7.9, bacterial growth again decreased. All the bacterial strains tested reacted in the same way, suggesting that they occupied similar microenvironments in both the acidic and alkaline soil horizons examined. Some explanations for the occurrence of nonsporing bacteria in soils in which apparently they cannot grow are suggested.  相似文献   

4.
The heterogeneity of nutrients in forest soils is governed by many biotic and abiotic factors. The significance of nutrient patchiness in determining soil processes remains poorly understood. Some saprotrophic basidiomycete fungi influence nutrient heterogeneity by forming large mycelial networks that enable translocation of nutrients between colonized patches of dead organic matter. The effect of mycophagous soil fauna on these networks and subsequent nutrient redistribution has, however, been little studied. We used a soil microcosm system to investigate the potential effects of a mycophagous collembola, Protaphorura armata, on nutrient transfer within, and nutrient loss from, the mycelium of a saprotrophic basidiomycete fungus, Phanerochaete velutina. A 15N label, added to central mycelium, was used to track nitrogen movement within the microcosms across 32 days. Although collembola grazing had little impact on δ15N values, it did alter the partitioning of 15N between different regions of mycelia. Less 15N was transferred to new mycelial growth in grazed systems than in ungrazed systems, presumably because collembola reduced fungal growth rate and altered mycelial morphology. Surprisingly, collembola grazing did not increase the mineralization of N from mycelium into the bulk soil. Overall, our results suggest that mycophagous soil fauna can alter nutrient flux and partitioning within fungal mycelium; this has the potential to affect the dynamics and spatial heterogeneity of forest floor nutrients.  相似文献   

5.
Soil compaction is of great importance in agriculture, because its high levels may adversely affect plant growth and the environment. Since mechanical methods are not very efficient and economical, using biological methods to alleviate the stress of soil compaction on plant growth may be beneficial. The objectives of this study were to: (1) evaluate the effects of soil compaction on corn (Zea mays L.) growth, and (2) test the hypothesis that applying arbuscular mycorrhiza (AM) with different origins can partially or completely overcome the stressful effects of soil compaction on corn growth under unsterilized and sterilized conditions. Corn was planted in unsterilized and sterilized compacted soils, while treated with three species of AM including, Iranian Glomus mosseae, Iranian Glomus etunicatum, and Canadian Glomus mosseae, received from GINCO (Glomales in vitro Collection), Canada. Plant growth variables and soil resistance parameters were determined. AM significantly increased root fresh (maximum of 94% increase) and dry (maximum of 100% increase) weights in the compacted soil. AM with different origins may improve corn growth in compacted soils, though its effectiveness is related to the level of compaction and also to the interaction with other soil microorganisms.  相似文献   

6.
Allelopathy may contribute to the formation of mono-dominant stands of exotic species, but the effects of allelochemicals can be highly conditional. We explored variation in the production of phenolics in leaves, accumulation of phenolics in soils, and the inhibitory effects of soils under an aggressive invader Prosopis juliflora across a range of invaded sites and potential mechanisms by which soils alter the effects of P. juliflora leaf litter. For eight sites in Northwest India we compared the concentration of total phenolics and the seedling growth of Brassica campestris in soils from beneath P. juliflora to that in soils collected away from P. juliflora canopies. We then explored these effects in detail in soils from two sites that differed substantially in texture by germinating seeds of B. campestris in these soils amended with P. juliflora macerated leaf leachate. Finally, we tested the effects of l-tryptophan in soils from these two sites on the seedling growth of B. campestris. Across all sites soil beneath P. juliflora contained higher levels of total phenolics and suppressed the growth of B. campestris than soil that was not under P. juliflora. We observed much variation among P. juliflora-invaded sites in the total phenolic levels of soils and the degree to which they suppressed B. campestris and the concentration of phenolics in soils significantly correlated with the root length of B. campestris when grown in these soils. Soil from two sites amended with P. juliflora macerated leachate suppressed seedling growth of B. campestris, with the effect being higher in sandy soil than sandy loam soil. In soil amended with leachate the strong suppression of B. campestris corresponded with much higher total phenolic and l-tryptophan concentrations. However, in other tests l-tryptophan did not affect B. campestris. Our results indicate that the allelopathic effects of P. juliflora can be highly conditional and that variation in soil texture might contribute to this conditionality.  相似文献   

