首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To determine sedative, cardiorespiratory and metabolic effects of xylazine hydrochloride, detomidine hydrochloride, and a combination of xylazine and acepromazine administered i.v. at twice the standard doses in Thoroughbred horses recuperating from a brief period of maximal exercise. ANIMALS: 6 adult Thoroughbreds. PROCEDURE: Horses were preconditioned by exercising them on a treadmill to establish a uniform level of fitness. Each horse ran 4 simulated races, with a minimum of 14 days between races. Simulated races were run at a treadmill speed that caused horses to exercise at 120% of their maximal oxygen consumption. Horses ran until they were fatigued or for a maximum of 2 minutes. One minute after the end of exercise, horses were treated i.v. with xylazine (2.2 mg/kg of body weight), detomidine (0.04 mg/kg), a combination of xylazine (2.2 mg/kg) and acepromazine (0.04 mg/kg), or saline (0.9% NaCl) solution. Treatments were randomized so that each horse received each treatment once, in random order. Cardiopulmonary indices were measured, and samples of arterial and venous blood were collected immediately before and at specific times for 90 minutes after the end of each race. RESULTS: All sedatives produced effective sedation. The cardiopulmonary depression that was induced was qualitatively similar to that induced by administration of these sedatives to resting horses and was not severe. Sedative administration after exercise prolonged the exercise-induced increase in body temperature. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of xylazine, detomidine, or a combination of xylazine-acepromazine at twice the standard doses produced safe and effective sedation in horses that had just undergone a brief, intense bout of exercise.  相似文献   

2.
Three series of trials involving 10 domestic short-haired cats were carried out to determine the influence of dosage of contrast media or type of chemical restraint on feline excretory urography. The 1st series (group A) involved 5 cats sedated with 2.0 mg/kg intramuscular (i.m) injection of 2% xylazine and receiving 800 mg/kg of 76 % meglumine diatrizoate (urografin). The 2nd series (group B) involved another 5 cats sedated with 2.0 mg/kg (i.m) injection of 2% xylazine and receiving 1200 mg/kg of 76% urografin. The 3rd series (group C) involved the repeat urography of the group B cats but sedated with 15 mg/kg (i.m) injection of 5% ketamine hydrochloride. Ventrodorsal radiographs were obtained immediately, 5, 15 and 40 minutes after the injection of 76% urografin. Scores were assigned to nephrographic opacification as described in the literature. The heart rates, respiratory rates and rectal temperatures of the cats were also determined before sedation, after sedation, immediately after the injection of 76% urografin and at 15-minute intervals over a period of 60 minutes. In this study, there were significant differences (P < 0.05) in the nephrographic opacification scores between the group A and group B cats at times 0 and 40 minutes post-administration of urografin. Group A cats had good initial nephrographic opacification which faded later while the nephrographic opacification of group B cats progressively increased. Similarly, nephrographic opacification was significantly (P < 0.05) higher in the xylazine-sedated cats (groups A and B) than the ketamine-sedated cats (group C). However, there were no significant differences (P > 0.05) in heart rates, respiratory rates and rectal temperatures between the 3 groups of cats. It was therefore concluded that increasing the dosage of urografin above 800 mg/kg in cats does not provide additional beneficial effects on the nephrograms produced. Xylazine sedation was observed to produce better nephrographic opacification, however, with delayed nephrographic fading compared to ketamine sedation.  相似文献   

