首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 562 毫秒
1.
聚环氧琥珀酸对污泥中镉的萃取作用   总被引:3,自引:0,他引:3  
Polyepoxysuccinic acid (PESA), as an environmental benign biodegradable chelant, was used to remove heavy metals from the sewage sludge of Shanghai Taopu Wastewater Treatment Plant. The extraction of cadmium (Cd) from sewage sludge using aqueous solution of PESA was studied. It was found that PESA was capable of extracting Cd from the sludge, and the extraction efficiency was dependent on both pH and the concentration of the chelating reagent. The extraction efficiency decreased gradually with increasing of pH, whereas the dependency on pH decreased as the concentration of PESA increased. In the case of the high PESA to total metal ratio, e.g., 10:1, the extraction efficiency reached above 70% within the pH range from 1 to 7. The highest extraction efficiency obtained in the experiment was 78%. By comparing the contents of the heavy metals in sewage sludge before and after the extraction, it was found that the extracted Cd came mainly from the four fractions: acid-soluble, reducible, oxidizable, and water-soluble fractions.  相似文献   

2.
The use of sewage sludge on agricultural land provides an alternative for its disposal. Therefore, the aim of the present study was to evaluate the feasibility of using industrial sewage sludge produced in Pakistan, as an agricultural fertilizer. The agricultural soil amended with 250 g kg^-1 sewage sludge with or without lime treatment was used for the growth of the common local grain crop, maize (Zea maize). The mobility of the trace and toxic metals in the sludge samples was assessed by applying a modified BCR sequential extraction procedure. The single extraction procedure was comprised of the application of a mild extractant (CaCl2) and water, for the estimation of the proportion of easily soluble metal fractions. To check the precision of the analytical results, the concentrations of trace and toxic metals in every step of the sequential extraction procedure were summed up and compared with total metal concentrations. The plant-available metal contents, as indicated by the deionized water and 0.01 mol L^-1 CaCl2 solution extraction fractions and the exchangeable fraction of the sequential extraction, decreased significantly (P 〈 0.05) with lime application because of the reduced metal availability at a higher pH, except in the cases of Cd and Cu, whose mobility was slightly increased. Sludge amendment enhanced the dry weight yield of maize and the increase was more obvious for the soil with lime treatment. Liming the sewage sludge reduced the trace and toxic metal contents in the grain tissues, except Cu and Cd, which were below the permissible limits of these metals. The present experiment demonstrates that liming was an important factor in facilitating the growth of maize in sludge-amended soil.  相似文献   

3.
综述巴基斯坦农田土壤污水灌溉技术   总被引:2,自引:0,他引:2  
Raw sewage is widely used on agricultural soils in urban areas of developing countries to meet water shortages. Although it is a good source of plant nutrients, such sewage also increases the heavy metal load to soils, which may impact the food chain. Management options for sewage contaminated soils includes addition of nontoxic compounds such as lime, calcium sulfate and organic matter, which form insoluble metal complexes, thus reducing metal phytoavailability to plants. In this paper we review the variation in irrigation quality of sewage at different sites and its impact on the quality of soils and vegetables. Although quality of sewage was highly variable at source, yet the effluent from food industries was relatively safe for irrigation. In comparison effluent samples collected from textile, dyeing, calendaring, steel industry, hospitals and clinical laboratories, foundries and tanneries were hazardous with respect to soluble salts, sodium adsorption ratio and heavy metals like zinc, copper, iron, manganese, nickel, cobalt and cadmium. The sewage quality in main drains was better than that at the industry outlet, but was still not safe for irrigation. In general, higher accumulation of metals in fruits and vegetable roots was recorded compared to that in plant leaves. Edible parts of vegetables (fruits and/or leaves) accumulated metals more than the permissible limits despite the soils contained ammonium bicarbonate diethylenetriaminepentaacetic acid extractable metals within a safe range. In either case further scientific investigations are needed to ensure safe management strategies. Cadmium appeared to be the most threatening metal especially in leafy vegetables. It is advisable to avoid leafy vegetables cultivation in sewage irrigated areas everywhere to restrict its entry into food chain.  相似文献   

