首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
The clay minerals of more than 200 soil samples collected from various sites of Fujian Province were studied by the X-ray diffraction method and transmission electron microscopy to study their distribution and evolution.Montmorillonite was found in coastal solonchak,paddy soils derived from marine deposit,lacustrine deposit and river deposit,and some lateritic red soil,red soil and yellow soil with a low weathering degree.Chlorite existed mainly in coastal solonchak and paddy soil developed from marine deposit.1.4nm intergradient mineral appeared frequently in yellow soil,red soil and lateritic red soil.The content of 1.4nm intergradient mineral increased with the decrease of weathering degree from lateritic red soil to red soil to yellow soil.Hydrous micas were more in coastal solonchak,paddy soils derived from marine deposit,lacustrine deposit and river deposit.and puple soil from purple shale than in other soils.Kaolinte was the most important clay mineral in the soils iun this province.The higher the soil weathering degree,the more the kaolinite existed.From yellow soil to red soil to lateritic red soil,kaolinite increased gradually,Kaolinite was the predominant clay mineral accompanied by few other minerals in typical lateritic red soil. Tubular halloysite was a widespread clay mineral in soils of Fujian Province with varying quantities.The soil derived from the paent rocks rich in feldspar contained more tubular halloysite.Spheroidal halloysite was found in a red soil and a paddy soil developed from olivine basalt gibbsite in the soils in this district was largely“primary gibbsite” which formed in the early weathering stage.Gibbsite decreased with the increase of weathering degree from yellow soil to red soil to lateritic red soil.Goethite also decreased in the same sequence while hematite increased.  相似文献   

2.
With the large-scale cultivation of transgenic crops expressing Bacillus thuringiensis (Bt) insecticidal toxin in the world, the problem of environmental safety caused by these Bt crops has received extensive attention. The effects of soil organic matter (SOM) on the adsorption and insecticidal activity of Bt toxin in variable- and constant-charge soils (red and brown soils, respectively) were studied. Organic carbon in the soils was removed using hydrogen peroxide (H_2O_2). After H_2O_2 treatment, the SOM in the red and brown soils decreased by 71.26% and 82.82%, respectively. Mineral composition of the H_2O_2-treated soils showed no significant changes,but soil texture showed a slight change. After SOM removal, the cation exchange capacity (CEC) and pH decreased, while the specific surface area (SSA), point of zero charge (PZC), and zeta potential increased. The adsorption isotherm experiment showed that the Bt toxin adsorption on the natural and H_2O_2-treated soils fitted both the Langmuir model (R~2≥ 0.985 7) and the Freundlich model (R~2≥ 0.984 1), and the amount of toxin adsorbed on the H_2O_2-treated soils was higher than that on the natural soils. There was a high correlation between the maximum adsorption of Bt toxin and the PZC of soils (R~2= 0.935 7); thus, Bt toxin adsorption was not only influenced by SOM content, but also by soil texture, as well as the SSA, CEC, PZC, and zeta potential. The LC_(50) (lethal concentration required to kill 50% of the larvae) values for Bt toxin in the H_2O_2-treated soils were slightly lower than those in the natural soils, suggesting that the environmental risk from Bt toxin may increase if SOM decreases. As the measurement of insecticidal activity using insects is expensive and time consuming, a rapid and convenient in vitro method of enzyme-linked immunosorbent assays is recommended for evaluating Bt toxin degradation in soils in future studies.  相似文献   

3.
The objective of the present study is to reveal the composition and characteristics of organo-mineral complexes in red soils (red soil,lateritic red soil and latosol) of south China in terms of chemical dissolution and fractional peptization methos.In the combined humus,most of the extractable humus could dissolve in 0.1 M NaOH extractant and belonged to active humus (H1),and there was only a small amount of humus which could be further dissolved in 0.1 M Na4P2O7 extractant at pH 13 and was stably combined humus (H2).The H1/H2 ratio ranged from 3.3 to 33.8 in red soils,and the proportions of both H1 and total extractable organic carbon (H1 H2) in total soil organic carbon and the ratios of H1 to H2 and H1 to (H1 H2) were all higher in lateritic red soil and latosol than in red soil.The differences of combined humus composition in various red soils were directly related to the content of Fe and Al oxides.In organo-mineral complexes,the ratio of Na-dispersed fraction (G1) to Na-ground-dispersed fraction (G2) was generally smaller than 1 for red soils,but there was a higher G1/G2 ratio in red soil than in lateritic red soil and latosol.G1 fraction had a higher content of fulvic acid (FA),but G2 fraction had a higher content of humic acid (HA).The ratios of H1 to H2 and HA to FA were higher in G2 than in G1.The differences in the composition and activity of humus between G1 and G2 fractions were related to the content of free Fe and Al oxides.The quantities of complex Fe and Al,the Fe/C and Al/C atomic ratios were higher in G2 than in G1,and the ratio of Al/C was much higher than that of Fe/C.It may be deduced that aluminum plays a more important role than iron in the formation process of organo-mineral complexes in red soils.  相似文献   

