首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Einkorn (Triticum monococcum L., subsp. monococcum), emmer (Triticum dicoccum Schuebl [Schrank], subsp. dicoccum) and spring bread wheat (Triticum aestivum L.) may be rich in lipophilic antioxidants (tocols and carotenoids), and therefore potential food sources with good nutritional properties. The aim of the present study was to determine the contents of major lipophilic antioxidants beneficial for human health in wheat varieties and landraces for breeding and production. In field experiments over two years, fifteen einkorn, emmer and spring wheat varieties were analysed for the contents of tocols and carotenoids in grain. A high carotenoid content (lutein, zeaxanthin, β-carotene) was typical for the selected einkorn genotypes. Among the analysed wheat species, the highest content was of β-tocotrienol, especially in the einkorn accessions. α-Tocotrienol was abundant in einkorn and emmer wheat species. Higher contents of α- and β-tocopherols were characteristic of spring and emmer wheats. δ-Tocotrienol has been detected for the first time in einkorn and some emmer accessions, although in low concentrations. Significant effects of genotype on the contents of carotenoids and tocols were found with einkorn differing from emmer and spring wheats. The year of cultivation had less effect on the contents of carotenoids and tocols. Selected accessions of einkorn with high contents of carotenoids and tocotrienols as well as spring and emmer wheats with higher contents of tocopherols are good sources of antioxidants with potential health promoting benefits for the production of nutritionally enhanced foods.  相似文献   

2.
This study determined the profile of hydrophobic phytochemicals (steroid-like components and lipophilic phenolics) and antioxidant potential (DPPH and Rancimat tests) of wheat grain in relation to sowing date (standard vs. delayed) using six cultivars of Triticum aestivum wheat grown in Poland. The study found that “sowing time” generally had a low impact on sterols, carotenoids, squalene and total lipophilic phenolics in wheat grain. The highest impact of “sowing time” was noted for α-tocopherol, C19:0 alkylresorcinol and campesterol. Delayed sowing reduced their content by up to 9%. The antioxidant potential of grain extracts obtained by the use of water-saturated butanol (WSB) was mostly cultivar-dependent (depending on assay: DPPH 56.3% and Rancimat 75.1% of explained variation, respectively). Wheat grain WSB extracts increased rapeseed oil induction time by up to 21% and their antioxidant capacity was up to 1.24 μM TEg−1.  相似文献   

3.
Yellow fleshed potatoes contain significant amounts of lutein and zeaxanthin but the bioaccessibility of potato carotenoids has not yet been investigated. The purpose of this study was to estimate the in vitro bioaccessibility of carotenoids provided by potato. Lutein and zeaxanthin concentrations of boiled, freeze dried and milled samples of seven yellow fleshed potato accessions were determined by HPLC before and after different steps (gastric, duodenal and micellar phase) of in vitro digestion. The gastric and duodenal digestive stability of lutein and zeaxanthin in boiled tubers of the different accessions ranged from 70 to 95 % while the efficiency of micellarization ranged from 33 to 71 % for lutein and from 51 to 71 % for zeaxanthin. For all accessions, amounts of lutein and zeaxanthin after micellarization were significantly lower than the original amount found in the boiled samples. The accession 701862 showed the highest bioaccessible lutein concentration (280 μg/100 g, FW) and the accessions 703566 and 704218 showed the highest bioaccessible zeaxanthin concentration (above 600 μg/100 g, FW). Considering the mean potato intake in the Andes (500 g per day), the accession 701862 provides 14 % of the lutein intake suggested for health benefits and the accessions 703566 and 704218 provide 50 % more than the suggested zeaxanthin intake.  相似文献   

