首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study fish oil was incorporated into commercial homogenized milk using different homogenization temperatures and pressures. The main aim was to understand the significance of homogenization temperature and pressure on the oxidative stability of the resulting milks. Increasing homogenization temperature from 50 to 72 degrees C decreased droplet size only slightly, whereas a pressure increase from 5 to 22.5 MPa decreased droplet size significantly. Surprisingly, emulsions having small droplets, and therefore large interfacial area, were less oxidized than emulsions having bigger droplets. Emulsions with similar droplet size distributions, but resulting from different homogenization conditions, had significantly different oxidative stabilities, indicating that properties of significance to oxidation other than droplet size itself were affected by the different treatments. In general, homogenization at 72 degrees C appeared to induce protective effects against oxidation as compared to homogenization at 50 degrees C. The results thus indicated that the actual composition of the oil-water interface is more important than total surface area itself.  相似文献   

2.
Traditionally, milk has been heat treated to control microorganisms and to alter its functionality, for example, to increase its heat stability. Pressure treatment has been considered as a possible alternative for microorganism control, but some of the functionality-related milk protein interactions have not been explored. The present study used two novel two-dimensional polyacrylamide gel electrophoresis (2D PAGE) methods to explore the differences in the irreversible disulfide bond changes among the milk proteins after four common heat treatments and after 30-min pressure treatments of milk at 200, 400, 600, and 800 MPa at ambient temperature (22 degrees C). The pasteurizing heat treatment (72 degrees C for 15 s) denatured and aggregated only a few minor whey proteins, but the high heat treatments (100 degrees C for 120 s, 120 degrees C for 120 s, and 140 degrees C for 5 s) formed disulfide-bonded aggregates that included a high proportion of all of the whey proteins and kappa-casein (kappa-CN) and a proportion of the alpha(s2)-CN. Pressure treatment of milk at 200 MPa caused beta-lactoglobulin (beta-LG) to form disulfide-bonded dimers and incorporated beta-LG into aggregates, probably disulfide-bonded to kappa-CN. The other whey proteins appeared to be less affected at 200 MPa for 30 min. In contrast, pressure treatment at 800 MPa incorporated beta-LG and most of the minor whey proteins, as well as kappa-CN and much of the alpha(s2)-CN, into aggregates. The accessibility of alpha(s2)-CN and formation of complexes involving alpha(s2)-CN, kappa-CN, and whey proteins in the pressure treated milk is an important novel finding. However, only some of the alpha-lactalbumin was denatured or incorporated into the large aggregates. These and other results show that the differences between the stabilities of the proteins and the accessibilities of the disulfide bonds of the proteins at high temperature or pressure affect the formation pathways that give the differences among the resultant aggregates, the sizes of the aggregates, and the product functionalities.  相似文献   

3.
Lactoperoxidase-induced protein oxidation in milk   总被引:4,自引:0,他引:4  
The reaction between lactoperoxidase (LPO) and H(2)O(2) in the presence of bovine serum albumin (BSA), beta-lactoglobulin, or casein was investigated for the formation of protein radicals by freeze-quench electron spin resonance (ESR) and by the formation of the protein oxidation product, dityrosine. The presence of BSA resulted in a dramatic change after 1 min of reaction in the obtained ESR spectrum compared with the spectrum obtained for LPO and H(2)O(2) alone. Furthermore, experiments employing BSA or beta-lactoglobulin resulted in the formation of long-lived protein radicals detectable 10 min after initiation of the reaction. The presence of casein resulted in a minor change in the fine structure of the ESR spectrum after 1 min of reaction compared with LPO and H(2)O(2) alone, but no difference between the two reaction mixtures could be observed after 10 min of reaction. The formation of dityrosine could be detected in reaction mixtures containing LPO and H(2)O(2) after 1 and 10 min of incubation at 25 degrees C both in the absence and in the presence of BSA, beta-lactoglobulin, or casein. The presence of casein resulted in an increased dityrosine concentration compared with the reaction with LPO and H(2)O(2) alone. Endogenous LPO in unpasteurized milk was activated at 25 degrees C by adding 1 mM H(2)O(2). Radical species could be detected directly in the milk by freeze-quench ESR during the initial phase of the reaction, and dityrosine could be measured after 4 h of incubation. The role of LPO activity in the formation of ESR detectable radical species and dityrosine in milk was further verified in ultrahigh temperature (UHT) milk with no endogenous enzyme activity, as the formation of ESR detectable radical species and dityrosine took place in UHT milk only upon the addition of both H(2)O(2) and exogenous LPO.  相似文献   

