首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Breeding mares with cryopreserved semen requires specialized equipment for storage and thawing and more intensive mare management. The objectives of this study were (1) evaluate the longevity of frozen stallion semen once it had been thawed, extended, and maintained at 5°C for 48 hours in a passive cooling container, and (2) determine fertility potential of frozen semen that had been thawed, extended, and used to inseminate mares after 24 hours of cooled storage. Eight ejaculates were collected and aliquots were cooled in either INRA96 and CryoMax LE minus cryoprotectant at a concentration of 50 million total sperm/mL. The remainder of the ejaculate was frozen in CryoMax LE extender at a concentration of 200 million total sperm/mL. Semen was thawed using 1 of 3 thawing protocols, and diluted to a concentration of 50 million total sperm/mL in either INRA96 or CryoMax LE minus cryoprotectant and cooled to 5°C. Sperm motility was evaluated at 24 and 48 hours. Eight mares were inseminated over two estrous cycles using frozen semen that had been thawed, extended in INRA96, and cooled for 24 hours. There was no difference in progressive motility at 24 or 48 hours of cooled-storage post-thaw between the 3 thawing protocols. An overall per cycle pregnancy rate of 56% (9/16 cycles) was achieved using frozen-thawed semen that had been extended and cooled for 24 hours. In summary, frozen stallion sperm was thawed, extended, and cooled to 5°C for 24 hours and still maintained adequate (>30%) sperm motility and fertility.  相似文献   

2.
The aim of the present study was to evaluate the quality of raw and cooled semen in Icelandic stallions. Experiments were performed using seven stallions aged between 3 and 19 years. From each stallion, six ejaculates were collected, and semen quality was determined. Thereafter, the semen was split into eight equal parts and processed with and without centrifugation using the extenders INRA 82-egg yolk, INRA 96, GENT, and Equi-Pro to a final concentration of 30 × 106 sperm/mL. The extended semen was then cooled in an Equitainer, where it was stored for 24 hours, and subsequently refrigerated for another 24 hours at 5°C. Immediately after dilution as well as after 24 and 48 hours storage, sperm motility was analyzed using computer-assisted sperm analyzer, and viability was assessed after dual DNA staining with SYBR-14 in combination with propidium iodide. The results show that the stallion had a significant (P < .05) influence on all variables evaluated in raw semen, and mean (±SEM) values of 43.4 ± 4.3 mL for the volume, 193.0 ± 17.0 × 106 sperm/mL for the concentration, 6.7 ± 0.5 × 109 for total sperm and 73.5 ± 2.1% for total sperm motility, 48.7 ± 2.0% for progressive motility, and 65.3 ± 2.0% for rapid cells were measured. In the cold-stored semen, all variables were significantly (P < .05) influenced by the stallion, extender, and storage time (48 hours). Except for Equi-Pro, all extenders examined were suitable for cooled semen preservation. For storage of more than 24 hours, centrifugation and removal of the seminal plasma were advantageous for all extenders with the exception of Equi-Pro.  相似文献   

3.
Processing stallion semen for assisted reproductive procedures, such as intracytoplasmic sperm injection (ICSI), requires special considerations regarding cooling, concentrating, and handling of sperm. The aim of experiment 1 was to determine whether cooled semen could be frozen without removal of seminal plasma and at a low sperm concentration while maintaining motile sperm for ICSI selection procedures. In experiment 2, five media for holding stallion sperm were compared to evaluate sperm motility for an interval of time sufficient for ICSI sperm selection procedures. In experiment 1, semen samples from eight stallions were cooled for 24 hours in two extenders, CST (E-Z Mixin-CST “Cool-Store/Transport” Animal Reproduction Systems) and INRA96 (Institut National de la Recherche Agronomique, IMV International Corporation), before being frozen in four freezing diluents, and were evaluated at 0, 45, and 75 minutes after thawing. The cooling extender did not significantly affect sperm motility, but modified French and glycerol egg yolk diluents provided the best sperm motility for frozen–thawed groups. In experiment 2, semen samples from seven stallions were used to test five media for holding sperm. Samples were analyzed for total and progressive motility at hourly intervals. Mean total and progressive motility were not different (P > .05) among groups from 1 through 4 hours. At 5 hours, groups differed (P = .004), with sperm held in Tyrode’s with albumin, lactate, and pyruvate having higher (P < .05) total and progressive motility than all other samples. In conclusion, motile stallion sperm can be obtained after the sperm are cooled for 24 hours, frozen, and thawed; various media are available to maintain sperm motility during equine ICSI selection procedures.  相似文献   