4.
红壤重金属的复合污染   总被引:7,自引:0,他引:7  
The effects of combined heavy metal pollution of red soil on the growth of wetland rice and the transfer of Pb,Cd,Cu and Zn from soil into plants were sudied by greenhouse pot experiment,The results showed that the plantyields were markedly affected by heavy metals,with the exception of Pb,in soils under the experimental conditions,without taking into consideration all the interactions among the elements.The concentrations of the elemets in plants were mainly affected by the specific element added to the soil.The effect of interactions among the heavy metals was very significant either on plant yields or on the concentration of the elements in plants.The risk assessment of a combined pollution by heavy metals in the soil is discussed preliminarily in terms of the relative pollution equivalent.  相似文献   

5.
The pH effect on the sorption kinetics of heavy metals in soils was studied using a constant flow leaching method.The soil samples were red soil collected from Yingtan,Jiangxi,and yellow-brown soil from Nanjing,Jiansu,The heavy metals tested were zinc and cadmium.Assuming that the experimental data diffed to the following kinetic rate equation:1/c.dx/dt=kx∞-kx,the rate constant k of sorption could be determined from the slope of the straight line by plotting of 1/c,dx/dt vs.x.The results showed that the pH effect on the rate constants of heavy mental sorption in soils was very significant.The values of k decreased with increasing pH.The sorptions were more sensitive to pH in red soil than in yellow-brown soil.  相似文献   

6.
Knowledge about heavy metal release from industrial solid wastes(ISWs) is crucial for better management of their environmental risks. This study was conducted to investigate the effect of organic and inorganic acids, clay minerals, and nanoparticles(NPs) on the release of heavy metals from sugar factory waste, ceramic factory waste, leather factory waste, and stone cutting waste. The influence of the extractants on heavy metal release from these ISWs was in the following descending order: citric acid oxalic acid nitric acid≥ sulfuric acid Ca Cl2. Addition of clay minerals and NPs as adsorbents decreased heavy metal release, which was significantly lower in NP-treated wastes than in the clay mineral-treated wastes. On the other hand, the presence of organic and inorganic acids increased heavy metal adsorption by NPs and clay minerals. These results suggest that NPs can be applied successfully in waste remediation,and organic and inorganic acids play an important role in the removal of heavy metals from the studied adsorbents.  相似文献   

7.
施用碱稳定污泥污水土壤经γ-辐照后土壤溶液中Cu和Zn   总被引:1,自引:0,他引:1  
Soil samples collected from several acid soils in Guangdong, Fujian, Zhejiang and Anhui provinces of the southern China were employed to characterize the chemical species of aluminumions in the soils. The proportion of monomeric inorganic Al to total Al in soil solution was in the range of 19% to 70%, that of monomeric organic Al (Al-OM) to total Al ranged from 7.7% to 69%, and that of the acid-soluble Al to total Al was generally smaller and was lower than 20% in most of the acid soils studied. The Al-OM concentration in soil solution was positively correlated with the content of dissolved organic carbon (DOC) and also affected by the concentration of Al3+. The complexes of aluminum with fluoride (Al-F) were the predominant forms of inorganic Al, and the proportion of Al-F complexes to total inorganic Al increased with pH. Under strongly acid condition, Al3+ was also a major form of inorganic Al, and the proportion of Al3+ to total inorganic Al decreased with increasing pH. The proportions of Al-OH and Al-SO4 complexes to total inorganic Al were small and were not larger than 10% in the most acid soils. The concentration of inorganic Al in solution depended largely on pH and the concentration of total F in soil solution. The concentrat ions of Al-OM, Al3+, Al-F and Al-OH complexes in topsoil were higher than those in subsoil and decreased with the increase in soil depth. The chemical species of aluminumions were influenced by pH. The concentrations of Al-OM, Al3+, Al-F complexes and Al-OH complexes decreased with the increase in pH.  相似文献   