4.
The kinetics of beta-lactoglobulin (beta-LG) denaturation in pressure-treated reconstituted skim milk samples over a wide pressurization range (100-600 MPa) and at various temperatures (10-40 degrees C) was studied. Denaturation was extremely dependent on the pressure and duration of treatment. At 100 MPa, no denaturation was observed regardless of the temperature or the holding time. At higher pressures, the level of denaturation increased with an increasing holding time at a constant pressure or with increasing pressure at a constant holding time. At 200 MPa, there was only a small effect of changing the temperature at pressurization. However, at higher pressures, increasing the temperature from 10 to 40 degrees C markedly increased the rate of denaturation. The two major genetic variants of beta-LG (A and B) behaved similarly to pressure treatment, although the B variant appeared to denature slightly faster than the A variant at low pressures (< or =400 MPa). The denaturation could be described as a second-order process for both beta-LG variants. There was a marked change in pressure dependence at about 300 MPa, which resulted in markedly different activation volumes in the two pressure ranges. Evaluation of the kinetic and thermodynamic parameters suggested that there may have been a transition from an aggregation-limited reaction to an unfolding-limited reaction as the pressure was increased.  相似文献   

5.
Free fatty acid (FFA) release and quantification and lipid oxidation extent of ultra-high-pressure homogenized (UHPH) milk samples were evaluated to assess the effect of UHPH on the susceptibility of milk lipids to lipolysis and oxidation. Milk was UHPH-treated at 200 and 300 MPa with inlet temperatures of 30 and 40 degrees C. UHPH-treated samples were compared to high-pasteurized milk (PA; 90 degrees C, 15 s). Results showed that all FFA increased significantly during storage only in 200 MPa samples. Lipid oxidation was measured as an accumulation of lipid hydroperoxides as the primary oxidation product and malondialdehyde and hexanal as the secondary oxidation products. Samples treated at 300 MPa presented higher malondialdehyde and hexanal content compared to 200 MPa treated-samples and to PA milk.  相似文献   

6.
The kinetics of beta-lactoglobulin (beta-LG) denaturation in reconstituted skim milk samples of various concentrations (9.6-38.4% total solids) over a wide temperature range (75-100 degrees C) was studied. The thermal denaturation of beta-LG had a reaction order of 1.5 at all milk solids concentrations and at all temperatures. The rate of denaturation of beta-LG was markedly dependent on the milk solids concentration and the heating temperature. At 75 degrees C, the thermal denaturation of beta-LG was retarded at higher milk solids concentrations. However, this retardation was less pronounced at higher temperatures so that a similar rate of denaturation was observed at all milk solids concentrations at 100 degrees C. From an examination of the level of disulfide-aggregated beta-LG, it was evident that most, but not all, of the denatured beta-LG was involved in disulfide-aggregated complexes, either with other denatured whey proteins or with the casein micelles. As with beta-LG denaturation, the rate of disulfide aggregation of beta-LG was markedly dependent on the milk solids concentration.  相似文献   

7.
This study investigated the competitive adsorption between milk proteins and model milk membrane lipids at the oil-water interface and its dependence on the state of the lipid dispersion and the formation of emulsions. Both protein and membrane lipid surface load were determined using a serum depletion technique. The membrane lipid mixture used was a model milk membrane lipid system, containing dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine, milk sphingomyelin, dioleoylphosphatidylserine, and soybean phosphatidylinositol. The model composition mimics the lipid composition of natural milk fat globule membranes. The interactions were studied for two proteins, beta-lactoglobulin and beta-casein. The mixing order was varied to allow for differentiation between equilibrium structures and nonequilibrium structures. The results showed more than monolayer adsorption for most combinations. Proteins dominated at the oil-water interface in the protein-emulsified emulsion even after 48 h of exposure to a vesicular dispersion of membrane lipids. The membrane lipids dominated the oil-water interface in the case of the membrane lipid emulsified emulsion even after equilibration with a protein solution. Protein displacement with time was observed only for emulsions in which both membrane lipids and beta-casein were included during the emulsification. This study shows that kinetics controls the structures rather than the thermodynamic equilibrium, possibly resulting in structures more complex than an adsorbed monolayer. Thus, it can be expected that procedures such as the mixing order during emulsion preparation are of crucial importance to the emulsification performance.  相似文献   