4.
Multiple extenders have been developed to preserve cooled stallion semen. Comparisons of some extenders have been made but there is need for further research in this area. Extenders tested included EZ Mixin (Animal Reproduction Systems, Chino, CA), Kenney's, Universal (NASCO, Fort Atkinson, WI), EquiPro, EquiPro CellGuard (Minitube of America, Verona, WI), and INRA 96 (IMV, Maple Grove, MN). Semen was collected and each ejaculate was divided and extended in each of the aforementioned extenders and stored at 4°C. Motility measures were determined using computer-assisted sperm analysis at 0, 24, 48, and 72 hours after collection. Samples were evaluated for total motility, progressive motility (PM), straight-line velocity, curvilinear velocity, straight-line distance, and curvilinear distance. Total motility and PM decreased over time in storage (P < .05). Sperm stored in INRA 96, EquiPro, and EquiPro Cell Guard retained the most total motility and PM over the 72 hour period (P < .05). Universal, EquiPro, and EquiPro Cell Guard had the highest measurements for curvilinear velocity, straight-line velocity, and curvilinear distance (P < .05). There were no significant differences among the extenders for straight-line distance.  相似文献   

5.
This study was conducted to investigate the effect of glutathione-supplemented INRA82 extender on miniature Caspian stallion sperm quality during storage at 5°C. A total of 12 ejaculates from three stallions (four ejaculates from each stallion) were collected and diluted with INRA82 extender that included different concentrations of glutathione (0 [INRA-G0], 5 [INRA-G5], and 10 mM [INRA-G10]) and stored for 48 hours at 5°C. Sperm motility (computer-assisted sperm analysis), plasma membrane integrity (eosin–nigrosin staining) and functionality (hypo-osmotic swelling test), and malondialdehyde (MDA) level were determined during storage at 5°C. The results showed that the sperm total and progressive motility and plasma membrane integrity and functionality in all extenders were significantly decreased with increasing storage time. However, the MDA level in all extenders was significantly increased with increasing storage time. Also, the results showed that most of the evaluated sperm quality parameters in the present study, with the exception of MDA, were significantly greater in INRA-G5 than in INRA-G0 and INRA-G10 after 24 and 48 hours of storage at 5°C. We have concluded that supplementation of INRA82 with 5 mM glutathione can improve miniature Caspian stallion sperm quality during storage at 5°C by increasing total and progressive motility, plasma membrane integrity and functionality, and decreasing the MDA level compared with INRA-G0 and INRA-G10. More advanced in vitro evaluations and artificial insemination are required to reveal the exact effects of INRA-G5 on miniature Caspian stallion sperm quality and its fertilizing ability.  相似文献   

6.
The aim of this study was to determine the synergistic effects of centrifuged egg yolk (EY) and soybean lecithin on post-thaw Caspian horse sperm motility, morphological abnormalities, and assessment of membrane integrity. The centrifuged EY (CEY) was added at concentrations of 2% and 4% to a defined INRA plus 1.25% soybean lecithin extender used to freeze Caspian horse semen. In this experiment, ejaculates collected from each Caspian horse (n = 4) were divided into three equal aliquots and diluted in CEY 2% (INRA2), 4% (INRA4) supplemented, and without any CEY (INRA0) in INRA plus 1.25% soybean lecithin extender, respectively. Thereafter, samples were frozen and thawed following a standard protocol. Sperm cryosurvival was evaluated in vitro by microscopy assessments of post-thaw sperm motility (by means of computer-assisted semen motility analysis [CASA]), acrosomal and other abnormalities (head, mid-pieces, and tail) and plasma membrane integrity (evaluated by HOST). In Caspian stallion, semen extended with INRA2 had significantly higher CASA motility and CASA progressive motility than those extended with the rest of extenders after freezing and thawing (P < .001). There was no significant difference in path velocity (VAP), VCL, and ALH among three groups (P > .05). For straight line velocity (P < .01) and LIN (P < .001), the highest values were obtained from the INRA4 group. The highest percentages of acrosomal and other abnormalities were found in semen diluted in INRA4 (P < .001). In the group frozen INRA2, the percentage of membrane integrity was significantly higher than that of the other groups (P < .001). The use of CEY 2% in combination with soybean lecithin significantly improved Caspian horse semen freezability.  相似文献   

