首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proper management of irrigation requires an accurate measuring of soil moisture. One of the commonly applied methods for measuring soil moisture is the use of gypsum blocks – a method that is simple and quick to apply. However, measuring moisture in saline soils using this method is prone to errors due to the effect of soil salinity on the block. In this study, the effect of different salinities (1, 2, 6, 10, and 18 deci Siemens per meter (dS m?1) on the measurements of a gypsum block type 5910 A was investigated with two repetitions in random blocks in sandy loam, loam, and clay loam soils, and corrective functions were obtained using multivariate regression for all soils with different salinity levels. The results showed different trends for measuring the soil moistures for salinities 1–6 dS m?1 compared with salinities 10–18 dS m?1, and the corrective functions in salinities 1–6 dS m?1, which had higher accuracies than those with salinities 10–18 dS m?1.  相似文献   

2.
The effects of zeolite application (0, 4, 8 and16 g kg?1) and saline water (0.5, 1.5, 3.0 and 5.0 dS m?1) on saturated hydraulic conductivity (K s) and sorptivity (S) in different soils were evaluated under laboratory conditions. Results showed that K s was increased at salinity levels of 0.5‐1.5 dS m?1 in clay loam and loam with 8 and 4 g zeolite kg?1 soil, respectively, and at salinity levels of 3.0–5.0 dS m?1 with 16 g zeolite kg?1 soil. K s was decreased by using low and high salinity levels in sandy loam with application of 8 and 16 g zeolite kg?1, respectively. In clay loam, salinity levels of 0.5–3.0 dS m?1 with application of 16 g kg?1 zeolite and 5.0 dS m?1 with application of 8 g zeolite kg?1 soil resulted in the lowest values of S. In loam, all salinity levels with application of 16 g zeolite kg?1 soil increased S compared with other zeolite application rates. In sandy loam, only a salinity level of 0.5 dS m?1 with application of 4 g zeolite kg?1 soil increased S. Other zeolite applications decreased S, whereas increasing the zeolite application to 16 g kg?1 soil resulted in the lowest value of S.  相似文献   

3.
Reanalysis of the drying background in wheat showed that analytical solutions may be employed in this grain to estimate diffusion coefficients by using the simplified equation for short times instead of the time-consuming series. Sixteen thin-layer drying curves of hard wheat were measured (airflow ≈ 0·3 kg m−2s−1) covering four air temperatures (35–70°C) at each of four initial moisture content levels (0·189–0·269 decimal, d.b.). Experimental curves of the moisture ratio versus time grouped by initial moisture content showed the expected strong accelerating effect of temperature on drying rate. Besides, when the same curves were grouped by temperature, the moisture ratios corresponding to higher initial moisture contents fell, after some time, consistently faster, showing that the diffusion coefficient should increase somehow with water concentration. The short time simplified diffusive equation fitted each curve very well, with values of the coefficient of determination above 0·99. Values of the diffusion coefficient for the whole kernel ranged from 1·4×10−11to 7·1×10−11m−2s−1, presenting the classical Arrhenius temperature dependency (activation energy ≈ 27·0 kJ mol−1), but with a pre-exponential factor that depends linearly on initial moisture content. This diffusive kinetics is expected to be useful for fast and accurate dryer simulation.  相似文献   