8.
The objective of this study was to investigate the influence of globular protein interfacial cross-linking on the in vitro digestibility of emulsified lipids by pancreatic lipase. 3% (wt/wt) corn oil-in-water emulsions stabilized by either lecithin or beta-lactoglobulin were prepared (pH 7). A portion of the beta-lactoglobulin stabilized emulsions was subjected to a heat treatment known to cross-link the adsorbed globular proteins (85 degrees C, 20 min). Pancreatic lipase and bile extract were then added to each emulsion at 37 degrees C (pH 7) and the evolution of the particle charge, particle size, appearance and free fatty acids released were measured over a period of 2 h. The rate and extent of lipid digestion did not differ greatly between lecithin and beta-lactoglobulin stabilized emulsions, nor did it differ greatly for unheated (BLG-U) or heated (BLG-H) beta-lactoglobulin stabilized emulsions. For example, the initial rate of lipid digestion was found to be 3.1, 3.4, and 2.3 mM fatty acids s(-1) m(-2) of lipid surface for droplets stabilized by BLG-U, BLG-H, and lecithin, respectively. Pancreatic lipase was able to adsorb to the droplet surfaces and access the emulsified lipids, regardless of the initial interfacial composition and the fact that some of the original emulsifier appeared to remain at the oil-water interface during digestion. These results help to explain why the human body is so efficient at digesting dietary triacylglycerols.  相似文献   

9.
The unfolding of beta-lactoglobulin during high-pressure treatment and its refolding after decompression were studied by 1H NMR and 2H/1H exchange at pH 6.8 and 2.5 and at 37 and 25 degrees C. The extent of unfolding increased with the pressure level. The structure of beta-lactoglobulin required higher pressures to unfold at pH 2.5 than at pH 6.8. More flexibility was achieved at 37 degrees C than at 25 degrees C. Results indicated that the structural region formed by strands F, G, and H was more resistant to unfold under acidic and neutral conditions. The exposure of Trp19 at an earlier time, as compared to other protein regions, supports the formation of a swollen structural state at pH 2.5. Refolding was achieved faster when beta-lactoglobulin was subjected to 200 MPa than to 400 MPa, to 37 degrees C than to 25 degrees C, and to acidic than to neutral pH. After treatment at 400 MPa for 20 min at neutral pH, the protein native structure was not recovered. All samples at acidic pH showed that the protein quickly regained its structure. Hydrolysis of beta-lactoglobulin by pepsin and chymotrypsin could be related to pressure-induced changes in the structure of the protein. Compared to the behavior of the protein at atmospheric pressure, no increased proteolysis was found in samples with no increased flexibility (100 MPa, 37 degrees C, pH 2.5). Slightly flexible structures were associated with significantly increased proteolysis (100 MPa, 37 degrees C, pH 6.8; 200 MPa, 37 degrees C, pH 2.5). Highly flexible structures were associated with very fast proteolysis (>or=200 MPa, 37 degrees C, pH 6.8; >or=300 MPa, 37 degrees C, pH 2.5). Proteolysis of prepressurized samples improved only when the protein was significantly changed after the pressure treatment (400 MPa, 25 degrees C, 20 min, pH 6.8).  相似文献   