7.
The objective of this study was to evaluate the effect of sewage sludge on soil suppressiveness to the pathogens Fusarium oxysporum f. sp. lycopersici on tomato, Sclerotium rolfsii on bean, Sclerotinia sclerotiorum on tomato, Rhizoctonia solani on radish, Pythium spp. on cucumber, and Ralstonia solanacearum on tomato. Soil samples were collected from an experimental corn field in which sewage sludge had been incorporated once a year, since 1999. Sludge from two sewage treatment stations in Brazil (Franca and Barueri, SP) were applied at the rates of one (1N), two (2N), four (4N) and eight (8N) times the N recommended doses for the corn crop. Soil suppressiveness was evaluated by methods using indicator host plants, baits and mycelial growth. There was no effect of sewage sludge on soil suppressiveness to Fusarium oxysporum f. sp. lycopersici in tomato plants. For S. rolfsii, reduction of the disease in bean was inversely proportional to the dose of Franca sludge. The incidence of dead plants, caused by S. sclerotiorum, was directly proportional to sludge doses applied. For R. solani and R. solanacearum, there was a linear trend with reduction in plant death in soils treated with increasing amounts of sludge from Franca. There was an increase in the pathogen community of Pythium spp., proportional to the amounts of sewage applied. The effects of sewage sludge varied depending on the pathogen, methodology applied and on the time interval between the sewage sludge incorporation and soil sampling.  相似文献   

8.
There is an increasing concern that the continuous use of chemical fertilizers might lead to harmful effects on soil ecosystem. Accordingly, a biocompatible approach involving inoculation of beneficial microorganisms is presented to promote plant growth and simultaneously minimize the negative effect of chemical fertilizers. In this study, Rhodopseudomonas palustris, a plant growth-promoting rhizobacterium (PGPR), was inoculated into both fertilized and unfertilized soils to assess its influence on Stevia rebaudiana plant growth and microbial community in rhizosphere soils in a 122-d field experiment. Soil enzyme assays (dehydrogenase, urease, invertase, and phosphomonoesterase), real-time quantitative polymerase chain reaction (RT-qPCR), and a high-throughput sequencing technique were employed to determine the microbial activity and characterize the bacterial community. Results showed that the R. palustris inoculation did not significantly influence Stevia yields and root biomass in either the fertilized or unfertilized soil. Chemical fertilization had strong negative effects on soil bacterial community properties, especially on dehydrogenase and urease activities. However, R. palustris inoculation counteracted the effect of chemical fertilizer on dehydrogenase and urease activities, and increased the abundances of some bacterial lineages (including Bacteroidia, Nitrospirae, Planctomycetacia, Myxococcales, and Legionellales). In contrast, inoculation into the unfertilized soil did not significantly change the soil enzyme activities or the soil bacterial community structure. For both the fertilized and unfertilized soils, R. palustris inoculation decreased the relative abundances of some bacterial lineages possessing photosynthetic ability, such as Cyanobacteria, Rhodobacter, Sphingomonadales, and Burkholderiales. Taken together, our observations stress the potential utilization of R. palustris as PGPR in agriculture, which might further ameliorate the soil microbial properties in the long run.  相似文献   

9.
The effect of different soils, nutrient states and water regimes on the growth, sporulation and lysis of mycelial inocula of Phytophthora cinnamomi has been examined. It has been observed that the requirements for chlamydospore and sporangium production in soils are relatively non-specific with respect to soil type, pH, percentage organic matter and the presence or absence of an additional food source. In contrast to chlamydospore production, however, production of sporangia in soil depends on a sufficiently low water suction pressure. In some soils a low percentage water content or a water content well below field capacity did not necessarily inhibit sporangium production. The pathogen was a good competitor for pieces of both fresh and rotting Castanea sativa radicles. Trichoderma viride appeared to play a significant role in soil by lysing hyphae of P. cinnamomi and inducing it to produce oospores.  相似文献   