4.
Soil contains the major part of carbon in terrestrial ecosystems, but the response of this carbon to enriching the atmosphere in CO2 and to increased N deposition is not completely understood. We studied the effects of CO2 concentrations at 370 and 570 μmol CO2 mol?1 air and increased N deposition (7 against 0.7 g N m?2 year?1) on the dynamics of soil organic C in two types of forest soil in model ecosystems with spruce and beech established in large open‐top chambers containing an acidic loam and a calcareous sand. The added CO2 was depleted in 13C and thus the net input of new C into soil organic carbon and the mineralization of native C could be quantified. Soil type was the greatest determining factor in carbon dynamics. After 4 years, the net input of new C in the acidic loam (670 ± 30 g C m?2) exceeded that in the calcareous sand (340 ± 40 g C m?2) although the soil produced less biomass. The mineralization of native organic C accounted for 700 ± 90 g C m?2 in the acidic loam and for 2800 ± 170 g C m?2 in the calcareous sand. Unfavourable conditions for mineralization and a greater physico‐chemical protection of C by clay and oxides in the acidic loam are probably the main reasons for these differences. The organic C content of the acidic loam was 230 g C m?2 more under the large than under the small N treatment. As suggested by a negligible impact of N inputs on the fraction of new C in the acidic loam, this increase resulted mainly from a suppressed mineralization of native C. In the calcareous sand, N deposition did not influence C concentrations. The impacts of CO2 enrichment on C concentrations were small. In the uppermost 10 cm of the acidic loam, larger CO2 concentrations increased C contents by 50–170 g C m?2. Below 10 cm depth in the acidic loam and at all soil depths in the calcareous sand, CO2 concentrations had no significant impact on soil C concentrations. Up to 40% of the ‘new’ carbon of the acidic loam was found in the coarse sand fraction, which accounted for only 7% of the total soil volume. This suggests that a large part of the CO2‐derived ‘new’ C was incorporated into the labile and easily mineralizable pool in the soil.  相似文献   

5.
In this work, the influence of solute concentration of two types of electrolyte solutions single-ion (Na) and mixed-ion (Na–Ca) systems on hydraulic and some physical properties of a clay soil was investigated. Saturated hydraulic conductivity (HC) declined noticeably using lower solute concentration in single ion system. The highest reduction in HC was observed at 250 molec m?3 solute concentration. Application of high solute concentration of single-ion system reduced meanweight diameter (MWD) to less than half of the control treatment (0.16 mm compared with 0.33 mm). Resistance to penetrometer increased with decreasing solute concentration. In mixed-ion system the MWD was increased whereas the resistance to penetrometer was decreased. HC values ranged from 6.5?×?10?4 to 9.0?×?10?4 mm s?1 in mixed ion system compared with 7.2?×?10?4 to 13.0?×?10?4 mm s?1 in single-ion system. The improvement of some physical properties in mixed-ion solution treatment is attributed to the presence of calcium ion that usually acts as amendment to sodium-affected soil. Soil HC showed lower values at low solute concentrations.  相似文献   

6.
Abstract

The investigations aimed to: 1) evaluate water erosion rates on undulating slopes in Lithuania under different land use systems; 2) study changes in soil physical properties on the differently eroded slopes; and 3) better understand relationships between soil physical properties and soil erodibility. Research data were obtained on loamy sand and clay loam Eutric Albeluvisols located on the undulating hilly relief of the ?emai?iai Uplands of Western Lithuania. The results of 18 years of water erosion investigations under different land use systems on slopes of varying steepness are presented. Attention is focused on changes in soil physical properties in relation to soil erosion severity. Measured water erosion rates in the field experiments were: 3.2–8.6 m3 ha?1 yr?1 under winter rye, 9.0–27.1 m3 ha?1 yr?1 under spring barley and 24.2–87.1 m3 ha?1 yr?1 under potatoes. Perennial grasses completely prevented water erosion, while erosion-preventive grass-grain crop rotations (67% grasses, 33% cereal grains) decreased soil losses by 75–80% compared to the field crop rotation, containing 17% tillage crops (potatoes), 33% grasses and 50% cereal grains. The grain-grass crop rotation (33% grasses and 67% cereal grains) decreased soil erosion rates by 23–24%. The percentage of clay-silt and clay fractions of arable soil horizons increased, while the total soil porosity and moisture retention capacity decreased with increased soil erosion. Phytocenoses, including sod-forming perennial grasses and grass-grain crop rotations, led to changes in the physical properties of eroded soils; soil bulk density decreased and percentage total porosity and moisture retention capacity increased. The grass-grain crop rotations increased the water-stable soil structure (measured as water-stable soil aggregates) by 11.03 per cent units and sod-forming perennial grasses increased aggregate stability by 9.86 per cent units compared with the grain-grass crop rotation on the 10–14° slope. Therefore, grass-grain crop rotations and sod-forming perennial grasses decreased soil erodibility and thus could assist both erosion control and the ecological stability of the vulnerable hilly-undulating landscape.  相似文献   