4.
The study about the adsorption of phosphate on four variable charge soils and some minerals revealed that two stage adsorption appeared in the adsorption isotherms of phosphate on 4 soils and there was a maximum adsorption on Al-oxide-typed surfaces between pH 3.5 to pH 5.5 as suspension pH changed from 2 to 9, but the adsorption amount of phosphate decreased continually as pH rose on Fe-oxide typed surfaces. The adsorption amount of phosphate and the maximum phosphate adsorption pH decreased in the order of yellow-red soil > lateritic red soil > red soil > paddy soil, which was coincided with the content order of amorphous Al oxide. The removement of organic matter and Fe oxide made the maximum phosphate adsorption pH rise from 4.0 to 5.0 and 4.5, respectively. The desorption curves with pH of four soils showed that phosphate desorbed least at pH 5. Generally the desorption was contrary to the adsorption with pH changing.  相似文献   

5.
Low-molecular-weight (LMW) organic acids exist widely in soils and have been implicated in many soil processes.The objective of the present paper was to evaluate effect of two LMW organic acids, citric acid and oxalic acid, on Cl^- adsorption by three variable charge soils, a latosol, a lateritic red soil and a red soil, using a batch method. The results showed that the presence of citric acid and oxalic acid led to a decrease in Cl- adsorption with larger decreases for citric acid. Among the different soils Cl- adsorption in the lateritic red soil and the red soil was more affected by both the LMW organic acids than that in the latosol.  相似文献   

6.
HU GUO-SONG 《土壤圈》1994,4(2):153-164
The study results of the effects of temperature and ionic strength on the adsorption kinetics of Pb2+ and Cu2+ by latosol, red soil and kaolinite coated with Mn oxide showed that Pbr" and Cur" adsorption by all samples, as a whole, increased with raising temperature. Temperature also increased both values of Xm (the amount of ion adsorbed at equilibrium) and k (kinetics constant) of Pb2+ and Cu2+ The activation energies of Pb2+ adsorption were kaolin-Mn>red soil>goethite and those of Cu2+ were latosol>red soil>kaolin-Mn>goethite. For a given single sample the activation energy of Cu2+ was greater than that of Pb2+. Raising ionic strength decreased the adsorption of Pb2+ and Cu2+ by latosol, red soil and kaolinite coated with Mn oxide but increased Pb2+ and Cu2+ adsorption by goethite. The contrary results could be explained by the different changes in ion forms of Pb2+ or Cu2+ and in surface charge characteristics of latosol, red soil, kaolin-Mn and goethite. Increasiclg supporting electrolyte concentration in-creased Xm and k in goethite systems but decreased and k in kaolin-Mn systems. All the timedependent data fitted the surface secondorder equation very well.]  相似文献   

7.
铵、钾同时存在时, 土壤对铵的优先吸附   总被引:7,自引:0,他引:7  
The water stability of aggregates in various size classes separated from 18 samples of red soils under different managements, and the mechanisms responsible for the formation of water-stable soil aggregates were studied. The results showed that the water stability of soil aggregates declined with increasing size, especially for the low organic matter soils. Organic matter plays a key role in the formation of water-stable soil aggregates. The larger the soil aggregate size, the greater the impact of organic matter on the water stability of soil aggregates. Removal of organic matter markedly disintegrated the large water-stable aggregates (> 2.0 mm) and increased the small ones (< 0.25-0.5mm) to some extent, whereas removal of free iron(aluminium) oxides considerably destroyed aggregates of all sizes, especially the < 0.25-0.5 mm classes. The contents of organic matter in water-stable aggregates increased with aggregate sizes. It is concluded from this study that small water-stable aggregates (< 0.25-0.5 mm) were chiefly cemented by Fe and Al oxides whilst the large ones (> 2.0 mm) were mainly glued up by organic matter. Both free oxides and organic matter contribute to the formation and water stability of aggregates in red soils.  相似文献   