3.
OBJECTIVE: To evaluate the sedative, analgesic, and cardiorespiratory effects of intramascular (IM) romifidine in cats. STUDY DESIGN: Prospective, randomized experimental trial. ANIMALS: Ten healthy adult cats. METHODS: Romifidine (100, 200, and 400 microg kg(-1)) or xylazine (1 mg kg(-1)) was given IM in a cross-over study design. Heart rate (HR), respiratory rate (RR), rectal temperature (RT), hemoglobin saturation, oscillometric arterial pressure, and scores for sedation, muscle relaxation, position, auditory response, and analgesia were determined before and after drug administration. Time to recumbency, duration of recumbency, and time to recover from sedation were determined. Subjective evaluation and cardiorespiratory variables were recorded before and at regular intervals for 60 minutes after drug administration. RESULTS: Bradycardia developed in all cats that were given romifidine or xylazine. No other significant differences in physiologic parameters were observed from baseline values or between treatments. Increasing the dose of romifidine did not result in increased sedation or muscle relaxation. Cats given xylazine showed higher sedation and muscle relaxation scores over time. Analgesia scores were significantly higher after administration of romifidine (400 microg kg(-1)) and xylazine (1 mg kg(-1)) than after romifidine at 100 or 200 microg kg(-1). Duration of lateral recumbency was not significantly different between treatments; however, cats took longer to recover after administration of 400 micro g kg(-1) romifidine. CONCLUSIONS AND CLINICAL RELEVANCE: Bradycardia is the most important adverse effect after IM administration of romifidine at doses ranging from 100 to 400 microg kg(-1) or 1 mg kg(-1) of xylazine in cats. The sedative effects of romifidine at 200 microg kg(-1) are comparable to those of 1 mg kg(-1) of xylazine, although muscle relaxation and analgesia were significantly less with romifidine than with xylazine.  相似文献   

4.
The sedative effect induced by administering xylazine hydrochloride or detomidine hydrochloride with or without butorphanol tartrate to standing dairy cattle was compared in two groups of six adult, healthy Holstein cows. One group received xylazine (0.02 mg/kg i.v.) followed by xylazine (0.02 mg/kg) and butorphanol (0.05 mg/kg i.v.) 1 week later. Cows in Group B received detomidine (0.01 mg/kg i.v.) followed by detomidine (0.01 mg/kg i.v.) and butorphanol (0.05 mg/kg i.v.) 1 week later. Heart rate, respiratory rate, and arterial blood pressure were monitored and recorded before drugs were administered and every 10 minutes for 1 hour after drug administration. The degree of sedation was evaluated and graded. Cows in each treatment group had significant decreases in heart rate and respiratory rate after test drugs were given. Durations of sedation were 49.0 +/- 12.7 minutes (xylazine), 36.0 +/- 14.1 (xylazine with butorphanol), 47.0 +/- 8.1 minutes (detomidine), and 43.0 +/- 14.0 minutes (detomidine with butorphanol). Ptosis and salivation were observed in cows of all groups following drug administration. Slow horizontal nystagmus was observed from three cows following administration of detomidine and butorphanol. All cows remained standing while sedated. The degree of sedation seemed to be most profound in cows receiving detomidine and least profound in cows receiving xylazine.  相似文献   

5.
OBJECTIVE: To evaluate the effects of intranasal administration of midazolam and xylazine (with or without ketamine) and detomidine and their specific antagonists in parakeets. DESIGN: Prospective study. ANIMALS: 17 healthy adult Ring-necked Parakeets (Psittacula krameri) of both sexes (mean weight, 128.83+/-10.46 g [0.28+/-0.02 lb]). PROCEDURE: The dose of each drug or ketamine-drug combination administered intranasally that resulted in adequate sedation (ie, unrestrained dorsal recumbency maintained for >or=5 minutes) was determined; the onset of action, duration of dorsal recumbency, and duration of sedation associated with these treatments were evaluated. The efficacy of the reversal agents flumazenil, yohimbine, and atipamezole was also evaluated. RESULTS: In parakeets, intranasal administration of midazolam (7.3 mg/kg [3.32 mg/lb]) or detomidine (12 mg/kg [5.45 mg/lb]) caused adequate sedation within 2.7 and 3.5 minutes, respectively. Combinations of midazolam (3.65 mg/kg [1.66 mg/lb]) and xylazine (10 mg/kg [4.55 mg/lb]) with ketamine (40 to 50 mg/kg [18.2 to 22.7 mg/lb]) also achieved adequate sedation. Compared with detomidine, duration of dorsal recumbency was significantly longer with midazolam. Intranasal administration of flumazenil (0.13 mg/kg [0.06 mg/lb]) significantly decreased midazolam-associated recumbency time. Compared with the xylazineketamine combination, duration of dorsal recumbency was longer after midazolam-ketamine administration. Intranasal administration of flumazenil, yohimbine, or atipamezole significantly decreased the duration of sedation induced by midazolam, xylazine, or detomidine, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Intranasal administration of sedative drugs appears to be an acceptable method of drug delivery in Ring-necked Parakeets. Reversal agents are also effective when administered via this route.  相似文献   

6.
ABSTRACT

Aim: To evaluate the sedative and clinical effects of I/V xylazine, detomidine, medetomidine and dexmedetomidine in miniature donkeys.