7.
The survival of Pseudomonas solanacearum biovars 2 and 3 in three soils, a Nambour clay loam, a Beerwah sandy loam and a Redland Bay clay, was compared at pressure potentials of ?0.003, ?0.05 and ?0.15 kPa. The soils were inoculated with mutants of P. solanacearum biovars 2 and 3, resistant to 2000 μg streptomycin sulphate ml?1 and their survival measured every 6 weeks for 86 weeks in the clay loam and clay and for 52 weeks in the sandy loam. Soil populations declined with the initial drying necessary to bring the soil moisture to the specific pressure potentials; the initial counts for biovar 2 varied between 0.20 and 2.00 × 109 cfu g?1 soil and for biovar 3 between 0.17 and 1.29 × 109 cfu g?1 soil.The population decline in soil maintained at a constant pressure potential was expressed as the rate of population decline. Biovar 2 declined more rapidly than biovar 3. The rate of population decline of each biovar at ?0.003 and ?0.05 kPa was greater in clay loam than in sandy loam and at all pressure potentials it was greater in clay loam and sandy loam than in clay. There was also a tendency for the rate of population decline of both biovars to decrease in the drier soil treatments.  相似文献   

8.
The self-diffusion coefficients of Cl, Na, Sr and phosphate have been measured in Upper Greensand, sandy clay loam (CEC 7.45 me/100 g.) between pF 1.8 and 5.4 and, for Na and phosphate, over a range of soil-solution concentrations. An attempt has been made to estimate the relative contributions of solution- and exchangeable-ions to diffusion. There is some indication that exchangeable Na may contribute to diffusion at the lowest moisture contents used, but little indication of this at pF 2.1 (15 per cent moisture content) when the proportion of ions on the solid was as high as possible. Exchangeable Sr appears to make no significant contribution to diffusion at any moisture content when the soil-solution concentration is 0.1M. Exchangeable phosphate appears to make no contribution to diffusion at pF 2.1 between 5 × 10?6M and 9 × 10?4M.  相似文献   

9.
14C-labelled maleic hydrazide (MH) was added to each of three soils at a concentration of 4 mg kg?1, and its degradation measured by the release of 14CO2 after 2 days. Between 1 and 30°C, at a constant moisture content (full field capacity), the mean degradation rate increased by a factor of 3 for each temperature increment of 10°C (Q10 = 3). The mean activation energy was 78 kJ mol?1. Above 35°C, the degradation rate decreased.At soil moisture contents between wilting point and 80–90% of field capacity, the degradation rate doubled with an increase in moisture content of 50% of field capacity (constant temperature, 25°C). Above field capacity, the degradation rate was either unchanged or decreased. Below wilting point the degradation was very slow, even after 2 months.The rate of decomposition of MH at all temperatures and moisture contents was lowest in the soil with the highest content of organic matter and the lowest clay content. This soil had the highest Freundlich K value, and presumably adsorbed MH the most strongly, although the lower clay content may also play a role in the lower decomposing capacity of this soil.  相似文献   