8.
Adsorption isotherms of metsulfuron and bensulfuron on a hexadecyltrimethylammonium (HDTMA) bromide-modified paddy soil under different ionic strengths, with divalent cation Cu^2+, or having different pH were studied to describe their adsorptive behavior, and to try to explain the adsorption process of a sulfonylurea compound with a carbamoylsulfamoyl group in the modified soil environment. All the adsorption isotherms fitted the Freundlich equation well, and the HDTMA treatment of paddy soil dramatically enhanced adsorption capacity of metsulfuron or bensulfuron. Also, an increase of ionic strength and the addition of divalent heavy metal cation Cu^2+ on the HDTMA-modified paddy soil increased the adsorption of metsulfuron or bensulfuron. Additionally, for metsulfuron and bensulfuron in the aqueous phase, adsorption capacity of the HDTMA-modified paddy soft gradually increased with decreasing pH.  相似文献   

9.
The phosphate adsorption and surface charge characteristics of the tropical and subtropical soils derived from different parent materials in China were determined, and their relations to soil mineralogy were analysed. The results showed that all soil phosphate adsorption curves were well fitted by Freundlich equation and Langmuir equation. The maximum buffering capacity of P ranged from 66 to 9 880 mg kg-1, with an increasing order of purple soil, skeletal soil, red soil, lateritic red soil, yellow soil and latosol; and the highest value was 149 times the lowest value, which indicated great differences among these soils in phosphate adsorption and supplying characteristics. The pH0 (zero point of charge) values obtained by salt titration-potential titration varied from 3.03 to 5.49, and the highest value was found in the latosol derived from basalt whereas the lowest value was found in the purple soil. The correlation analysis indicated that the main minerals responsible for phosphate adsorption in the soils were gibbsite, amorphous iron oxide and kaolinite; and the pH0 was mainly controlled by kaolinite, gibbsite and oxides.  相似文献   

10.
华中南部某些土壤针铁矿的形态   总被引:3,自引:0,他引:3  
The morphologies of goethites in latosol, red soils, yellow-brown soil and the paddy soils developed from red soils were studied in comparison with the morphology of synthetic goethite by means of the X-ray diffraction, transmission electron microscopy and energy dispersive X-ray analysis. The synthetic goethite displayed acicular particles elongated in the c-direction. The goethites in the latosol, red soils and yellow-brown soil were platy particles stretched in two directions or isodimensional particles, and those in the paddy soils from red soils were acicular, short columnar, platy or isodimensional particles. Various morphologies of the goethites probably suggested their different dominant crystal faces, surface charge distribution and surface adsorption characteristics.  相似文献   

11.
湖北恩施几种典型土壤对氟的吸附与解吸特性   总被引:1,自引:1,他引:1  
魏世勇 《土壤通报》2008,39(1):71-75
采用室内试验方法,研究了恩施六种土壤氟吸附的特性。结果表明:(1)不同土壤的吸附量差异很大,表现为黄粘泥水田土>红粘壤土>泥质岩黄壤土>红砂泥水田土>中性紫色土>黑色石灰土;同一土壤的吸附量随氟离子初始浓度的增大而增大。不同土壤的解吸量在低浓度时差异不明显,高浓度时表现为黄粘泥水田土、红粘壤土、泥质岩黄壤土、红砂泥水田土>中性紫色土>黑色石灰土;同一土壤的解吸量随氟离子初始浓度的增大而增大。(2)Langmuir公式可以很好地描述土壤氟吸附的特性,Freundlich公式能够较好地描述土壤对氟的吸附。(3)去除铁、铝氧化物后土壤氟吸附量明显降低;草酸能够促进土壤对氟的吸附;共存PO43-能够抑制土壤对氟的吸附。  相似文献   

12.
可变电荷土壤中特殊化学现象及其微观机制的研究进展   总被引:3,自引:0,他引:3  
徐仁扣  李九玉  姜军 《土壤学报》2014,51(2):207-215
综述了近年来可变电荷土壤化学研究的进展,着重总结了可变电荷土壤中的盐吸附、铁铝氧化物对土壤自然酸化的抑制作用和离子强度对离子专性吸附的影响等特殊化学现象及其微观机制的研究进展。用颗粒表面扩散层重叠导致有效电荷数量减小的原理解释了盐吸附现象和铁铝氧化物对土壤自然酸化的抑制作用。阐明了可变电荷土壤和矿物中介质离子强度影响离子专性吸附的机制,用四层吸附模型解释了离子专性吸附随离子强度增大而增加的现象,并根据胶体zeta电位随离子强度改变而变化的趋势进一步证明了离子强度增大使胶体专性吸附面上静电电位的绝对值减小,是离子专性吸附随离子强度增大而增加的主要原因。带电颗粒表面双电层结构和双电层相互作用的深入研究,有助于阐明可变电荷土壤中一些特殊化学现象的微观机理,从而进一步完善土壤化学理论。  相似文献   