Methods: Seven clinically healthy, male adult miniature donkeys with a mean age of 6 years and weight of 105?kg, were assigned to five I/V treatments in a randomised, cross-over design. They received either 1.1?mg/kg xylazine, 20?μg/kg detomidine, 10?μg/kg medetomidine, 5?μg/kg dexmedetomidine or saline, with a washout period of ≥7 days. The degree of sedation was scored using a 4-point scale by three observers, and heart rate (HR), respiration rate (RR), rectal temperature and capillary refill time (CRT) were recorded immediately before and 5, 10, 15, 30, 60, 90 and 120 minutes after drug administration.

Results: All saline-treated donkeys showed no sedation at any time, whereas the donkeys treated with xylazine, detomidine, medetomidine and dexmedetomidine had mild or moderate sedation between 5 and 60 minutes after treatment, and no sedation after 90 minutes. All animals recovered from sedation without complication within 2 hours. The mean HR and RR of saline-treated donkeys did not change between 0 and 120 minutes after administration, but the mean HR and RR of donkeys treated with xylazine, detomidine, medetomidine and dexmedetomidine declined between 5 and 60 minutes after drug administration. The mean rectal temperature of all treated donkeys did not change between 0 and 120 minutes after administration. The CRT for all donkeys was ≤2 seconds at all times following each treatment.

Conclusions and clinical relevance: Administration of xylazine at 1.1?mg/kg, detomidine at 20?μg/kg, medetomidine at 10?μg/kg and dexmedetomidine at 5?μg/kg resulted in similar sedation in miniature donkeys. Therefore any of the studied drugs could be used for sedation in healthy miniature donkeys.  相似文献   

7.
OBJECTIVE: To determine antiemetic efficacy of prophylactic administration of dexamethasone and its influence on sedation in cats sedated with xylazine hydrochloride. ANIMALS: 6 healthy adult cats (3 males and 3 females). PROCEDURE: The prophylactic antiemetic effect of 4 doses of dexamethasone (1, 2, 4, and 8 mg/kg of body weight, IM) or saline (0.9% NaCl) solution (0.066 ml/kg, IM) administered 1 hour before administration of xylazine (0.66 mg/kg, IM) was evaluated. Cats initially were given saline treatment (day 0) and were given sequentially increasing doses of xylazine on days 7, 14, 21, and 28. After xylazine injection, all cats were observed for 30 minutes to allow assessment of frequency of emesis and time until onset of the first emetic episode.The influence of dexamethasone on xylazine-induced sedation in these cats also was evaluated. RESULTS: Prior treatment with 4 or 8 mg/kg of dexamethasone significantly reduced the frequency of emetic episodes and also significantly prolonged the time until onset of the first emetic episode after xylazine injection. Time until onset of the first emetic episode also was significantly prolonged for dexamethasone at a dose of 2 mg/kg. Time until onset of sedation after administration of xylazine was not altered by administration of dexamethasone. CONCLUSIONS AND CLINICAL RELEVANCE: Dexamethasone (4 or 8 mg/kg, IM) significantly decreased the frequency of emetic episodes induced by xylazine without compromising sedative effects in cats. Dexamethasone may be used prophylactically as an antiemetic in cats treated with xylazine.  相似文献   