10.
The continuous use of heavy machinery and vehicular traffic on agricultural land led to an increase in soil compaction, which reduces crop yield and deteriorates the physical conditions of the soil. A pot experiment was conducted under greenhouse conditions to study the effects of induced soil compaction on growth and yield of two wheat (Triticum aestivum) varieties grown under two different soil textures, sandy loam and sandy clay loam. Three compaction levels [C0, C1, and C2 (0, 10 and 20 beatings)], two textural classes (sandy loam and sandy clay loam), and two genotypes of wheat were selected for the experiment. Results indicated that induced soil compaction adversely affected the bulk density (BD) and total porosity of soil in both sandy loam and sandy clay loam soils. Compaction progressively increased soil BD from 1.19 Mg m?3 in the control to 1.27 Mg m?3 in C1 and 1.40 Mg m?3 in C2 in sandy loam soil while the corresponding increase in BD in sandy clay loam was 1.56 Mg m?3 in C1 and 1.73 Mg m?3 in C2 compared to 1.24 Mg m?3 in the control. On the other hand, compaction tended to decrease total porosity of soil. In case of sandy loam, porosity declined by 5% and 17% in C1 and C2, respectively, and declined in sandy clay loam by 29% and 54%, respectively. Averaged over genotypes and textures, shoot length decreased by 15% and 26% at C1 and C2, respectively, and straw yield decreased by 21% and 61%, respectively. The compaction levels C1 and C2 significantly decreased grain yield by 12% and 41%, respectively, over the control. The deleterious effect of compaction was more pronounced on root elongation and root mass, and compaction levels C1 and C2 decreased root length by 47% and 95% and root mass by 41% and 114%, respectively, over the control. Response of soil texture to compaction was significant for almost all the parameters, and the detrimental effects of soil compaction were greater in sandy clay loam compared to sandy loam soil. The results from the experiment revealed that soil compaction adversely affected soil physical conditions, thereby restricting the root growth, which in turn may affect the whole plant growth and grain yield. Therefore, appropriate measures to avoid damaging effects of compaction on soil physical conditions should be practiced. These measures may include soil management by periodic chiseling, controlled traffic, conservation tillage, addition of organic manures, and incorporating crops with deep tap root systems in a rotation cycle.  相似文献   

11.
We investigated the effect of increasing soil temperature and nitrogen on greenhouse gas (GHG) emissions [carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)] from a desert steppe soil in Inner Mongolia, China. Two temperature levels (heating versus no heating) and two nitrogen (N) fertilizer application levels (0 and 100?kg?N?ha?1?year?1) were examined in a complete randomized design with six replications. The GHG surface fluxes and their concentrations in soil (0 to 50?cm) were collected bi-weekly from June 2006 to November 2007. Carbon dioxide and N2O emissions were not affected by heating or N treatment, but compared with other seasons, CO2 was higher in summer [average of 29.6 versus 8.6?mg carbon (C) m?2?h?1 over all other seasons] and N2O was lower in winter (average of 2.6 versus 4.0?mg?N?m?2?h?1 over all other seasons). Desert steppe soil is a CH4 sink with the highest rate of consumption occurring in summer. Heating decreased CH4 consumption only in the summer. Increasing surface soil temperature by 1.3°C or applying 100?kg?ha?1?year?1 N fertilizer had no effect on the overall GHG emissions. Seasonal variability in GHG emission reflected changes in temperature and soil moisture content. At an average CH4 consumption rate of 31.65?µg?C?m?2?h?1, the 30.73 million ha of desert steppe soil in Inner Mongolia can consume (sequestrate) about 85?×?106?kg CH4-C, an offset equivalent to 711?×?106?kg CO2-C emissions annually. Thus, desert steppe soil should be considered an important CH4 sink and its potential in reducing GHG emission and mitigating climate change warrants further investigation.  相似文献   