10.
Soil warming can affect plant performance by increasing soil nutrient availability through accelerating microbial activity. Here, we test the effect of experimental soil warming on the growth of the three invasive plant species Trifolium pratense (legume), Phleum pratense (grass), and Plantago lanceolata (herb) in the temperate-boreal forest ecotone of Minnesota (USA). Plants were grown from seed mixtures in microcosms of soils with three different warming histories over four years: ambient, ambient +1.7 °C, and ambient +3.4 °C. Shoot biomass of P. pratense and P. lanceolata and plant community root biomass increased significantly in soils with +3.4 °C warming history, whereas T. pratense responded positively but not significantly. Soil microbial biomass and N concentration could not explain warming effects, although the latter correlated significantly with the shoot biomass of P. lanceolata. Our results indicate that soil with a warming history may benefit some invasive plants in the temperate-boreal ecotone with potential impacts on plant community composition. Future studies should investigate the impact of warming-induced differences in soil organisms and nutrients on plant invasion.  相似文献   

11.
Previously isolated bacterial strains for chlorpyrifos and fenamiphos degradation were used to examine their potential as bioremedial agents in soils and water containing pesticide residues. Both, chlorpyrifos-degrading Enterobacter sp and fenamiphos-degrading consortium rapidly degraded pesticides when inoculated into natural and sterile water and soils. Degradation rate was slower in lower pH soils in comparison with natural and alkaline soils. Soil organic matter had no impact on pesticide degrading ability of isolates. Soil moisture <40% of maximum water-holding capacity slowed down degradation rate. The bacterial isolates were able to rapidly degrade fenamiphos and chlorpyrifos between 15 and 35 °C but their degradation ability was sharply reduced at 5 and 50 °C. Both groups of bacterial systems were also able to remove a range of pesticide degradation. An inoculum density of 104 cells g−1 of soil was required for initiating rapid growth and degradation. Ageing of pesticide in soils prior to inoculation produced contrasting results. Ageing of fenamiphos had no impact on subsequent degradation by the inoculated consortium. However, degradation of chlorpyrifos by Enterobacter sp after aging resulted in persistence of ∼10% of pesticide in soil matrix. Higher Koc value of chlorpyrifos may have resulted in a lack of bioavailability of a smaller percentage of chlorpyrifos to degrading bacteria. Overall, this paper confirms bioremedial potential of a fenamiphos degrading consortium and a chlorpyrifos degrading bacterium under different soil and water characteristics.  相似文献   

12.
Plant invasions alter soil microbial community composition; this study examined whether invasion-induced changes in the soil microbial community were reflected in soil aggregation, an ecosystem property strongly influenced by microorganisms. Soil aggregation is regulated by many biological factors including roots, arbuscular mycorrhizal fungal hyphae, and microbially-derived carbon compounds. We measured root biomass, fungal-derived glomalin-related soil protein (GRSP), and aggregate mean weight diameter in serpentine soils dominated by an invasive plant (Aegilops triuncialis (goatgrass) or Centaurea solstitialis (yellow starthistle)), or by native plants (Lasthenia californica and Plantago erecta, or Hemizonia congesta). Root biomass tended to increase in invaded soils. GRSP concentrations were lower in goatgrass-dominated soils than native soils. In contrast, starthistle dominated soil contained a higher amount of one fraction of GRSP, easily extractable immunoreactive soil protein (EE-IRSP) and a lower amount of another GRSP fraction, easily extractible Bradford reactive soil protein (EE-BRSP). Soil aggregation increased with goatgrass invasion, but did not increase with starthistle invasion. In highly aggregated serpentine soils, small increases in soil aggregation accompanying plant invasion were not related to changes in GRSP and likely have limited ecological significance.  相似文献   

13.