10.
The nanostructure of Mozzarella cheeses prepared from microfluidized milk was compared with that of control cheeses made from untreated milk. Milk heated to 10 or 54 degrees C and containing 1.0 or 3.2% fat was homogenized by microfluidization at 34 or 172 MPa prior to cheesemaking. The effects on the casein particles and fat globules in the cheese were determined by transmission electron microscopy after 1 day and 6 weeks of storage at 4 degrees C. The micrographs showed that electron-dense regions theorized to be casein submicelles rearranged from a homogeneous configuration to a pattern of clusters during the storage period. The nanostructure of the cheeses made from milk processed under the mildest conditions resembled the controls, but otherwise the fat droplets decreased in size and increased in number as the pressure and temperature were increased. The results indicate that both homogenization temperature and pressure affect the nanostructure of Mozzarella cheese.  相似文献   

11.
Trypsin inhibitors (TIA), one of the antinutritional factors of soy milk, are usually inactivated by heat treatment. In the current study, high-pressure processing (HPP) was evaluated as an alternative for the inactivation of TIA in soy milk. Moreover, the effect of HPP on lipoxygenase (LOX) in whole soybeans and soy milk was studied. For complete LOX inactivation either very high pressures (800 MPa) or a combined temperature/pressure treatment (60 degrees C/600 MPa) was needed. Pressure inactivation of TIA was possible only in combination with elevated temperatures. For TIA inactivation, three process parameters, temperature, time, and pressure, were optimized using experimental design and response surface methodology. A 90% TIA inactivation with treatment times of <2 min can be reached at temperatures between 77 and 90 degrees C and pressures between 750 and 525 MPa.  相似文献   

12.
Emission and excitation spectra of intrinsic fluorophores present in milk were used to evaluate changes in milk following thermal treatments in the 57-72 degrees C temperature range from 0.5 min up to 30 min. Alternatively, the concentrations of native alkaline phosphatase, lactoferrin, immunoglobulin G, bovine serum albumin, beta-lactoglobulin, and alpha-lactalbumin were determined in the same samples by enzymatic and immunochemical techniques. As principal component analysis applied to the normalized fluorescence spectra successfully discriminated different milk samples according to the temperature and time of thermal treatment, principal component regression was applied to predict the amounts of the native proteins investigated using fluorescence data. The results showed strong correlations between measured and predicted data for alkaline phosphatase and beta-lactoglobulin. This study has demonstrated that front-face fluorescence spectroscopy has a promising potential to become a rapid and nondestructive analytical technique for the evaluation of physicochemical changes in milk induced by low thermal treatment.  相似文献   

13.
The effect of heat treatment on the IgE binding ability of beta-lactoglobulin, as pure protein or in whole milk, was studied by inhibition of IgE antibody binding using FEIA-CAP inhibition. A slight but significant decreased IgE binding was seen between unheated and heat-treated beta-lactoglobulin solution at 74 degrees C (IC(50) = 2.03 and 3.59 microg/mL, respectively, p = 0.032). A more pronounced decrease was found at 90 degrees C with an IC(50) of 8.45 microg/mL (p = 0.014). The inhibition of IgE binding of milk after heat treatment at 90 degrees C was also significantly decreased (p = 0.007). However, at all heat treatments, a similar total amount of IgE antibodies could be inhibited at a sufficiently high concentration of beta-lactoglobulin. The inhibiting ability of beta-lactoglobulin was significantly impaired in some fermented acidified milk products such as yogurt as compared to that in nonfermented milk (p < 0.001). There was only a small difference of IgE binding between the native forms of genetic variants A and B.  相似文献   

14.
In this paper we present surface dynamic properties (interfacial tension and surface dilational properties) of a whey protein isolate with a high content of beta-lactoglobulin (WPI) adsorbed on the oil-water interface as a function of adsorption time. The experiments were performed at constant temperature (20 degrees C), pH (5), and ionic strength (0.05 M). The surface rheological parameters and the interfacial tension were measured as a function of WPI concentration (ranging from 1 x 10(-)(1) to 1 x 10(-)(5)% w/w) and different processing factors (effect of convection and heat treatment). We found that the interfacial pressure, pi, and surface dilational modulus, E, increase and the phase angle, phi, decreases with time, theta, which should be associated with WPI adsorption. These phenomena have been related to diffusion of the protein toward the interface (at short adsorption time) and to the protein unfolding and/or protein-protein interactions (at long-term adsorption) as a function of protein concentration in solution and processing conditions.  相似文献   