8.
OBJECTIVE: To evaluate the effects of intranasal benzodiazepines (midazolam and diazepam), alpha(2)-agonists (xylazine and detomidine) and their antagonists (flumazenil and yohimbine) in canaries. STUDY DESIGN: Prospective randomized study. ANIMALS: Twenty-six healthy adult domesticated canaries of both sexes, weighing 18.3 +/- 1.0 g. METHODS: In Study 1 an attempt was made to determine the dose of each drug that allowed treated canaries to be laid in dorsal recumbency for at least 5 minutes, i.e. its effective dose. This involved the evaluation of various doses, during which equal volumes of the tested drug were administered slowly into each nostril. In study 2 the onset of action, duration and quality of sedation induced by each drug at its effective dose were evaluated. The efficacy of flumazenil and yohimbine in antagonizing the effects of the sedative drugs was also studied. RESULTS: In study 1 administration of 25 microL per nostril diazepam (5 mg mL(-1) solution) or midazolam (5 mg mL(-1) solution) to each bird caused adequate sedation within 1-2 minutes; birds did not move when placed in dorsal recumbency. After administration of 12 microL per nostril of either xylazine (20 mg mL(-1)) or detomidine (10 mg mL(-1)), birds seemed heavily sedated and assumed sternal recumbency but could not be placed in dorsal recumbency. Higher doses of xylazine (0.5 mg per nostril) or detomidine (0.25 mg per nostril) prolonged sedation but did not produce dorsal recumbency. In study 2 in all treatment groups, onset of action was rapid. Duration of dorsal recumbency was significantly longer (p < 0.05) with diazepam (38.4 +/- 10.5 minutes) than midazolam (17.1 +/- 2.2 minutes). Intranasal flumazenil (2.5 microg per nostril) significantly reduced recumbency time. Duration of sedation was longer with alpha(2)-agonists compared with benzodiazepines. Detomidine had the longest duration of effect (257.5 +/- 1.5 minutes) and midazolam the shortest (36.9 +/- 2.4 minutes). Nasally administered flumazenil significantly reduced the duration of sedation with diazepam and midazolam while yohimbine (120 microg per nostril) effectively antagonized the effects of xylazine and detomidine. CONCLUSION: Intranasal benzodiazepines produce rapid and effective sedation in canaries. Intranasal alpha(2) agonists produce sedation but not sustained recumbency. Specific antagonists are also effective when used by this route. Clinical relevance Intranasal sedative drug administration is an acceptable alternative method of drug delivery in canaries.  相似文献   

9.
The cardiovascular changes induced by several sedatives were investigated in five ponies with a subcutaneously transposed carotid artery by means of cardiac output determinations (thermodilution technique), systemic and pulmonary artery pressure measurements (direct intravascular method) and arterial blood analysis (blood gases and packed cell volume). The cardiovascular depression (decrease in systemic blood pressure and cardiac output) was long lasting (greater than 90 min) after administration of propionylpromazine (0.08 mg/kg intravenous (i.v.)) together with promethazine (0.08 mg/kg i.v.). The phenothiazine-induced sedation was not optimal. alpha 2-Agonists (xylazine (0.60 mg/kg i.v.) and detomidine (20 micrograms/kg i.v.)) induced initial but transient cardiovascular effects with an increase in systemic blood pressure and a decrease in cardiac output for about 15 min. Second degree atrioventricular blocks and bradycardia were seen during this period. The cardiovascular depression was more pronounced during detomidine sedation. Atropine (0.01 mg/kg i.v.) induced a tachycardia with a decrease in stroke volume but did not alter the cardiac output or other cardiovascular parameters. It prevented the occurrence of the bradycardia and heart blocks normally induced by xylazine or detomidine. Atropine potentiated the initial hypertension induced by the alpha 2-agonistic sedatives (especially detomidine). The decrease in cardiac output induced by xylazine, and to a lesser extent by detomidine, was partially counteracted when atropine was given in advance. The atropine-xylazine combination seemed the best premedication protocol before general anaesthesia as it only resulted in minor and transient cardiovascular changes.  相似文献   