7.
A specific problem in the preservation of goat semen has been the detrimental effect of seminal plasma on the viability of spermatozoa in extenders containing egg yolk or milk. The use of chemically defined extenders will have obvious advantages in liquid storage of buck semen. Our previous study showed that the self‐made mZAP extender performed better than commercial extenders, and maintained a sperm motility of 34% for 9 days and a fertilizing potential for successful pregnancies for 7 days. The aim of this study was to extend the viability and fertilizing potential of liquid‐stored goat spermatozoa by optimizing procedures for semen processing and storage in the mZAP extender. Semen samples collected from five goat bucks of the Lubei White and Boer breeds were diluted with the extender, cooled and stored at 5°C. Stored semen was evaluated for sperm viability parameters, every 48 h of storage. Data from three ejaculates of different bucks were analysed for each treatment. The percentage data were arcsine‐transformed before being analysed with anova and Duncan’s multiple comparison test. While cooling at the rate of 0.1–0.25°C/min did not affect sperm viability parameters, doing so at the rate of 0.6°C/min from 30 to 15°C reduced goat sperm motility and membrane integrity. Sperm motility and membrane integrity were significantly higher in semen coated with the extender containing 20% egg yolk than in non‐coated semen. Sperm motility, membrane integrity and acrosomal intactness were significantly higher when coated semen was 21‐fold diluted than when it was 11‐ or 51‐fold diluted and when extender was renewed at 48‐h intervals than when it was not renewed during storage. When goat semen coated with the egg yolk‐containing extender was 21‐fold diluted, cooled at the rate of 0.07–0.25°C/min, stored at 5°C and the extender renewed every 48 h, a sperm motility of 48% was maintained for 13 days, and an in vitro‐fertilizing potential similar to that of fresh semen was maintained for 11 days.  相似文献   

8.
Objective   We evaluated combinations of two commercial semen extenders and three concentrations of glycerol to determine the combination that yielded the highest post-thaw sperm motility.
Design   A randomised 2 × 3 block design was used.
Procedure   Semen was collected from four stallions (6 collections per stallion). The sample was diluted with either a dried skim-milk glucose extender (EZ Mixin Original Formula) or a chemically defined, milk-free diluent (INRA 96), and each was used in combination with 2%, 3% or 4% glycerol in standard commercial freezing medium. Sperm motility was assessed by microscopy in fresh and post-thaw semen.
Results   There was a significant difference between the two extenders in the motility of spermatozoa after cryopreservation (48.9% for INRA 96; 38.6% for EZ Mixin OF; P < 0.0001). Glycerol at 4% in freezing medium yielded the highest post-thaw motility, significantly better than 2% ( P < 0.05). Three of four stallions had significantly higher post-thaw motility using INRA 96 relative to EZ Mixin OF ( P < 0.01), and two of four stallions had significantly higher post-thaw motility using 4% glycerol ( P < 0.05). The combination of INRA 96 and 4% glycerol in freezing medium gave the highest average post-thaw motility of 51.5%.
Conclusion   In this study, INRA 96 combined with 4% glycerol yielded an average recovery of progressively motile sperm consistently above the 35% target.  相似文献   

9.
This study on extended, cooled stallion spermatozoa aimed to compare the ability of three extenders to maintain sperm motility during 24 h of preservation, and to describe pregnancy and foaling rates after artificial insemination (AI) of stallion spermatozoa stored and transported in the extender chosen from the in vitro study. After 6 and 24 h of preservation, motility, both subjective and evaluated by the motility analyzer (total, progressive and rapid), was lower in non-fat, dried skim milk-glucose than in both other extenders: dried skim milk-glucose added to 2% centrifuged egg yolk, and ultra high temperature treated skim milk-sugar-saline solution added to 2% centrifuged egg yolk (INRA82-Y). Rapid spermatozoa and sperm velocity parameters, after 24 h, were significantly higher in INRA82-Y. In the fertility trial, semen collected from three Maremmano stallions, diluted in INRA82-Y, and transported in a refrigerated Styrofoam box, was used to inseminate 56 mares of the same breed. Pregnancy rates after the first cycle and per breeding season were significantly higher for the 31 mares inseminated in three AI centres (54.8 and 80.6%, respectively) than for the 25 mares inseminated at the breeder's facilities (28.0 and 52.0%). Foaling rates were not significantly different between the AI centres mares (54.8%) and the other mares (44.0%). In conclusion, INRA82-Y yielded satisfactory pregnancy and foaling rates, especially when employed in the more controlled situation of an AI centre, and can therefore be included among those available for cooled stallion semen preservation.  相似文献   