13.
水稻土中铁还原与无机磷有效性的关系   总被引:4,自引:0,他引:4  
曹宁  曲东 《土壤通报》2007,38(3):504-507
采集我国吉林省吉林市(1号)、四川省邛崃市(2号)、江西省安福县(3号)及广东省雷州半岛(4号)等地区的四种典型水稻土,通过模拟厌氧培养试验,研究在厌氧还原条件下不同水稻土中Fe(II)产生量、有效性磷浓度及A l-P、Fe-P和O-P等无机磷形态变化情况。结果表明,淹水后四种水稻土中Fe(II)含量均有不同程度的增加,土壤有效磷浓度也呈现相同的变化趋势。淹水60天后在1、2、3、4号土壤中,Fe(II)的净增加量分别为5.5mg g-1,4.3mg g-1,2.1mg g-1和3.7mg g-1;有效磷的增加量分别为50 mg kg-1,18.6 mg kg-1,23 mg kg-1和12.4 mg kg-1。厌氧培养30天内土壤Fe(II)产生量与有效磷浓度的变化呈极显著的相关关系。在1、2、3、4号土壤中,Fe(II)与有效磷的相关系数依次为0.9679、0.9744、0.8949和0.7501。  相似文献   

14.
植被刈割对红壤酸度及有机无机复合状况的影响   总被引:10,自引:1,他引:9  
曾希柏  刘更另 《土壤学报》2000,37(2):225-232
在红壤地区自然植被(白茅)条件下,不同的刈割周期对土壤交换性盐基离子组成、土壤有机质、有机无机复合体、腐鱼质组成及铁、铝氧化物含量等均具有较大的影响。从1年刈割一次至6刈割一次处理,虽然土壤酸度的变化无明显规律,但土壤交换性钾、无定形铁、无定形铝、络合态铁的含量及铁活化度值均呈增加趋势,且土壤有机质和复合体的含量相应增高,松结态腐残质/紧结态腐殖质的比值亦增大,即腐残质的活性较强、质量较高,土壤肥  相似文献   

15.
Limited information is available on the changes of surface chemical properties of tropical soils with time during the pedogenesis. Soil samples of three profiles derived from basalts of 10, 1330 and 2290 kilo annum (ka) in age were collected from adjacent locations in a tropical region of Hainan Province, China. The changes in soil surface chemical properties and the mineralogy of the soil clay fraction with time were investigated using ion adsorption, micro-electrophoresis, and X-ray diffraction analysis. The content of 2:1-type clay minerals decreased, while those of kaolinite and gibbsite increased with increasing basalt age and degree of soil development. The content of pedogenic free iron (Fe) oxides and the ratio of free Fe oxides/total Fe oxides increased with soil development stage, while soil poorly crystalline Fe and aluminum (Al) oxides had an opposite trend. The positive surface charge of the soils increased with increasing basalt age and degree of soil development; this was consistent with the change in their contents of free Fe/Al oxides. However, the value of negative surface charge had an opposite behavior. The soil derived from 10-ka-basalt had much more negative charge than soils derived from 1330- and 2290-ka-basalt. Soil net surface charge and zeta potential of the soil clay-fraction decreased with the increase in basalt age. Both net charge–pH curves and zeta potential–pH curves shifted to positive values with increased basalt age and degree of soil development. Increasing age also elevated the point of zero net charge of the soil and the isoelectric point of soil colloids.  相似文献   

16.
Rice (Oryza Sativa L.) nutrition is influenced by the interactions of (Iron) Fe, (Manganese) Mn, and (Silicon) Si in the rhizosphere. A greenhouse experiment was carried out with rice grown in four low‐pH soils (a granitic lateritic red earth, a paddy soil from the red earth, a basaltic latosol, and a paddy soil from the latosol). Rice was grown in pots with the roots confined in rhizobags and the rhizosphere soil and nonrhizosphere soil were analyzed separately for active Si, Fe, and Mn by Tamm's solution. Silicon and Mn concentrations were lower in the rhizosphere soil indicating a depletion which was higher for the basaltic soils and for the paddy soils. Iron concentrations were higher in the rhizosphere soil indicating an accumulation that was higher for granitic soils and for the upland soils. Plant growth response was due mostly to Mn with the basaltic soils supplying toxic amounts and the granitic soils being deficient. Iron accumulation in the rhizosphere caused lower plant uptake of Si, phosphorus (P), and calcium (Ca) and higher Fe and aluminum (Al) absorption leading to the conclusion that Fe deposition on plant roots and in rhizosphere may block the uptake of other nutrients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号