8.
澳大利亚东部地区一些酸性硫酸盐土壤磷的特征   总被引:1,自引:0,他引:1  
C. LIN 《土壤圈》2002,12(3):229-234
Forty-five acid sulfate topsoil samples (depth < 0.5 m) from 15 soil cores were collected from 11 locations along the New South Wales coast, Australia. There was an overall trend for the concentration of the HC1-extractable P to increase along with increasing amounts of organic C and the HCl-extractable trivalent metals in the topsoils of some less-disturbed acid sulfate soils (pH < 4.5). This suggests that inorganic P in these soils probably accumulated via biological cycling and was retained by complexation with trivalent metals or their oxides and hydroxides. While there was no clear correlation between pH and the water-extractable P, the concentration of the water-extractable P tended to increase with increasing amounts of the HCl-extractable P. This disagrees with some established models which suggest that the concentration of solution P in acid soils is independent of total P and decreases with increasing acidity. The high concentration of sulfate present in acid sulfate soils appeared to affect the chemical behavior of Pin these soil systems. Comparison was made between a less disturbed wetland acid sulfate soil and a more intensively disturbed sugarcane acid sulfate soil. The results show that reclamation of wetland acid sulfate soils for sugarcane production caused a significant decrease in the HCl-extractable P in the topsoil layer as a result of the reduced bio-cycling of phosphorus following sugarcane farming. Simulation experiment shows that addition of hydrated lime had no effects on the immobilization of retained P in an acid sulfate soil sample within a pH range 3.54.6. When the pH was raised to above 4.6, soluble P in the soil extracts had a tendency to increase with increasing pH until the 15th extraction (pH 5.13). This, in combination with the poor pH-soluble P relationship observed from the less-disturbed acid sulfate soils, suggests that soluble P was not clearly pH-dependent in acid sulfate soils with pH < 4.5.  相似文献   

9.
北京城乡交错带土壤重金属的空间变异特征   总被引:22,自引:0,他引:22  
  相似文献   

10.
某硫矿重金属分级及土柱淋溶   总被引:4,自引:0,他引:4  
C. LIN  J. LIN 《土壤圈》2003,13(1):75-80
Fractions of various heavy metals in a sulfidic minespoil were investigated.Column leachine experiment was also conducted to simulate “acid mine drainage“(AMD) from the minespoil.The results show that leaching of heavy metals from the minespoil was extremely significant during the initial water flushing.The amounts of heavy metals leached out dramatically reduced after leaching twice.It is worthwhile to note that in this study,Zn,Mn,Fe,As and Ni in the first leachate exceeded the total amount of each corresponding water-extractable(1:5,soil:water)metal contained in the minespoil sample.This appears to suggest that 1:5 water extraction did not allow accurate estimation of water-leachable concentrations of the above heavy metals.This work has implications for the management of sulfidic minespolis.Acid drainage of great environmental concerns is likely to occur only during heavy rainfall events after substantial soluble and readily exchangeable acid and metals are accumulated in the minespoils.The slow-reacting fractions other than water-soulble and readily exchangeable fractions may pose little environmental hazards.This is particularly true for Pb,As and Ni.  相似文献   

11.
Fischer  K.  Bipp  H.-P. 《Water, air, and soil pollution》2002,138(1-4):271-288
Aqueous solutions of the natural chelatingagents D-gluconic acid and D-glucaric acid (D[+]-saccharic acid) were tested for their ability to remove heavy metals (Cd, Cr, Cu,Ni, Pb, Zn) from a soil polluted by long-term application of sewage sludge. Batch equilibrium experiments were performed undervariation of fundamental process parameters, i.e. pH value, sugaracid concentration, batch solution volume, solid:liquid ratioand number of treatment cycles.The extractability of heavy metals was low under near-neutral andslightly basic pH conditions. It increased drastically between pH12.0 and 13.0. Pb and Cu were preferentially extracted metals.Compared with the extraction efficiency of pH adequate puresodium hydroxide solutions, the sugar acids enhanced thesolubilisation of Pb and Cr especially. The metal depletion fromsoil was the highest when applying 20 or 50 g L-1 solutionsof the chelating agents. Under strongly basic conditions solid:liquid ratios of 1:10 or 1:20 were proofed to be advantageous.Except Ni, multi-step extraction improved the metal removalstrongly. This effect was the greatest for Cr extraction. Underoptimised conditions the following metal extraction degrees wereachieved with strongly alkaline D-gluconic acid solutions: Ni 43%%, Cr 60%%, Cd 63%%,Zn 70%%, Pb 80%%, and Cu 84%%.  相似文献   