12.
The experiment was conducted in the winter season on Beni silty clay loam of Pantnagar with four mulches, viz. polythene (transparent), paddy straw (5 t ha?11), asphalt emulsion (5000 1 ha?1, as spray), lime suspension (6000 1 ha?1, as spray) and on a bare plot (control). Net radiation received at 50 cm above the soil surface was maximum over the asphalt mulched plot (0.88 cal cm?2 min?1) and minimum over the lime-sprayed plot (0.63 cal cm?2 min?1). Albedo was maximum during early morning hours (about 0.31 for lime and 0.08 for asphalt), it decreased to about 0.21 for lime and 0.015 for asphalt at solar noon, and increased to 0.29 for lime and 0.05 for asphalt by 1700 h. The magnitude of albedo increased as the soil moisture content decreased.Heat flux was positive (upward) for 16 h and negative (downward) for 8 h and depended on the advance of the season and the soil moisture content. Under asphalt it was 1.25 m cal cm?2 s?1 on the third day after irrigation and decreased to 0.94 m cal cm?2 s?1 on the 27th day after irrigation. It was minimum in the lime-sprayed plot. Since polytheene prevents the long-wave radiation emitted by the soil to pass, due to condensation of water vapour and presence of dust particles on the soil side of the polythene surface, the soil temperature under polythene was maximum.In general, it ranged from 18.8 to 43°C, 16.2 to 40.2°C, 16.0 to 36.1°C, 19.0 to 28.7°C, and 15.2 to 31°C under ploythene, asphalt, bare soil, straw and lime, respectivel  相似文献   

13.
The thermal diffusivity of the upper horizons of model soddy-podzolic soils in the lysimeters depends on their water contents and varies within 2.1?4.32 × 10?7 m2/s in the Ap horizon, 1.59?3.99 × 10?7 m2/s in the B1 horizon, 1.28?3.74 × 10?7 m2/s in the plowed B2 horizon, and 1.12?4.10 × 10?7 m2/s in the B2 horizon. The dependence of the thermal diffusivity on the soil water content is described by an inverted parabolic curve for the Ap horizon, an S-shaped curve for the B1 and B2 horizons, and by a curve of transitional type for the plowed B2 horizon. The temperature regimes of model soils with different morphologies of the profile do not differ much and are close to the soil temperature regime under natural conditions on the plots of the weather station of Moscow State University.  相似文献   

14.
The kinetic (Km, Vmax) of alkaline phosphatase (AP) desorbed from different Ca-homoionic clay minerals (montmorillonite, illite, and kaolinite) by extraction with Tris-Malate-Citrate buffer solution (pH 9.6) was studied in model experiments. After extraction (shaking for 15 min.) the Km and Vmax were measured in the extract, the remaining sediment and in the whole set-up. With kaolinite and illite, Vmax of the desorbed AP was lower than that of the sediment. However, with montmorillonite, Vmax of AP in the extract and whole system increased if compared to the control, but decreased in the sediment. The Km of desorbed AP increased from 4.3 × 10?3 (control) to 5.0 × 10?3 M (illite), 5.4 × 10?3M (kaolinite), and 5.5 × 10?3M (montmorillonite). These values were lower than those obtained with the various sediments and whole experimental systems. An aberrant behaviour was recorded with the illite sorbed AP which showed an increase in affinity towards the substrate. Generally speaking, AP desorbed from clays may be reduced in its affinity towards the substrate p-nitrophenylphosphate by residual inhibitor and/or conformational change of the enzyme.  相似文献   

15.
ABSTRACT

To research soil organic carbon (SOC) in a typical small karst basin of western Guizhou in southwest China, data from the second national soil resource survey (1980) and data analysed in the laboratory in 2015 were used. This paper examines the changes in soil organic carbon density (SOCD) and soil organic carbon stock (SOCS) in the topsoil (0–20 cm) over the past 35 years based on soil types, and the primary influencing factors are also discussed. The SOCD and SOCS slightly increased over this period. The SOCD increased from 4.91 kg m?2 to 5.13 kg m?2, and the SOCS increased from 368.27 × 103 t to 385.09 × 103 t. The basin sequestered a low level of carbon during this time. Paddy fields were the key contributor to the increases, and the SOCD and SOCS of paddy fields increased by 1.61 kg m?2 and 32.39 × 103 t, respectively. Generally, the SOCD and SOCS in the soils from the southern part of Houzhai Basin increased considerably, and those from the northern part of the basin decreased significantly. The spatial variation of SOCD in the Houzhai Basin was mainly due to natural factors. However, the temporal change of SOC was primary caused by human activities.  相似文献   