10.
In this study, heart and respiratory rates, cloacal temperature, and quality of sedation were evaluated before (0 min) and after (10, 20, and 30 min) i.m. administration of xylazine (10 mg/kg; n = 7), medetomidine (75 li; n = 6), detcmidine (0.3 mg/kg; n = 6), or diazepam (6 mg/kg; n = 7) in rock partridges (Alectoris graeca). All partridges recovered from sedation without any disturbance. Xylazine and diazepam administration did not induce significant changes in heart rate, which did decrease significantly after medetomidine and detomidine administration (P < 0.001). Mean respiratory rate was decreased dramatically at 20 and 30 min after xylazine (P < 0.001) and medetomidine (P < 0.005) administration, and at all stages of sedation after detomidine injection (P < 0.001), whereas there was not any significant change after diazepam injection. In all groups, cloacal temperature measured at 10, 20, and 30 min tended to decrease compared with baseline values. Sedative effects of the drugs started within 2.1+/-0.2 min for detomidine, 2.6 +/- 0.4 min for diazepam, 3.1 -+/-.4 min for xylazine, and 4.8+/-0.8 min for medetomidine application. There was an extreme variability in time to recovery for each drug: 205 +/-22.2 min for xylazine, 95 -12.2 min for medetomidine, 260+/-17.6 min for detomidine, and 149 + 8.3 min for diazepam. In conclusion, xylazine, medetomidine, detomidine, and diazepam produced sedation, which could permit some clinical procedures such as handling and radiographic examination of partridges to occur. Of the four drugs, xylazine produced stronger and more efficient sedation compared to the others, which could permit only minor procedures to be performed. However, depending on the drug used, monitoring of heart and respiratory rates and cloacal temperature might be required.  相似文献   

11.
OBJECTIVE: To determine the effects of ketamine hydrochloride, xylazine hydrochloride, and lidocaine hydrochloride after subarachnoid administration in goats. ANIMALS: 6 healthy goats. PROCEDURE: In each goat, ketamine (3 mg/kg), xylazine (0.1 mg/kg), lidocaine (2.5 mg/kg), and saline (0.9% NaCI) solution were injected into the subarachnoid space between the last lumbar vertebra and first sacral vertebra (time 0). Analgesic, ataxic, sedative, cardiovascular, and respiratory effects and rectal temperature were evaluated before (baseline) and 2, 5, 10, 15, and 30 minutes after administration and at 30-minute intervals thereafter as needed. RESULTS: Administration of anesthetics induced varying degrees of analgesia. Onset of the analgesic effect was more delayed for xylazine (mean +/- SD, 9.5 +/- 2.6 minutes) than for ketamine (6.7 +/- 2.6 minutes) or lidocaine (3.5 +/- 1.2 minutes). Duration of analgesia induced by xylazine (88.3 +/- 15 minutes) was twice as long as the duration of analgesia induced by ketamine (48.8 +/- 13.5 minutes) but similar to that induced by lidocaine (66.5 +/- 31 minutes). Xylazine induced bradycardia, whereas ketamine caused a nonsignificant increase in heart rate. Xylazine induced a reduction in arterial pressure, whereas ketamine or lidocaine did not affect arterial pressure. CONCLUSIONS AND CLINICAL RELEVANCE: Subarachnoid administration of xylazine in goats resulted in longer duration of analgesia of the tail, perineum, hind limbs, flanks, and caudodorsal rib areas than administration of ketamine or lidocaine. However, xylazine caused bradycardia and respiratory depression. Additional studies are needed to determine whether the analgesia would be sufficient to allow clinicians to perform surgical procedures.  相似文献   

12.
ObjectiveTo compare the changes in splenic length and thickness and in packed cell volume (PCV) following detomidine or xylazine administration and subsequent epinephrine infusion. Hypothesis: Spleen relaxation occurs following xylazine or detomidine administration and interferes with subsequent splenic contractile response to epinephrine.Study designRandomized non‐blinded crossover experimental study.Animals6 healthy adult mares.MethodsThe mares received an intravenous (IV) epinephrine infusion (1 μg kg?1minute?1 over 5 minutes) one hour after IV administration of detomidine (0.01 mg kg?1), xylazine (0.5 mg kg?1) or no drug (control), with a withdrawal period of at least 7 days between experiments. The splenic length measured in two different axes, the splenic thickness, and the PCV were measured prior to sedation (T0), 30 minutes later, and at 5‐minute intervals from the start of the epinephrine infusion (T1) until T1 + 40 minutes. Changes from base‐line and between treatments were compared using a two‐way anova for repeated measures. Significance was set at p < 0.05.ResultsSplenic length was significantly increased and PCV was significantly decreased after detomidine administration compared to baseline. Epinephrine infusion resulted in a significant decrease in splenic length and thickness, and a significant increase in PCV, irrespective of prior treatment with detomidine or xylazine.ConclusionsDetomidine administration was followed by a sonographically detectable increase of splenic length. Neither detomidine nor xylazine interfered with the ability of the spleen to contract following subsequent administration of an epinephrine infusion given one hour later.Clinical relevancePrevious sedation with alpha‐2 agonists does not preclude the efficiency of epinephrine as a medical treatment of left dorsal displacement of the large colon, but further investigations are required with other drug doses and different time intervals between administrations.  相似文献   