10.
Slow-cooled stallion spermatozoa, with and without seminal plasma removed by centrifugation, were diluted in Kenney's extender (KE) containing nonfat dry skim milk with glucose and antibiotics or in KE supplemented by adding a modified high-potassium Tyrode's medium (KMT). Four ejaculates from each of four stallions were collected and divided factorially across these four treatments. Percentage of motile sperm, path velocity, and linearity immediately after treatment (0 h) and after storage at 4 degrees C for 24, 48, and 72 h were evaluated objectively by use of a HTM-2030 sperm motility analyzer. Stallions were a significant source of variation (P less than .01) throughout. After sperm had cooled, effects of stallion, extender, centrifugation, and their interactions were all found to be significant (P less than .01). The motility at 0, 24, 48, and 72 h for centrifuged KE was 74, 47, 39, and 24%; for uncentrifuged KE was 76, 56, 50, and 37%; for centrifuged KMT was 76, 75, 72, and 64%; and for uncentrifuged KMT was 80, 50, 26, and 13%, respectively. The extender x centrifugation interaction, after 24, 48, and 72 h of storage, accounted for half or more of the variation. Whereas centrifugation of semen extended in KE seemed to be harmful to sperm, motility of sperm extended in KMT after centrifugation was remarkably conserved for 72 h and was superior to all other treatments (P less than .05). This extender is promising for preserving liquid stallion semen when it must be transported before use in artificial insemination.  相似文献   

11.
A new device for storage and shipping of cell cultures – the Petaka G3 cell management device – was tested for its applicability for cooled‐storage of equine semen. Semen from three stallions was processed with EquiPro extender either without antibiotics (three ejaculates per stallion) or with gentamicin (250 mg / l; three ejaculates per stallion). Semen was either stored at five (anaerobic conditions) or 15°C (aerobic conditions) in syringes or cell culture devices. Total and progressive motility, as well as membrane integrity of spermatozoa, were evaluated from days 1 to 7 after collection with computer‐assisted semen analysis. In experiment 1 (extender without antibiotics), total motility, progressive motility and viability of spermatozoa significantly decreased over time (p < 0.05). The decrease was significantly faster at 15°C than at 5°C (p < 0.05). In the presence of gentamicin (experiment 2), this difference was no longer present. It can be concluded that cooled‐storage of equine semen in sophisticated devices for cell culture is not advantageous to syringes for successful maintenance of semen longevity.  相似文献   

12.
This study aimed to assess the effects of sodium caseinate and cholesterol to extenders used for stallion semen cooling. Two ejaculates from 19 stallions were extended to 50 million/mL in four different extenders and cooled-stored for 24 hours at 5°C. The extender 1 (E1) consisted of a commercially available skim milk–based extender. The extender 2 (E2) consisted of E1 basic formula with the milk component being replaced by sodium caseinate (20 g/L). The extender 3 (E3) consisted of E1 basic formula added to cholesterol (1.5 mg/120 million sperm). The extender 4 (E4) consisted of a combination of the E2 added to cholesterol. At 24 hours after cooling, sperm motility parameters, plasma membrane stability (PMS), and mitochondrial membrane potential were assessed. In addition, cooled semen (1 billion sperm at 5°C/24 hours) from one “bad cooler” and one “good cooler” stallions, split into four extenders was used to inseminate 30 light breed mares (30 estrous cycles/extender). Milk-based extenders (E1 and E2) had superior sperm kinetics than E3 and E4 (P < .05). Plasma membrane stabilization was significantly higher (P < .05) in E4 than E1, whereas E2 and E3 presented intermediate values (P > .05). The mitochondrial potential intensity was lower (P < .05) in E2 and E4 groups compared with E1 and E3. The good cooler stallion had high fertility (∼80%) in all extenders. However, for bad cooler stallion, E1 40% (8/20) and E2 45% (9/20) had poor fertility (P < .05) compared with E4 85% (17/20), whereas E3 55% (11/20) had intermediate value (P > .05). In conclusion, the association of sodium caseinate and cholesterol improved fertility of bad cooler stallion semen cooled for 24 hours.  相似文献   