4.
The outstanding high carotenoid content of the tritordeum (×Tritordeum Ascherson et Graebner) grains, a promising novel cereal derived from the crossing of durum wheat and the wild barley Hordeum chilense, has previously been assigned as a character derived from the genetic background of its wild parent. The carotenoid profile of H. chilense, especially the lutein esters presented in this study, provide biochemical evidences to confirm this affirmation, being the first time that the individual carotenoid profile of this cereal has been characterized. The total carotenoid content (6.14 ± 0.12 μg/g) and the individual carotenoid composition were very similar to the tritordeum grains, with lutein being the major carotenoid (88%; 5.38 ± 0.11 μg/g) and very low levels of β-carotene. In contrast to tritordeum, H. chilense presented a considerable amount of zeaxanthin (12%; 0.74 ± 0.01 μg/g). Up to 55% of lutein was esterified with palmitic (C16:0) and linoleic (C18:2) acids, presenting a characteristic acylation pattern, in agreement with the tritordeum one, and composed by four monoesters (lutein 3′-O-linoleate, lutein 3-O-linoleate, lutein 3′-O-palmitate and lutein 3-O-palmitate) and four diesters (lutein dilinoleate, lutein 3′-O-linoleate-3-O-palmitate, lutein 3′-O-palmitate-3-O-linoleate, lutein dipalmitate). These data may be useful in the field of carotenoid biofortification of cereals.  相似文献   

5.
There is no data on the lipid profile of Fagopyrum tataricum grain and its milling products. Therefore, we aimed to assess the phytosterol and tocopherol content and fatty acid profile of the samples of F. tataricum. Grain was milled, then the milling product separated to hull, bran, and two flour fractions, differing in particle size. The highest level of lipids (total fatty acids – 83%, with dominant oleic acid – 40%) was observed in the bran fraction (380 μm > GA > 180 μm). All samples contained some natural cis fatty acids, such as vaccenic acid (C18:1 n-7; ~2.8%) and tocopherol (α-, β-, δ- and γ-tocopherol). The highest content of total tocopherol was also detected in the bran fraction (0.1% of lipids). The content of lipid soluble bioactive substances was different and depended on the size of obtained fraction, therefore properly designed grain processing technology can be used to produce food with high nutritional value.  相似文献   

6.
Sixty-five Solanum tuberosum group Andigena, Phureja and Stenotomum genotypes from an initial population of 1,500 were analyzed for phenylpropanoids, carotenoids, and antioxidant capacity. Total phenolic content ranged from 3 to 49 mg g?1 DW, total carotenoids from 4.1 to 154 μg/g DW, anthocyanins from 0.27 to 34 mg g?1 DW and antioxidant capacity from 60 to 1,767 μmol TE/g DW. HPLC analysis of phenolic extracts revealed that 5-O-chlorogenic acid (5CGA) was the most abundant polyphenol in all genotypes. Ten genotypes were independently grown out for more in-depth phytonutrient analysis. The Phureja genotypes RN 27.01 had the highest polyphenol, anthocyanin and antioxidant content, while RN 39.05 had the highest carotenoid content. The tuber percentage dry matter varied markedly among the ten genotypes, influencing the phytonutrient values when expressed on a dry weight basis. Chlorogenic acid concentrations ranged from 1.7 to 29.4 mg g?1 DW and kaempferol-3-rutinose was present up to 3 mg g?1 DW. Petunidin-3-O-coum-rutinoside-5-O-glu or pelargonidin-3-O-coum-rutinoside-5-O-glu were the most abundant anthocyanins. The principal carotenoids were lutein, zeaxanthin, violaxanthin, and antheraxanthin, but no one carotenoid was predominant in all genotypes. These findings further support utilization of Phureja group germplasm for phytonutrient enhancement efforts.  相似文献   