13.
OBJECTIVE: To determine sedative and cardiorespiratory effects of romifidine alone and romifidine in combination with butorphanol and effects of preemptive atropine administration in cats sedated with romifidine-butorphanol. DESIGN: Randomized crossover study. ANIMALS: 6 healthy adult cats. PROCEDURES: Cats were given saline (0.9% NaCl) solution followed by romifidine alone (100 microg/kg [45.4 microg/lb], i.m.), saline solution followed by a combination of romifidine (40 microg/kg [18.1 microg/lb], i.m.) and butorphanol (0.2 mg/kg [0.09 mg/lb], i.m.), or atropine (0.04 mg/kg [0.02 mg/lb], s.c.) followed by romifidine (40 microg/kg, i.m.) and butorphanol (0.2 mg/kg, i.m.). Treatments were administered in random order, with > or = 1 week between treatments. Physiologic variables were determined before and after drug administration. Time to recumbency, duration of recumbency, time to recover from sedation, and subjective evaluation of sedation, muscle relaxation, and analgesia were assessed. RESULTS: Bradycardia developed in all cats that received saline solution and romifidine-butorphanol or romifidine alone. Preemptive administration of atropine prevented bradycardia for 50 minutes in cats given romifidine-butorphanol. Oxyhemoglobin saturation was significantly decreased 10 minutes after romifidine-butorphanol administration in atropine-treated cats. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that administration of romifidine alone or romifidine-butorphanol causes a significant decrease in heart rate and that preemptive administration of atropine in cats sedated with romifidine-butorphanol effectively prevents bradycardia for 50 minutes.  相似文献   

14.
Effect of yohimbine on xylazine-ketamine anesthesia in cats   总被引:3,自引:0,他引:3  
Xylazine and ketamine are an anesthetic combination used in feline practice for routine surgical procedures. In a controlled study, we evaluated the effects of yohimbine, an antagonist of xylazine, on the anesthesia induced by this anesthetic combination in cats. Two intramuscular doses of xylazine and ketamine (2.2 mg of xylazine/kg plus 6.6 mg of ketamine/kg and 4.4 mg of xylazine/kg plus 6.6 mg of ketamine/kg) caused approximately 60 and 100 minutes of anesthesia, respectively, in control cats. When yohimbine (0.1 mg/kg) was given intravenously 45 minutes after ketamine administration, the cats regained consciousness within 3 minutes. They were ambulatory 1 to 2 minutes after regaining consciousness. Yohimbine also reversed the bradycardia and respiratory depression elicited by xylazine-ketamine. The results indicated that yohimbine may be useful for controlling the duration of xylazine-ketamine anesthesia in cats.  相似文献   

15.
OBJECTIVE: To determine sedative and cardiorespiratory effects of dexmedetomidine alone and in combination with butorphanol or ketamine in cats. DESIGN: Randomized crossover study. ANIMALS: 6 healthy adult cats. PROCEDURES: Cats were given dexmedetomidine alone (10 microg/kg [4.5 mg/lb], IM), a combination of dexmedetomidine (10 microg/kg, IM) and butorphanol (0.2 mg/kg [0.09 mg/lb], IM), or a combination of dexmedetomidine (10 microg/kg, IM) and ketamine (5 mg/kg [2.3 mg/lb], IM). Treatments were administered in random order, with > or = 1 week between treatments. Physiologic variables were assessed before and after drug administration. Time to lateral recumbency, duration of lateral recumbency, time to sternal recumbency, time to recovery from sedation, and subjective evaluation of sedation, muscle relaxation, and auditory response were assessed. RESULTS: Each treatment resulted in adequate sedation; time to lateral recumbency, duration of lateral recumbency, and time to recovery from sedation were similar among treatments. Time to sternal recumbency was significantly greater after administration of dexmedetomidine-ketamine. Heart rate decreased significantly after each treatment; however, the decrease was more pronounced after administration of dexmedetomidine-butorphanol, compared with that following the other treatments. Systolic and diastolic blood pressure measurements decreased significantly from baseline with all treatments; 50 minutes after drug administration, mean blood pressure differed significantly from baseline only when cats received dexmedetomidine and butorphanol. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that in cats, administration of dexmedetomidine combined with butorphanol or ketamine resulted in more adequate sedation, without clinically important cardiovascular effects, than was achieved with dexmedetomidine alone.  相似文献   