Purpose

Soil properties are the main explanation to the different toxicities obtained in different soils due to their influence on chemical bioavailability and the test species performance itself. However, most prediction studies are centred on a few soil properties influencing bioavailability, while their direct effects on test species performance are usually neglected. In our study, we develop prediction models for the toxicity values obtained in a set of soils taking into account both the chemical concentration and their soil properties.

Materials and methods

The effects on the avoidance behaviour and on reproduction of the herbicide phenmedipham to the collembolan Folsomia candida is assessed in 12 natural soils and the Organisation for Economic Co-operation and Development (OECD) artificial soil. The toxicity outcomes in different soils are compared and explanatory models are constructed by generalised linear models (GLMs) using phenmedipham concentrations and soil properties.

Results and discussion

At identical phenmedipham concentrations, the effects on reproduction and the avoidance response observed in OECD soil were similar to those observed in natural soils, while effects on survival were clearly lower in this soil. The organic matter and silt content explained differences in the avoidance behaviour in different soils; for reproduction, there was a more complex pattern involving several soil properties.

Conclusions

Our results highlight the need for approaches taking into account all the soil properties as a whole, as a necessary step to improve the prediction of the toxicity of particular chemicals to any particular soil.  相似文献   

14.
Mycelia of cord-forming fungi show remarkable patterns of reallocation of biomass and nutrients indicating an important role of these, often extensive, organisms in the spatial translocation of energy and nutrients in forest soils. Despite the rich tradition of interaction studies between soil microarthropods and fungi, the spatial implications of these interactions, due to the potential growth responses of the fungi and to the translocation of energy and nutrients within the mycelial network, have been largely ignored. In this paper we analyse fungal growth responses in two-dimensional model systems composed of compressed soil, the cord-forming fungus Hypholoma fasciculare and three fungivorous Collembolan species. We hypothesised that (i) the highly co-ordinated nature of cord-forming fungi would lead to growth responses following collembolan grazing, and that, (ii) such changes are dependent on grazing intensity, and (iii) changes are dependent on the species grazing. Mycelial extent and hyphal cover decreased with increasing grazing density; at highest grazing density also the fractal dimension of the mycelial border decreased, indicating a less branched foraging front due to the regression of fine hyphae and the development of mycelial cords. Effects differed greatly between collembolan species although they exerted comparable grazing pressure (the smaller species were added in larger numbers according to their allometric size-metabolic rate relationships): while grazing by Folsomia candida resulted in less mycelial extension and hyphal cover, these variables were not affected when Proisotoma minuta and Hypogastrura cf. tullbergi grazed. The effects of a species mix suggested an additive effect of the component species. This shows that fungal mycelia may suffer from damage caused by few but large collembolans, affecting extension as well as coverage of the mycelium, but that fungi may compensate for the biomass loss caused by more but slightly smaller collembolans. In about 20% of the model systems H. fasciculare switched from a growth pattern with a broad contiguous foraging front and uniform growth in all directions to a pattern with fast growing sectors while other sectors stopped growth completely. The switch occurred in grazed systems exclusively; thus we interpret this observation as a fugitive response and as a strategy for quickly escaping from places where grazing pressure is experienced.  相似文献   