13.
This study aimed at comparing in vitro, ultra‐heat‐treated (UHT) skim milk and INRA‐96®‐based extenders supplemented or not with 5% egg yolk and/or 2% glycerol on sperm quality parameters along 72 h of preservation at 5°C, using a factorial design. Semen from six healthy mature Merino rams was pooled and extended in each medium using a split sample procedure (six replicates) and chilled. Subjective motility (SM) (%), membrane integrity (MI) (%) and uncapacitated spermatozoa (US) (×106 spermatozoa/AI dose) were used to assess the semen quality at 0, 12, 24, 48 and 72 h of preservation. UHT‐based extenders yielded better (p < 0.05) SM and MI than INRA‐96®‐based extenders (59.7% vs 57.9%; 60.2% vs 55.8%, respectively) but similar numbers of US (64.2% vs 62.3 × 106 sperm/AI dose, respectively) along the preservation time. Egg yolk–glycerol or just egg yolk as additives improved (p < 0.05) the results compared with the base extenders without additives or just with glycerol. The sperm parameters assessed decline slowly from 0 to 48 h, with a sharp decline (p < 0.05) at 72 h of preservation. In conclusion, UHT and INRA‐96® were similar as base extenders, and the addition of 5% egg yolk plus 2% glycerol or just 5% egg yolk improved the quality of ram semen preserved at 5°C, at least for 48 h. The combination of egg yolk–glycerol might provide extra protection in case of fluctuation of temperatures below 5°C, commonly seen under field conditions.  相似文献   

14.
Egg yolk-Tris is most commonly used semen extender; however, its use involves hygienic risk, interference with fertility and poor microscopic examination. Therefore, replacement of egg yolk with a plant-based component with protective effects on spermatozoa would be advantageous. In present study, we observed effect of soya milk-based extenders on dilution and liquid preservation of Murrah buffalo bull semen at 5°C up to 72 h in comparison with conventional egg yolk-Tris extender (Ext.1). In experiment one, a total of 32 buffalo semen ejaculates from four animals were extended and preserved at 5°C for 72 h in soya milk-based extender (Ext.2) with different percentages (10%, 15%, 20%, 25% and 30%) of soya milk for optimization of soya milk concentration. Semen quality was assessed for individual motility, viability, membrane integrity and acrosome integrity at 0, 24, 48 and 72 h of liquid preservation. The results of experiment one indicated that 25% soya milk is an optimum concentration for buffalo bull semen extender preparation. A modified method was used to prepare another soya milk-based extender (Ext.3). In the second experiment, two soya extenders (Ext.2 and 3) with optimized concentration (25%) of soya milk were comparatively assessed with egg yolk-Tris extender (Ext.1) for semen quality parameters at 0, 24, 48 and 72 h of liquid preservation. The individual sperm motility at 0 and 24 h following dilution were found non-significant among extenders. However, after 48 h of dilution, individual motility in Ext.3 was observed significantly (p < 0.05) higher than Ext.1. After 24, 48 and 72 h of dilution sperm membrane integrity in Ext.3 was found significantly (p < 0.05) higher than Ext.1. Overall, comparative evaluation of sperm parameters obtained revealed that Ext.3 containing 25% soya milk can be used as a substitute of egg yolk-based extender for buffalo semen liquid preservation.  相似文献   

15.
The aim of the current study was to verify that stallion spermatozoa could be cooled for 24 hours and then frozen. In experiment I, one ejaculate from each of 13 stallions was used. Semen was collected and split into two parts; one part immediately frozen using standard cryopreservation techniques and the other diluted, stored in an Equitainer for 24 hours, and then frozen. In experiment II, one ejaculate from each of 12 stallions was collected, diluted with Botu-Semen, and split into two parts: one cooled in an Equitainer and the other in Max-Semen Express without prior centrifugation. After 24 hours of cooling, the samples were centrifuged to remove seminal plasma and concentrate the sperm, and resuspended in Botu-Crio® extender containing one of three cryoprotectant treatments (1% glycerol + 4% dimethylformamide, 1% glycerol + 4% dimethylacetamide and 1% glycerol + 4% methylformamide), maintained at 5°C for 20 minutes, then frozen in nitrogen vapor. No difference was observed between the two cooling systems. The association of 1% glycerol and 4% methylformamide provided the best post-thaw progressive motility. For experiment III, two stallions were used for a fertility trial. Forty-three inseminations were performed using 22 mares. No differences were seen in semen parameters and pregnancy rates when comparing the two freezing protocols (conventional and cooled/frozen). Pregnancy rates for conventional and cooled/frozen semen were, respectively, 72.7% and 82.3% (stallion A), and 40.0% and 50.0% (stallion B). We concluded that cooling equine semen for 24 hours before freezing, while maintaining sperm viability and fertility, is possible.  相似文献   