7.
《Plant Production Science》2013,16(2):177-184
Abstract

The physicochemical properties of eight popular glutinous rice varieties (Hwasunchal, Dongjinchal, Sangjuchal, Seolhyangchal, Jinbuchal, Sangnamchal, Hangangchal, Milyang-167) in Korea were evaluated. The starch granules in Seolyangchal, Sangnamchal, Hangangchal, and Milyang-167 rice showed greater crystallization than that of the other varieties, which were more loosely packed with larger air spaces in between granules. Dongjinchal rice showed lowest amounts of potassium and calcium with 44.51 and 3029.50 ppm, respectively. This variety also exhibited the highest sugar content with 1.30–16.82 μg g-1 and fastest hydrolysis rate of 771.5 mg g-1. Sangnamchal, Sangjuchal, and Jinbuchal varieties showed abundant amounts of essential amino acids and highest pasting values (73.6°C, 3.0 min). On the other hand, lowest pasting values (69.6°C, 2.7 min) and total amino acid content of 452.61 ng mg-1 were observed in Milyang-167 rice. Hwasunchal and Sangnamchal samples contained the highest concentration of unsaturated fatty acids with 760 mg g-1 and lowest level of saturated fatty acids with 230 mg g-1. The highest viscosity values were obtained in Hangangchal variety, while the lowest values were found in Jinbuchal sample. This study illustrates the wide variation in the physicochemical properties of the glutinous rice varieties analyzed. The results could serve as baseline information for the quality evaluation of rice with unique characteristics suitable for specialty food processing.  相似文献   

8.
为给小麦类胡萝卜素及其他品质性状的品种资源筛选和品质改良提供参考,以黄淮麦区不同时期的31个小麦品种(系)为材料,探讨其全麦粉类胡萝卜素含量、脂肪氧化酶活性等品质性状的品种间差异及类胡萝卜素含量与其他品质性状的相关性。结果表明,类胡萝卜素含量、脂肪氧化酶活性、总戊聚糖、水溶性和非水溶性戊聚糖含量、色差仪参数、RVA参数、近红外参数等品质性状的品种间差异均达到显著水平;类胡萝卜素含量与水溶性戊聚糖含量、黄度呈极显著正相关,与高峰黏度、低谷黏度、稀懈值、最终黏度、容重和形成时间呈极显著负相关,与峰值时间、蛋白质含量和稳定时间呈显著负相关。根据供试品种(系)类胡萝卜素含量的聚类分析结果,孟0318等19个品种(系)聚为一类,洛麦23等10个品种(系)聚为一类,淮麦22和济麦22聚为一类,三个类别的类胡萝卜素含量平均值分别为1.93、1.07和2.99mg·kg-1。  相似文献   

9.
The content of tocols is a parameter of increasing interest in evaluating the quality of plant-based food. Cereal grains are amongst the most widely occurring plant food components and their potential for enriching the content of vitamin E and/or hypocholesterolemic active compounds in food is therefore of interest. We investigated the presence of tocol homologues in hulled and hull-less barley, as influenced by genotype and location. Both factors significantly influenced the amount of tocols in the barley kernel, with genotype having the greater effect for most homologues. Significant genotype×location interaction was observed for six out of eight homologues, but not for total tocotrienols and total tocols; however, the coefficient of determination for genotype was high for most homologues, so that selection for this traits should be possible. The hull-less trait negatively affected the content of total tocols, influencing both tocopherols (positively) and tocotrienols (negatively). Statistical analysis suggests this is due to a different sub-set of homologues, which is preferentially accumulated in hull-less vs. hulled barleys. As hulled barley had a greater accumulation of more bioactive homologues, the selection of hull-less barleys for this trait should be considered for enhancing food quality.  相似文献   

10.
Ancient wheat grain is considered by consumers to be more natural, pro-healthy and better tolerated, so these genotypes are being steadily reintroduced to cultivation. This study presents the content and composition of phenolic acids, alkylresorcinols, sterols, tocols and carotenoids in the grain of Indian dwarf and Persian wheats, extended by characteristics of their kernels (weight, dimensions and colour). To compare these features, four other wheat species (bread, spelt, durum and einkorn wheats) were used. It was found that the grain of Indian dwarf and Persian wheat is similar in weight and dimensions to grain of einkorn wheat, while in colour to bread wheat. Among the tested samples, grain of both new genotypes was the richest source of total low molecular phytochemicals, especially phenolic acids and alkylresorcinols, while being the weakest source of carotenoids. For these wheats, an enhanced share of ferulic acid (93–95%) was found, accompanied by higher quantitative and qualitative variability of homologues within sterols, tocols and carotenoids. In turn, the alkylresorcinol composition was related to wheat ploidy level.  相似文献   