15.
城郊土壤不透水表面有土壤机碳转化及其相关性质的研究   总被引:2,自引:0,他引:2  
Installation of impervious surface in urban area prevents the exchange of material and energy between soil and other environmental counterparts, thereby resulting in negative effects on soil function and urban environment. Soil samples were collected at 0-20 cm depth in Nanjing City, China, in which seven sites were selected for urban open soils, and fourteen sites with similar parent material were selected for the impervious-covered soils, to examine the effect of impervious surface on soil properties and microbial activities, and to determine the most important soil properties associated with soil organic carbon (SOC) transformation in the urban soils covered by impervious surfaces. Soil organic carbon and water-soluble organic carbon (WSOC) concentrations, potential carbon (C) and nitrogen (N) mineralization rates, basal respiration, and physicochemical properties with respect to C transformation were measured. Installation of impervious surface severely affected soil physicochemical properties and microbial activities, e.g., it significantly decreased total N contents, potential C mineralization and basal respiration rate (P 〈 0.01), while increased pH, clay and Olsen-P concentrations. Soil organic carbon in the sealed soils at 0-20 cm was 2.35 kg m-2, which was significantly lower than the value of 4.52 kg m-2 in the open soils (P 〈 0.05). Canonical correlation analysis showed WSOC played a major role in determining SOC transformation in the impervious-covered soil, and it was highly correlated with total N content and potential C mineralization rate. These findings demonstrate that installation of impervious surface in urban area, which will result in decreases of SOC and total N concentrations and soil microbial activities, has certain negative consequences for soil fertility and long-term storage of SOC.  相似文献   

16.
Soil organisms have been recommended as bio-indicators of soil quality due to their sensitivity to anthropogenic influences and their high degree of site-specificity. The objectives of this study were to determine if the relationship between the soil Collembola, Folsomia candida, and forest soil could be extended to other soils and, if not, to determine the relationship between its life parameters and soils from the different phases of an agricultural rotation sequence. A comparison of growth, reproduction and survival of 1 day old neonates and 10 day old juveniles subjected to a series of different soils (composted manure, pasture soil, forest soil, sand alone, and sand supplemented with yeast) established that the association between F. candida and forest soil quality cannot be automatically transferred to soils from other ecosystems. The test also showed that neonate (1 d) individuals were more sensitive to the different soil treatments than 10 d old juveniles and should be used in future tests. On this basis, neonate F. candida individuals were used to determine if the species could be employed to characterize the agricultural soils from the different phases of an organic or conventional rotation sequence. Results demonstrated that changes in body growth and reproduction constituted suitable criteria to characterize the soil quality of these different phases. The research required to develop these results as a standard bio-indicator test of agricultural soil quality is discussed.  相似文献   

17.
Soil moisture and nitrogen (N) are two important factors influencing N2O emissions and the growth of microorganisms. Here, we carried out a microcosm experiment to evaluate effects of soil moisture level and N fertilizer type on N2O emissions and abundances and composition of associated microbial communities in the two typical arable soils. The abundances and community composition of functional microbes involved in nitrification and denitrification were determined via quantitative PCR (qPCR) and terminal restriction length fragment polymorphism (T-RFLP), respectively. Results showed that N2O production was higher at 90% water-filled pore (WFPS) than at 50% WFPS. The N2O emissions in the two soils amended with ammonium were higher than those amended with nitrate, especially at relatively high moisture level. In both soils, increased soil moisture stimulated the growth of ammonia-oxidizing bacteria (AOB) and nitrite reducer (nirK). Ammonium fertilizer treatment increased the population size of AOB and nirK genes in the alluvial soil, while reduced the abundances of ammonia-oxidizing archaea (AOA) and denitrifiers (nirK and nosZ) in the red soil. Nitrate addition had a negative effect on AOA abundance in the red soil. Total N2O emissions were positively correlated to AOB abundance, but not to other functional genes in the two soils. Changed soil moisture significantly affected AOA rather than AOB community composition in both soils. The way and extent of N fertilizers impacted on nitrifier and denitrifier community composition varied with N form and soil type. These results indicate that N2O emissions and the succession of nitrifying and denitrifying communities are selectively affected by soil moisture and N fertilizer form in the two contrasting types of soil.  相似文献   

18.

Purpose

The impacts of different land use practices on soil quality were assessed by measuring soil attributes and using factor analysis in coastal tidal lands. The study provided relevant references for coastal exploitation, land management and related researches in other countries and regions.