16.
The dilution effect and effect of restoring seminal plasma (SP) proportion in diluted semen were determined in chilled Asian elephant sperm. Semen was collected from eight males, and samples with ≥30% motile sperm were used in the study. Tris‐glucose‐egg yolk extender (TE) was used for cooled storage at 4°C for 48 hr. In experiment 1 (n = 18), semen was diluted to 1:1, 1:3, 1:7 and 1:15 with TE (volume per volume). There were no significant changes in sperm viability and sperm with normal acrosome integrity among dilutions, but sperm motility and motility velocities were greater (p < .05) in the 1:1 dilution than those of the 1:7 and 1:15 dilutions at 48 hr of storage. In experiment 2, supplemented SP was derived from elephants and stallions. In experiment 2.1, diluted semen (1:7 dilution) was restored with SP to obtain a 1:2 proportion (n = 8). Sperm motility, viability and sperm with normal acrosome integrity were similar among treatments, but motility velocities were greater (p < .05) with stallion SP at 48 hr of storage. In experiment 2.2, diluted semen (1:15 dilution) was restored with SP to obtain a 1:3 proportion (n = 10). Sperm viability and sperm with normal acrosome integrity were similar among treatments at 48 hr of storage. However, sperm motility and motility velocities were greater (p < .05) with stallion SP than those of others. In conclusion, elephant sperm motility was affected by a dilution effect and restoration of SP proportion with stallion SP, but not with elephant SP, could improve motility in chilled highly diluted sperm.  相似文献   

17.
The Use of Cefquinome in Equine Semen Extender   总被引:1,自引:0,他引:1  
Antibiotics are commonly used in equine semen extender for conservation, if semen has to be stored cooled for a maximum of 48 hours or frozen, to eliminate pathogenic or potentially pathogenic bacteria from semen and reduce the risk of postmating endometritis. Little is known about the effect of antibiotics on spermatozoa when semen is stored over a longer period. Cefquinome, a broad spectrum antibiotic and fourth-generation cephalosporin, has been proven to be a powerful drug for the treatment of endometritis and mastitis in different species. Recently in equine studies, it was found to localize in high concentrations in the endometrium. Therefore, cefquinome was used as the antibiotic in semen extender and compared with a commercial semen extender containing gentamicin for effects on motility and membrane integrity of spermatozoa. During the breeding season, ejaculates from nine light horse stallions were collected and half of each ejaculate was stored for 48 hours in modified Kenney type semen extender containing either cefquinome or gentamicin. At 0, 24, and 48 hours, aliquots (20 μL) of the stored semen were evaluated for (progressive) motility and membrane integrity, as well as for various motility parameters by computer assisted sperm analysis. No differences (P > .05) were found in total motility or progressive motility between extenders at any time point. However, there were differences (P < .05) in velocity parameters, although the effect of velocity parameters on fertility is not clear. In general, semen parameters after storage in non-fat dried skim milk semen extender containing cefquinome are comparable with those after storage in semen extender containing gentamicin. The wider spectrum of bactericidal activity possessed by cefquinome may prove to be beneficial in some cases.  相似文献   

18.
The ability to ship cooled stallion sperm for subsequent freezing at a facility specializing in cryopreservation would be beneficial to the equine industry. Stallion sperm has been centrifuged, cooled to 5 degrees C for 12 h, and frozen without a detrimental effect on motility in a previous study; however, no fertility data were available. Experiment 1 compared the post-thaw motility of sperm cooled for 18 h at 15 or 5 degrees C at either 400 or 200 x 10(6) sperm/mL and then frozen. Storage temperature, sperm concentration, or the interaction of temperature and concentration had no effect on total (TM) and progressive motility (PM) after cooling. Post-thaw TM and PM were higher for control than (P < 0.05) for treated samples. There was no difference in post-thaw TM and PM due to temperature or concentration. Experiment 2 further evaluated procedures for cooling before freezing. Ejaculates were either cooled to 5 degrees C for 18 h and centrifuged, centrifuged at room temperature and then cooled to 5 degrees C for 18 h before freezing, or centrifuged and frozen immediately (control). There was no difference among treatments on post-thaw TM or PM. In Exp. 3, mares were inseminated with semen that had been extended in skim milk-egg yolk without glycerol, centrifuged, resuspended at 200 x 10(6) sperm/mL, cooled to 5 degrees C for 18 h, and then frozen or not cooled for 18 h before freezing (control). Pregnancy rates did not differ for mares receiving semen cooled and then frozen (21 of 30, 70%) or semen frozen directly without prior cooling (16 of 30, 53%). In summary, a procedure was developed for cooling stallion sperm for 18 h before freezing without a resultant decrease in fertility.  相似文献   