15.
The effect of continuous flow high-intensity ultrasound (with and without heat generation) on alkaline phosphatase, gamma-glutamyltranspeptidase, lactoperoxidase, whey proteins (alpha-lactalbumin and beta-lactoglobulin), casein, and fat was studied in milk. Results were compared with those obtained using a conventional heating system having similar processing conditions. Hardly any effect on enzymes was observed when ultrasound was applied without heat generation. The highest denaturation of enzyme and whey proteins was found in samples subjected to ultrasound and heat. At 61, 70, and 75.5 degrees C a synergistic effect between ultrasound and heat was observed for the inactivation of alkaline phosphatase, gamma-glutamyltranspeptidase, and lactoperoxidase, respectively. A noticeable synergism between ultrasound and heat was detected for alpha-lactalbumin and beta-lactoglobulin denaturation. No changes in the casein were observed after any of the conditions assayed. As a consequence of ultrasound effects, a substantial reduction (up to 81.5%) in the size of the fat globule was observed. When 70 and 75.5 degrees C were achieved during high-intensity ultrasonic homogenization, a better particle distribution was observed as compared to that obtained at lower temperatures. This work describes the influence of continuous flow high-intensity ultrasound on important milk components as a first step for future processing applications.  相似文献   

16.
The effects of high hydrostatic pressure on volatile generation in milk were investigated in this study. Raw milk samples were treated under different pressures (482, 586, and 620 MPa), temperatures (25 and 60 degrees C), and holding times (1, 3, and 5 min). Samples submitted to heat treatments alone (25, 60, and 80 degrees C for 1, 3, and 5 min) were used for comparison. Trace volatile sulfur compounds were analyzed using solid-phase microextraction (SPME) and gas chromatography (GC) with pulsed-flame photometric detection (PFPD), whereas the rest of the volatile compounds were analyzed using SPME-GC with flame ionization detection (FID). Multivariate analysis of variance (MANOVA) and principal component analysis (PCA) were used to study the effect of pressure, temperature, and time on volatile generation. Relative concentration increases of 27 selected volatile compounds were compared to an untreated sample. It was found that pressure, temperature, and time, as well as their interactions, all had significant effects (P < 0.001) on volatile generation in milk. Pressure and time effects were significant at 60 degrees C, whereas their effects were almost negligible at 25 degrees C. The PCA plot indicated that the volatile generation of pressure-heated samples at 60 degrees C was different from that of heated-alone samples. Heat treatment tended to promote the formation of methanethiol, hydrogen sulfide, methyl ketones, and aldehydes, whereas high-pressure treatment favored the formation of hydrogen sulfide and aldehydes.  相似文献   

17.
Commercially supplied chicken breast muscle was subjected to simultaneous heat and pressure treatments. Treatment conditions ranged from ambient temperature to 70 degrees C and from 0.1 to 800 MPa, respectively, in various combinations. Texture profile analysis (TPA) of the treated samples was performed to determine changes in muscle hardness. At treatment temperatures up to and including 50 degrees C, heat and pressure acted synergistically to increase muscle hardness. However, at 60 and 70 degrees C, hardness decreased following treatments in excess of 200 MPa. TPA was performed on extracted myofibrillar protein gels that after treatment under similar conditions revealed similar effects of heat and pressure. Differential scanning calorimetry analysis of whole muscle samples revealed that at ambient pressure the unfolding of myosin was completed at 60 degrees C, unlike actin, which completely denatured only above 70 degrees C. With simultaneous pressure treatment at >200 MPa, myosin and actin unfolded at 20 degrees C. Unfolding of myosin and actin could be induced in extracted myofibrillar protein with simultaneous treatment at 200 MPa and 40 degrees C. Electrophoretic analysis indicated high pressure/temperature regimens induced disulfide bonding between myosin chains.  相似文献   