16.
Termites are reported to improve soil physicochemical properties thereby enhance soil fertility of their mound and foraging areas. Empirical study pertaining to these effects is missing in Southwest Ethiopia. For this study, soil samples affected by termite activities were collected at 1 m interval within 0–3 m distance from the base of six termite mounds on gently sloping and sloping land and analyzed for physicochemical parameters. The result of the analysis depicted that soil bulk density (1.38–1.15 g cm?3) and moisture content (21.1–9.9%) decreased with increased distance from the mound base. While clay content decreased with increased distance from the mound base from72.0% to 45.5%, sand and silt contents increased from 8.0% to 21.3% and 19.3% to 28.5%, respectively. PH (6.23), organic carbon (3.85%), total nitrogen (0.4%), cation exchange capacity CEC (30.43 cmol kg?1), exchangeable Ca (13.73 cmol kg?1), Mg (3.15 cmol kg?1), and PBS (56.8%) were higher on termite mounds. While, electrical conductivity (0.03 dS m?1–0.06 dS m?1), exchangeable K (0.52–0.93 cmol kg?1) and Na (0.02–0.03 cmol kg?1) showed increasing trend with the distance from the mound base. Our results indicated that termite mounds are important sinks of organic matter and mineral nutrients, and hence contribute to the enhancement of soil fertility. Thus, for subsistent farmers the uses of termite mounds as a fertilizer present an opportunity to improve agricultural production.  相似文献   

17.
Outwintering beef cattle on woodchip corrals offers stock management, economic and welfare benefits when compared with overwintering in open fields or indoors. A trial was set up on a loamy sand over sand soil to evaluate the pollution risks from corrals and the effect of design features (size and depth of woodchips, stocking density, and feeding on or off the corral). Plastic‐lined drainage trenches at 9–10 m spacing under the woodchips allowed sampling of the leachate. Sampling of the soil to 3.6 m below the corral allowed evaluation of pollutant mitigation during vadose zone transport. Mean corral leachate pollutant concentrations were 443–1056 mg NH4‐N L?1, 372–1078 mg dissolved organic carbon (DOC) L?1, 3–13 mg NO3‐N L?1, 8 × 104–1.0 × 106Escherichia coli 100 mL?1 and 2.8 × 102–1.4 × 103 faecal enterococci 100 mL?1. Little influence of design features could be observed. DOC, NH4 and (in most cases) E. coli and faecal enterococci concentrations decreased 102–103 fold when compared with corral leachate during transport to 3.6 m but there were some cores where faecal enterococci concentrations remained high throughout the profile. Travel times of pollutants (39–113 days) were estimated assuming vertical percolation, piston displacement at field moisture content and no adsorption. This allowed decay/die‐off kinetics in the soil to be estimated (0.009–0.044 day?1 for DOC, 0.014–0.045 day?1 for E. coli and 0–0.022 day?1 for faecal enterococci). The mean [NO3‐N] in pore water from the soil cores (n = 3 per corral) ranged from 114 ± 52 to 404 ± 54 mg NO3‐N L?1, when compared with 59 ± 15 mg NO3‐N L?1 from a field overwintering area and 47 ± 40 mg NO3‐N L?1 under a permanent feeding area. However, modelling suggested that denitrification losses in the soil profile increased with stocking density so nitrate leaching losses per animal may be smaller under corrals than for other overwintering methods. Nitrous oxide, carbon dioxide and methane fluxes (measured on one occasion from one corral) were 5–110 g N ha?1 day?1, 3–23 kg C ha?1 day?1, and 5–340 g C ha?1 day?1 respectively. Ammonia content of air extracted from above the woodchips was 0.7–3.5 mg NH4‐N m?3.  相似文献   