16.
OBJECTIVE: To quantitate the dose- and time-related effects of IV administration of xylazine and detomidine on urine characteristics in horses deprived of feed and water. ANIMALS: 6 horses. PROCEDURE: Feed and water were withheld for 24 hours followed by i.v. administration of saline (0.9% NaCI) solution, xylazine (0.5 or 1.0 mg/kg), or detomidine (0.03 mg/kg). Horses were treated 4 times, each time with a different protocol. Following treatment, urine and blood samples were obtained at 15, 30, 60, 120, and 180 minutes. Blood samples were analyzed for PCV and serum concentrations of total plasma solids, sodium, and potassium. Urine samples were analyzed for pH and concentrations of glucose, proteins, sodium, and potassium. RESULTS: Baseline (before treatment) urine flow was 0.30 +/- 0.03 mL/kg/h and did not significantly change after treatment with saline solution and low-dose xylazine but transiently increased by 1 hour after treatment with high-dose xylazine or detomidine. Total urine output at 2 hours following treatment was 312 +/- 101 mL versus 4,845 +/- 272 mL for saline solution and detomidine, respectively. Absolute values of urine concentrations of sodium and potassium also variably increased following xylazine and detomidine administration. CONCLUSIONS AND CLINICAL RELEVANCE: Xylazine and detomidine administration in horses deprived of feed and water causes transient increases in urine volume and loss of sodium and potassium. Increase in urine flow is directly related to dose and type of alpha2-adrenergic receptor agonist. Dehydration in horses may be exacerbated by concurrent administration of alpha2-adrenergic receptor agonists.  相似文献   

17.
Eight horses were anesthetized three times, by intravenous administration of xylazine (1.1 mg/kg) and ketamine (2.2 mg/kg), detomidine (0.02 mg/kg) and tiletamine-zolazepam (1.1 mg/kg), or detomidine (0.04 mg/kg) and tiletamine-zolazepam (1.4 mg/kg). The sequences were randomized. The duration of analgesia and the times to sternal and standing positions were recorded. Heart rate, arterial pressure, pHa, PaCO2, and PaO2 were measured before and during anesthesia. The duration of analgesia with the two doses of detomidine-tiletamine-zolazepam, 26 +/- 4 minutes and 39 +/- 11 minutes, respectively, was significantly longer than the 13 +/- 6 minutes obtained with xylazine-ketamine. Bradycardia occurred after administration of detomidine, but heart rates returned to baseline values 5 minutes after administration of tiletamine and zolazepam. Arterial pressure was significantly higher and PaO2 significantly lower during anesthesia with detomidine-tiletamine-zolazepam than with xylazine-ketamine. Some respiratory acidosis developed with all anesthetic combinations. The authors conclude that detomidine-tiletamine-zolazepam can provide comparable anesthesia of a longer duration than xylazine and ketamine, but hypoxemia will develop in some horses.  相似文献   

18.
OBJECTIVE: To evaluate the effects of hydromorphone, hydromorphone and glycopyrrolate, medetomidine, and butorphanol premedication on the difficulty and time required to pass an endoscope into the stomach and duodenum of cats anesthetized with ketamine and isoflurane. DESIGN: Randomized complete block crossover study. ANIMALS: 8 purpose-bred adult female cats. PROCEDURES: Each cat was premedicated and anesthetized 4 times with an interval of at least 7 days between procedures. Cats were premedicated with hydromorphone, hydromorphone and glycopyrrolate, medetomidine, or butorphanol administered IM. Twenty minutes after premedication, sedation was assessed by use of a subjective ordinal scale. Cats received ketamine administered IM, and 10 minutes later a cuffed orotracheal tube was placed and anesthesia maintained with isoflurane. Cats breathed spontaneously throughout the procedure. When end-tidal isoflurane concentration was stable at 1.4% for 15 minutes, endoscopy was begun. The times required to pass the endoscope through the cardiac and pyloric sphincters were recorded, and the difficulty of endoscope passage was scored by use of a subjective ordinal scale. RESULTS: No significant differences in difficulty or time required to pass the endoscope through the cardiac and pyloric sphincters were found among premedicant groups. Premedication with medetomidine resulted in the greatest degree of sedation and longest time to return to sternal recumbency. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that hydromorphone, hydromorphone and glycopyrrolate, medetomidine, and butorphanol at the doses tested can be used satisfactorily to premedicate cats prior to general anesthesia for gastroduodenoscopy.  相似文献   