19.
This study aimed to investigate the effects of different concentrations of 1,2‐bis‐(o‐aminophenoxy)‐ethane‐N,N,N0 N0‐tetraacetic acid, tetra‐acetoxymethyl ester (BAPTA‐AM), an intracellular calcium chelating agent, on stallion semen cooling and freezing–thawing. After collection, semen was extended (1:1 v/v) on a skim milk‐based extender, centrifuged and resuspended at 400 million/ml into cooling or freezing extenders containing 0, 5, 25, 50, 100 and 200 μΜ BAPTA‐AM. Motility parameters were assessed after cooling in Equitainer at 5°C for 12, 24, 48, 72 and 120 hr and after freezing–thawing. In addition, mitochondrial membrane potential, intracellular ATP, reactive oxygen species and malondialdehyde concentrations were measured in cryopreserved‐thawed semen. Cooled stored (48 hr) semen containing 50 μΜ BAPTA‐AM and control extender (0 μΜ BAPTA‐AM) was used to assess fertility. Inclusion of 50 μΜ BAPTA‐AM resulted in superior sperm motility parameters during cooled storage when compared to other groups (< 0.05). Furthermore, semen cryopreserved in extender containing 50 μΜ BAPTA‐AM showed increased intracellular ATP and mitochondrial membrane potential, whereas reactive oxygen species and malondialdehyde were increased after thawing for all groups (< 0.05). Addition of 50 μΜ BAPTA‐AM to cooling extender resulted in similar pregnancy rates to the control group (75% vs. 73.6%, respectively; > 0.05). In conclusion, the addition of BAPTA‐AM to semen extenders aided stallion semen cryopreservation in a dose‐dependent manner. Furthermore, the cooling extender supplemented with 50 μΜ BAPTA‐AM could be used to prolong the sperm motility during cooling without apparently compromising fertility. Field trials should be conducted to assess fertility of cryopreserved stallion semen with BAPTA‐AM.  相似文献   

20.
This study was designed to compare the quality of liquid‐stored buffalo bull spermatozoa in soya lecithin based extender Bioxcell® (BIOX), milk (MILK), tris‐citric egg yolk (TEY) and egg yolk‐citrate (EYC) extender at 5°C. Semen was collected from five Nili‐Ravi buffalo (Bubalus bubalis) bulls of 6–7 years of age with artificial vagina over a period of 3 weeks (two consecutive ejaculates once in a week). Semen ejaculates having more than 60% motility were pooled, split into four aliquots, diluted (37°C; 10 × 106 motile spermatozoa/ml), cooled from 37 to 5°C in 2 h (0.275°C/min) and stored for 5 days. Sperm motility, viability, plasma membrane integrity (PMI) and normal acrosomal ridge were studied at first, third and fifth day of storage. Higher values of progressive sperm motility (%), sperm viability (%), sperm PMI (%) and normal apical ridge (%) were observed in BIOX, MILK and TEY extenders at first, third and fifth day of storage than EYC extender. Progressive sperm motility, sperm viability and sperm PMI in BIOX® extender were not different from MILK and TEY extenders at 1st and third day storage period. However, at fifth day of storage, the values for these parameters remained significantly higher (p < 0.05) in BIOX® compared with MILK, TEY and EYC extenders. At fifth day of storage, the semen quality parameters for Bioxcell® were comparable to those with MILK and TEY extenders at third day of storage. In conclusion, motility, viability and PMI of buffalo bull spermatozoa remained similar in Bioxcell®, milk and TEY extender at first and third days of storage at 5°C. Yet, the values for the aforementioned parameters in Bioxcell® were higher compared with milk, TEY and EYC extender at fifth day of storage at 5°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号