11.
Red alga species belonging to the Porphyra and Pyropia genera (commonly known as Nori), which are widely consumed and commercialized due to their high nutritional value. These species have a carotenoid profile dominated by xanthophylls, mostly lutein and zeaxanthin, which have relevant benefits for human health. The effects of different abiotic factors on xanthophyll synthesis in these species have been scarcely studied, despite their health benefits. The objectives of this study were (i) to identify the abiotic factors that enhance the synthesis of xanthophylls in Porphyra/Pyropia species by conducting a systematic review and meta-analysis of the xanthophyll content found in the literature, and (ii) to recommend a culture method that would allow a significant accumulation of these compounds in the biomass of these species. The results show that salinity significantly affected the content of total carotenoids and led to higher values under hypersaline conditions (70,247.91 µg/g dm at 55 psu). For lutein and zeaxanthin, the wavelength treatment caused significant differences between the basal and maximum content (4.16–23.47 µg/g dm). Additionally, in Pyropia spp., the total carotenoids were considerably higher than in Porphyra spp.; however, the lutein and zeaxanthin contents were lower. We discuss the specific conditions for each treatment and the relation to the ecological distribution of these species.  相似文献   

12.
There have been no studies conducted with the objective of investigating the effect of elevated CO2 concentrations ([CO2]) on antioxidants in grains. Therefore, a two-year field experiment was conducted using open-top chambers with two levels of atmospheric CO2 (375 and 550 μmol/mol) to evaluate their effects on rice grain antioxidants. Following exposure to high [CO2], the total phenolic content of all rice milling fractions decreased (3%–18%), with the highest reduction in the brown rice for sinapic acid (167%), and in the white rice for p-hydroxybenzoic acid (100%). The total flavonoid content also decreased under elevated [CO2] in all rice milling fractions (8%–14%), with apigenin (25%) being highly affected in the white rice, and tricin (12%) in the bran. The same trend was found for γ-oryzanol, with decreases of 35%, 32%, 25%, and 2% in the white rice, brown rice, husk, and bran, respectively. In the white and brown rices, tocopherols and tocotrienols were all lower under elevated [CO2], with reductions larger for α-tocotrienol (69%), γ-tocotrienol (46%), and α-tocopherol (38%). Good correlations between antioxidant contents and DPPH radical scavenging capacities indicated that these decreases may be meaningful in the preventive ability of rice against free radical-mediated degenerative diseases.  相似文献   

13.
In a three-year period (2000–2002) total tocols (tocopherols and tocotrienols), content of vitamin E and its isomers (α-, β+γ-, δ-tocopherols and tocotrienols) were assessed in grain of 13 barley genotypes. The highest content of tocols (60.3–67.6 mg kg−1) and content of vitamin E (Vitamin E equivalent—18.0–20.1 mg kg−1) were determined in the waxy varieties Wanubet, Wabet, and Washonubet. Standard varieties, i.e. of a malting type (Krona and Kompakt), had statistically significantly lower content of tocols (49.9 and 53.6 mg kg−1) and vitamin E (15.7–16.1 mg kg−1) compared to the waxy varieties. The hulless waxy variety Washonubet had statistically significantly higher total content of tocols (67.6 mg kg−1) and α- tocotrienols isomer (42.1 mg kg−1) versus all other genotypes in the set. Chemical treatment and fertilization statistically significantly increased the content of tocols (by 4.7 mg kg−1), vitamin E (by 1.9 mg kg−1), isomer α-tocopherol (by 0.9 mg kg−1) and isomer α- tocotrienols (by 3.3 mg kg−1). The average values of α-tocopherols and α-tocotrienols in the set were 6.7 mg kg−1 and 29.7 mg kg−1, respectively. Some of the reciprocal lines created by us from the malting and waxy varieties are suitable for food use for high contents of all tocopherols and α-tocotrienols.  相似文献   