Materials and methods

Measured soil attributes include physical indicators [bulk density (ρ b), total porosity (? t) and water-holding capacity (WHC)], chemical indicators [pH, electrical conductivity (EC), total nitrogen (TN), soil organic matter (SOM), available N, available P and available K] and biological indicators (urease activity, catalase activity and phosphatase activity), and 60 soil samples were collected within five land use types [(1) intertidal soils, (2) reclaimed tidal flat soils, (3) farmland soils, (4) suburban vegetable soils, (5) industrial area soils) in Jianggang village of Dongtai county, Jiangsu province of China.

Results and discussion

The results from the investigation indicated that selected soil properties reduced to three factors for 0–20-cm soil depth; “Soil fertility status” (factor 1), “Soil physical status” (factor 2) and “Soil salinity status” (factor 3). For the first factor, the measured soil attributes with higher loadings were TN and SOM, which represented soil fertility feature, and for the second and third factors, the measured soil attributes with higher loadings were ρ b and available K as well as EC, which reflected soil physical properties and soil salinity feature, respectively.

Conclusions

Changes in different land use types due to plants (corn, wheat and green vegetable) and application of fertilizers were characterized by promoted soil quality, including improvements in chemical properties (increasing SOM concentration, TN and nutrient available to plants; decreasing EC), improvements in soil physical properties (decreasing ρ b; increasing ? t and WHC) and enhancements in soil enzyme activities. Judging from the soil quality indices, the soil quality was affected by different land use practices and decreased in sequence of suburban vegetable soils, farmland soils, industrial area soils, reclaimed tidal flat soils and intertidal soils in the study area.  相似文献   

19.
Fungistasis is a widespread phenomenon that can be mediated by soil microorganisms and volatile organic compounds (VOCs). The relationship between soil microorganisms and VOCs is still unclear, however, and many fungistatic compounds remain to be identified. We assessed the effects of soils (soil direct fungistasis) and VOCs produced by natural soils (soil volatile fungistasis) on the spore germination of several fungi. Both strong soil direct fungistasis and soil volatile fungistasis were observed in a wide range of soils. Soil fungistasis and VOC fungistasis were significantly correlated (P<0.001). The volatile fungistatic activity of soils stopped after autoclaving. Some VOCs were identified by using solid-phase microextraction-gas chromatography/mass spectrum. VOC composition and in vitro antagonism of relatively pure commercial compounds also were measured. Some VOCs, trimethylamine, 3-methyl-2-pentanone, dimethyl disulfide, methyl pyrazine, 2,5-dimethyl-pyrazine, benzaldehyde, N,N-dimethyloctylamine and nonadecane, were produced by various fungistatic soils. Moreover, antifungal activity test of above VOCs showed that trimethylamine, benzaldehyde, and N,N-dimethyloctylamine have strong antifungal activity even at low levels (4-12 mg l−1).  相似文献   

20.
The potential for field soils to cause Aphanomyces root rot of pea (Pisum sativum) was estimated for a large number of samples from commercial pea fields over a period of 5 years, using a greenhouse bioassay. The aim of the research project was to gain a mechanistic understanding of soil suppressiveness to the disease. Regression analysis showed that of the measured soil variables (Ca, Mg, K, P, pH), soil Ca concentrations had the strongest (negative) correlation with disease prevalence, and also a significant negative correlation with disease severity in samples with confirmed presence of the disease. Greenhouse bioassays using a set of non-infested soils inoculated with artificially produced oospore inoculum of the casual organism Aphanomyces euteiches, showed a similar negative correlation between soil Ca content and disease severity. Disease severity was not consistently affected by soil sterilisation, but was lowered by the addition of two different Ca salts. In contrast, addition of sodium bicarbonate to two soils lowered the content of water-soluble Ca in the soils and increased disease severity. Studies of cultures of A. euteiches exposed to varying Ca concentrations in vitro showed that zoospore production was inhibited at submillimolar concentrations, while mycelial growth was stimulated or unaffected. We conclude that free Ca is a major variable controlling the degree of soil suppressiveness against A. euteiches, and that inhibition of zoospore production from oospores is a possible mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号