18.
Hydraulic Resistance and Capacitance in the Soil-Plant System   总被引:1,自引:0,他引:1  
In this paper, the hydraulic resistances and capacitances were evaluated. based on the development of non-(?) model of water flow in the soil-plant system and the simulating experiment work.The results show that the mean hydraulic resistance in the soil-plant system is 6.79×109 MPa·S·m-3; the mean hydraulic capacitance in the system is 5.2×107m3·MPa-1. In the components of hydraulic capacitance in the system, the capacitance in soil (81.8×10-6m3·MPa ) is the biggest and its variability with suii water potential is extremely strong, the capacitance in plant (5.3×10-7m3·MPa-1) is much smaller than that in soil, and the capacitance in shoots (15.5×10-7m3·2MPa-1) is bigger than that in roots (8.4×10-7m3·2MPa-1). An interesting result is that the capacitance in plant is almost equivalent to that in the soil-plant system.  相似文献   

19.
Barrel size undisturbed monoliths of Weswood silt loam soil (Fluventic Ustochrept) were collected, instrumented, equilibrated at desired moisture contents, and treated with xylene by spilling it on the soil surface. Volatilization of xylene was measured using a chamber equipped with a granular activated carbon (GAC) vapor trap. Leachate was collected daily under ? 33 kPa tension with a GAC vapor trap between each collection bottle and the vacuum source. Residual xylene was determined by collecting soil samples at the end of the leaching period and analyzing them for xylene. Degradation was estimated as the xylene applied less the sum of the xylene which remained, leached, and volatilized. Most of the observed volatilization occurred immediately after application and was greatest from the driest soil. An application rate of 7.2 × 10?2 m depth of xylene at the intermediate moisture content resulted in four times more volatilization than occurred from the 3.6 × 10?2 m application. Xylene appeared in the leachate collected at a depth of 0.78 m from all treatments within 12 hr after the xylene was applied. Initial soil moisture content greatly influenced the amount which passed through the soil. An average of 34% and less than 0.5% of the applied xylene moved through the wettest and driest soils, respectively. Doubling the xylene application depth resulted in a 10 to 17-fold increase in the amount of xylene in the leachate. Vapor traps in line with soil pore liquid samplers were essential, since for some treatments, an average of 95.1% of the xylene collected in the leachate was recovered from the vapor trap. The xylene which remained in the soil after 67 days ranged from 6.7 to 12.8%. Estimated degradation rates ranged from 45.7 to 137.8 g day?1 with the greatest degradation occurring in the soil with the highest application rate and the least degradation in the wettest soil with the lowest application rate.  相似文献   

20.
The influence of potato cultivar and soil type on effectiveness of plant growth-promoting rhizobacteria (PGPR) was examined. Rhizobacteria were isolated from potato roots and tubers obtained from fields with a history of high potato yields. Fluorescent pigment-producing rhizobacteria. identified as strains of Pseudomonas putida and P. fluorescens, were selected for their antibiosis against Erwinia carovotora ssp. carotovora and growth-promoting activity on potatoes. In greenhouse tests, treatments of potato seedpieces and stem cuttings increased shoot dry weight from 1.23- to 2.00-fold and root dry weight from 1.27- to 2.78-fold. Survival of PGPR in the rhizosphere was monitored using antibioticresistant strains. Populations of these strains decreased from 3.6 × 109 cgu g?1 dry root weight to 4.5 × 105 cfu g?1 dry root weight 4 weeks after treatment. In field trials, PGPR strains were applied to seedpieces of cultivars Kennebec, Pungo, Red Pontiac and Superior and planted in Cape Fear loam. Plymouth loamy sand or Delanco sandy loam. Significant yield increases of 1.17–1.37-fold over controls were observed in two of three field trials. Variability in plant growth-promoting activity was observed between greenhouse and field trials, and no given treatment combination of PGPR strain, potato cultivar and soil type was consistently better than another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号