18.
Skim milk was adjusted to pH values between 6.5 and 6.7 and heated (80, 90, and 100 degrees C) for up to 60 min. Changes in casein micelle size, level of whey protein denaturation, and level of whey protein association with the micelles were monitored for each milk sample. Changes in casein micelle size were markedly affected by the pH at heating. At low pH (6.5-6.55), the casein micelle size increased markedly during the early stages of heating, and the size plateaued on prolonged heating. The maximum increase in size was approximately 30-35 nm. In contrast, at high pH (6.7), much smaller changes in size were observed on heating and the maximum increase in size was only approximately 10 nm. An intermediate behavior was observed at pH values between these two extremes. The rate of denaturation of the major whey proteins, alpha-lactalbumin and beta-lactoglobulin, was essentially unaffected by the pH at heating for the small pH changes involved in this study, and the changes in casein micelle size were poorly related to the level of whey protein denaturation. In contrast, the level of denatured whey proteins associating with the micelles was markedly dependent on the pH at heating, with high levels of association at pH 6.5-6.55 and low levels of association at pH 6.7. Changes in casein micelle size were related to the levels of denatured whey proteins that were associated with the casein micelles, although there was a small deviation from linearity at low levels of association (<15%). Further studies on reconstituted and fresh milk samples at smaller pH steps confirmed that the association of whey proteins with the casein micelles was markedly affected by the pH at heating. These results indicate that the changes in casein micelle size induced by the heat treatment of skim milk were a consequence of the whey proteins associating with the casein micelles and that the level of association was markedly influenced by small pH changes of the milk. It was not possible to determine whether the association itself influenced the casein micelle size or whether parallel reactions involving micellar aggregation caused the increase in micelle size as whey protein association progressed.  相似文献   

19.
Heat treatment during manufacturing of milk powder is one of the most important tools for manipulation of its functional properties, and it is the basis of the classification of these proteins into low-, medium-, and high-heat types. Slight differences in the sequences of the major proteins in milk (genetic variants) seem to have also a significant effect in milk powder processing (U.S. patent). Therefore, the effects of high-temperature storage and heat treatment on skim milk of defined genetic variants of beta-lactoglobulin (beta-LG) were measured. The samples had 45% total solids, the temperature of aging was 50 degrees C, and the heat treatment was 90 degrees C for 10 min prior to evaporation. Measurements on shear rate and on apparent viscosity were determined for each sample. During storage of the concentrated milk, the apparent viscosity and yield values increased markedly, and the age-dependent increase in viscosity in heat-treated concentrated skim milks was much more pronounced than in those prepared from unheated skim milks. The increase in apparent viscosity and yield value with storage time was notably different for milks containing different genetic variants. Unheated concentrated milks containing the B variant of beta-LG showed the most rapid increase in apparent viscosity with storage time, whereas the viscosity increase was slowest in the concentrate containing the A variant. In contrast, heat-treated concentrated milks containing the A variant of beta-LG showed the most rapid increase in viscosity with storage time, whereas the viscosity increase was slowest in the concentrate containing the AB variant. The changes in apparent viscosity of concentrated milk were largely reversible under high shear during the early stages of storage, but samples stored for a long time showed irreversible changes in apparent viscosity. Particle size analysis confirmed irreversible aggregation and fusion of casein particles during storage.  相似文献   

20.
The mechanism that leads to a decreased aggregation of beta-lactoglobulin in the presence of dextran sulfate and lambda-carrageenan was investigated by assessing changes in the denaturation thermodynamics and protein structure. Differential scanning calorimetry results showed that the denaturation temperature (Tp) was about 4.6 degrees C higher in the presence of dextran sulfate, as compared with beta-lactoglobulin alone, whereas in the presence of lambda-carrageenan the difference in Tp was about 1.2 degrees C. Changes in protein structure studies using near-UV circular dichroism (CD) provided support for the calorimetric results. The transition midpoint (Tm) for denaturation of beta-lactoglobulin was about 5 degrees C higher in the presence of dextran sulfate than that found with beta-lactoglobulin alone and about 2 degrees C in the presence of lambda-carrageenan. Thermal modifications of the tertiary structure of beta-lactoglobulin were irreversible at temperatures above 67 degrees C; the addition of dextran sulfate reduced the extent of such modifications. Far-UV CD studies indicated that the addition of dextran sulfate or lambda-carrageenan did not affect secondary structure changes of beta-lactoglobulin upon heating. These studies indicate that dextran sulfate and lambda-carrageenan can enhance the stability of beta-lactoglobulin and thereby inhibit heat denaturation and aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号