14.
《Plant Production Science》2013,16(2):132-140
Abstract

The effects of temperature during the ripening period on digestible protein contents of the rice grains of a seed-protein mutant rice cultivar LGCsoft were examined. The plants were grown under a natural condition until the booting stage, and then in temperature-controlled greenhouses set at 24.0ºC, 28.0ºC, and 30.6ºC (mean temperature). The protein compositions and the protein contents of the rice grains were analyzed quantitatively. The protein compositions in the LGCsoft grains varied with the temperature condition. The ratio of the digestible to total protein was higher in high-temperature conditions, and that of difficult-to-digest proteins, especially 13 kDa prolamin was lower in high-temperature conditions. The protein compositions in a normal-type cultivar Nihonmasari, which was the original cultivar of LGCsoft also varied with the temperature. However, the effect of temperature on the ratio of the digestible to total protein was larger in LGCsoft than in Nihonmasari. The ratios of the digestible protein in the grains under 24.0ºC and 30.6ºC conditions were 74.3% and 81.3%, respectively, in Nihonmasari. On the other hand, they were 52.0% and 63.1%, respectively, in LGCsoft. In LGCsoft, the total protein content of grains was 70.6-72.5 mg g-1, and it was affected only slightly by temperature during the ripening period. Therefore, the digestible protein content of grains under 24.0ºC and 30.6ºC conditions was 36.7 mg g-1 and 45.7 mg g-1, respectively, in LGC soft. It was clarified that the digestible protein content was higher at elevated temperatures because of the increased ratio of digestible to total protein.  相似文献   

15.
Yellow pigment (YP) concentration is an important quality trait in durum wheat and is comprised primarily of carotenoids. The main objective of our study was to measure the accumulation of carotenoids during the grain fill period to improve our understanding of the physiological basis for differences among durum wheat cultivars. Thirteen genotypes with large variation in total YP concentration were studied. Spikes were sampled from replicated field plots in 2007 and 2008 at 14, 21, 28 and 35 days after heading (DAH). The remainder of each plot was harvested at grain maturity for analysis. trans-Lutein was the predominant carotenoid at maturity and was detected at 14 DAH in all genotypes. The rate and duration of lutein accumulation was variable among genotypes expressing high, intermediate and low YP. The accumulation of all carotenoids was lowest in genotypes expressing low YP, and suggests rate limitations early in the carotenoid biosynthetic pathway. The ratio of trans-zeaxanthin to trans-lutein was inversely correlated with total YP and suggests that the β,? branch of lycopene cyclization leading to α-carotene and thus lutein, synthesis may also be limiting in low-YP genotypes. These results provide insights into the regulation of the carotenoid biosynthetic pathway in durum wheat grain.  相似文献   

16.
木薯(Manihot esculenta Crantz)属大戟科木薯属热带作物,具有耐干旱贫瘠等特性,木薯叶片富含蛋白质,块根富含淀粉但是缺乏类胡萝卜素,是热带低收入人口的主粮.国家木薯产业技术体系"十三五"期间关于木薯产业问题指出,类胡萝卜素是粮饲化的重要指标,类胡萝卜素也是维生素A的前体物质.本文在前期研究中筛选到...  相似文献   

17.
A defining factor for the commercial value of durum wheat pasta is its amber colour, which depends on the semolina yellow pigment concentration and on the oxidative enzymatic activity. Among carotenoids controlling yellow colour, the presence of β-carotene is also important as precursors of vitamin A. The aim of the present study was to detect quantitative trait loci (QTL) for yellow pigment concentration, yellow index and individual carotenoid compounds (lutein, zeaxanthin, β-cryptoxanthin, α-carotene and β-carotene) in a durum segregant population. Total carotenoid concentration amounted to 37% of the yellow pigments, indicating unknown colour-producing compounds in the durum extracts. Lutein was the most abundant carotenoid, followed by zeaxanthin, α-carotene and β-carotene, while β-cryptoxanthin was a minor component. Phytoene synthase marker Psy-A1, 150 SSR and EST-SSR markers, and 345 DArT® markers, were used to construct the linkage map for subsequent QTL analysis. Clusters of QTL for total and/or one or more carotenoid compounds were detected on the same chromosome regions (2A, 3B, 5A and 7A) where QTL for yellow pigment concentration and yellow index were identified. The molecular markers associated to major QTL would be useful for marker-assisted selection programs to facilitate high carotenoid concentration with high nutritional carotenoid compounds in wheat grain.  相似文献   