19.
REASONS FOR PERFORMING STUDY: Recovery from inhalant anaesthesia in the horse is a critical and difficult period to manage; however, several factors could help to obtain a calm recovery period including choice of anaesthetic and analgesic procedure used and the conditions under which anaesthetic maintenance and recovery occur. OBJECTIVES: The objective of this study was to evaluate and compare the quality of recovery in horses administered saline, xylazine, detomidine or romifidine during recovery from isoflurane anaesthesia. METHODS: Six mature and healthy horses were premedicated with i.v. xylazine and butorphanol, and anaesthesia induced using ketamine. After 2 h of inhalant anaesthesia with isoflurane vaporised in oxygen, saline solution, xylazine (0.1 mg/kg bwt), detomidine (2 microg/kg bwt) or romifidine (8 pg/kg bwt) were administered. The quality of recovery of each horse and the degree of sedation and ataxia were evaluated. Cardiovascular and respiratory parameters were recorded, and arterial blood samples obtained and analysed for pH, PO2 and PCO2 during recovery. RESULTS: Quality of recovery was better in groups treated with alpha-2 adrenergic receptors agonists, showing less ataxia. Degree of sedation was greater in the romifidine group. CONCLUSIONS: We concluded that the administration of alpha-2 adrenoceptor agonists during recovery from isoflurane anaesthesia in horses prolonged and improved the quality of recovery without producing significant cardiorespiratory effects. POTENTIAL CLINICAL RELEVANCE: Administration of alpha-2 adrenoceptor agonists after inhalent anaesthesia could prevent complications during the recovery period.  相似文献   

20.
Nine groups of rats (n = 5 per group) received an intramuscular (IM) injection of one of the following drugs or drug combinations: saline, atropine (0.05 mg/kg), glycopyrrolate (0.5 mg/kg), ketamine:xylazine (85:15 mg/kg), ketamine:detomidine (60:10 mg/kg), atropine:ketamine:xylazine (0.05: 85:15 mg/kg), glycopyrrolate: ketamine:xylazine (0.5:85:15 mg/kg), atropine:ketamine:detomidine (0.05: 60:10 mg/kg) or glycopyrrolate: ketamine:detomidine (0.5:60:10). Similarly six groups of rabbits (n = 5) received an IM injection of either saline, atropine (0.2 mg/kg), atropine (2 mg/kg), glycopyrrolate (0.1 mg/kg), ketamine:xylazine (35:10 mg/kg) or glycopyrrolate:ketamine:xylazine (0.1:35:10 mg/kg). In rats, atropine sulfate (0.05 mg/kg) and glycopyrrolate (0.5 mg/kg) produced an increase in heart rate for 30 and 240 min, respectively. In rabbits atropine sulfate at either 0.2 or 2.0 mg/kg did not induce a significant increase in heart rate, but glycopyrrolate (0.1 mg/kg) elevated the heart rate above saline treated animals for over 50 min. Both atropine and glycopyrrolate provided protection against a decrease in heart rate in rats anesthetized with ketamine: xylazine (85:15 mg/kg) or ketamine: detomidine (60:10 mg/kg); however, glycopyrrolate was significantly more effective in maintaining the heart rate within the normal range. Glycopprrolate also prevented a decrease in heart rate in rabbits anesthetized with ketamine:xylazine (35:5 mg/kg). Neither glycopyrrolate nor atropine influenced respiration rate, core body temperature or systolic blood pressure when used alone or when combined with the injectable anesthetic. Glycopyrrolate is an effective anticholinergic agent in rabbits and rodents and more useful as a preanesthetic agent than atropine sulfate in these animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号