18.
Herbs are a rich source of bioactive phytochemicals such as carotenoids, which are known to exert various positive biological effects. However, there is very limited information in the literature regarding the content and bioavailability of carotenoids from commonly consumed herbs. Therefore, the objectives of the present study were first, to determine the carotenoid content of eight herbs namely basil (Ocimum basilicum), coriander (Coriandrum sativum), dill (Anethum graveolens), mint (Metha L.), parsley (Petroselinum crispum), rosemary (Rosmarinus officinalis), sage (Salvia officinalis), and tarragon (Artemisia dracunculus L.); and second, to assess carotenoid bioaccessibility from these herbs using a simulated human in vitro digestion model. Carotenoid bioaccessibility is defined as the amount of carotenoids transferred to micelles after digestion when compared with the original amount present in the food. The content of individual carotenoids varied significantly among the herbs tested. Carotenoid bioaccessibility varied from 0 to 42.8%. Basil and coriander, and their respective micelles, contained the highest levels of β-carotene, β-cryptoxanthin, and lutein + zeaxanthin. Our findings show that herbs are rich sources of carotenoids and that these foods can significantly contribute to the intake of bioaccessible carotenoids.  相似文献   

19.
The process of in vivo esterification of xanthophylls has proven to be an important part of the post-carotenogenesis metabolism which mediates their accumulation in plants. The biochemical characterization of this process is therefore necessary for obtaining new and improved crop varieties with higher carotenoid contents. This study investigates the impact of postharvest storage conditions on carotenoid composition, with special attention to the esterified pigments (monoesters, diesters and their regioisomers), in durum wheat and tritordeum, a novel cereal with remarkable carotenoid content. For tritordeum grains, the total carotenoid content decreased during the storage period in a clear temperature-dependent manner. On the contrary, carotenoid metabolism in durum wheat was very much dependent on the physiological adaptation of the grains to the imposed conditions. Interestingly, when thermal conditions were more intense (37 °C), a higher carotenoid retention was observed for tritordeum, and was directly related to the de novo esterification of the lutein induced by temperature. The profile of lutein monoester regioisomers was constant during storage, indicating that the regioisomeric selectivity of the XAT enzymes was not altered by temperature. These data can be useful for optimizing the storage conditions of grains favoring a greater contribution of carotenoids from these staple foods.  相似文献   

20.
Grain protein concentration and composition are key factors affecting winter wheat quality and are influenced by wheat genotype, available fertility, and growing conditions. These same parameters can affect free asparagine concentration in grain, and elevated asparagine can lead to acrylamide production in baked food products, which can be a health concern. The objectives of this study were to determine the effect of genotype, nitrogen (N), and sulfur (S) fertility on protein concentration, protein quality, dough rheology, and asparagine concentration in winter wheat grown on S-deficient soils. Treatments were arranged in a 3 × 2 × 4 factorial design in 2017 and 3 × 2 × 5 factorial design in 2018. There were three levels of N (56, 101 and 146 kg ha−1), two levels of S (0 and 22 kg ha−1), four levels of genotype in 2017, and five levels of genotype in 2018. Protein composition was evaluated as the percent polymeric protein using size exclusion high performance liquid chromatography. In both years, the ratio of polymeric to monomeric protein was increased by sulfur fertilization. Solvent retention capacity (SRC) was evaluated using the whole grain lactic acid-sodium dodecyl sulfate test. In 2018, S application increased the SRC by 217%–308%. However, in 2017, SRC improvement was limited to two genotypes and was modest, likely a consequence of the reduced protein concentration in S-treated plots. Free asparagine concentration averaged 9.8 μmol/g and 20.9 μmol/g in 2017 and 2018, respectively. Asparagine concentration in grain was affected by N, S, genotype, and their interactions. Sulfur application substantially reduced asparagine concentrations in both years. Dough rheology was evaluated in the 2018 trial using the farinograph test. Sulfur application increased average farinograph stability from 9.2 min to 14.6 min. Farinograph stability was effectively predicted by the SRC test (R2 = 0.78). These results demonstrate the importance of ensuring adequate S fertility in winter wheat production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号