12.
曹阳  王丹  刘若琪  杨燕  徐小逊 《土壤通报》2021,52(5):1227-1235
采用GLDA作为淋洗剂对工业污水污泥进行淋洗,确定淋洗的最优参数,为治理工业污泥提供参考依据。通过振荡淋洗研究了GLDA浓度(0.5% ~ 20%)、pH(2 ~ 10)、液固比(10∶1 ~ 80∶1)和淋洗时间(0 ~ 24 h)对污泥中重金属去除率的影响,利用动力学方程对实验数据进行拟合。结果表明,降低pH、增加液固比和延长淋洗时间均可提升重金属的淋洗效率,在pH为2,浓度5%,液固比60∶1,淋洗时间480 min时,GLDA对污泥中的重金属淋洗率达到最优,镍(Zn)、镍(Ni)、镉(Cd)和铬(Cr)的去除率分别为91.21%、76.34%、69.56%和65.01%。准二级动力学方程可以较好的拟合GLDA对4种重金属的淋洗过程,说明重金属淋洗过程以化学淋洗为主。综上所述,在进行淋洗参数优化的基础上,GLDA可用于工业污水污泥中重金属的去除。  相似文献   

13.
In a small‐plot trial different doses of sewage sludge (equivalent 82‐330 tons of dry matter per hectare) were incorporated in 0—25 cm depth (1982—1985). The aim of the investigations was to study the fate of the heavy metals Zn, Cd, Cu, Ni, Pb, and Cr, to determine their concentration in different soil fractions using a sequential extraction method and to ascertain their uptake by Zea mays L. plants. Eleven years after the last application the metals supplied with the sludge had moved as far as 50 cm in depth. The concentrations of Zn, Cd, Cu, Ni, and Cr in the saturation extract of the sampled soil layers were closely correlated with the concentrations of dissolved organic carbon (DOC). This result suggests that the heavy metal displacement was partly connected with the DOC movement in the soil. Considerable amounts of Zn and Cd coming from sewage sludge were found in the mobile fractions of the soil. Cu, Ni, and Pb were located especially in organic particles, and Cr was obviously bound by Fe‐oxides. Nine years after the last application the binding species of heavy metals were still different compared with those in the untreated soil. The whole withdrawal of heavy metals by plants yielded <1 % of the applied amounts. In the case of Zn the uptake from the sludge amended soil decreased during the experimental period. No similar tendency was observed for the other elements. In any case their annual variations of uptake exceeded the effect of sludge application.  相似文献   

14.
Abstract

The development of a method using a chelating resin to assess heavy metal mobility in soil and the first results obtained from a pot experiment with sewage sludge additions were studied. The resin was Chelex 100 with the calcium (Ca)‐form of the resin proving to be best suited for the extraction. The efficiency of recovery of the heavy metals from an aqueous solution ranged from 81.2% for cadmium (Cd) to 102% for copper (Cu) within 24 hours. For heavy metal extractions from a soil sample, a 96 hour extraction period was found to be optimum. The extracted heavy metal portion was comparable with the results obtained with an ammonium acetate (NH4AOc) extraction. Total heavy metal contents in the substrate of the pot experiment did not show a significant influence due to the sewage sludge treatments, although considerable amounts of heavy metals were added by the sewage sludge. This effect can be both due to the incomplete recovery of heavy metals by an aqua regia extraction and leaching losses of these elements from the pots. Rape (Raphanus sativus L.) plants did not have any heavy metal contents which might indicate a high availability in soil, with the Cd and Cr contents in the rape biomass being partly lower in the sewage sludge‐treated pots than in the control plants; however, zinc (Zn) uptake slightly increased with increasing sewage sludge treatments. The Chelex 100 extraction procedure was correlated with Cd plant uptake, while the NH4AOc extraction procedure was better related to the Zn uptake by rape plants.  相似文献   

15.
采用化学萃取实验,以湖南郴州柿竹园和湖南衡阳水口山矿区的重金属污染农田土壤为研究对象,采用柠檬酸、草酸、酒石酸作为低分子有机酸萃取剂,在一定的条件下对污染土壤中重金属进行萃取实验,确定各个单因素的适宜条件。结果表明,对于湖南郴州和衡阳两个污染地区土壤运用化学萃取技术萃取重金属来进行土壤修复是实际可行的;柠檬酸、酒石酸、草酸对各种土壤中的重金属都表现出了良好的萃取能力,是高效的土壤重金属萃取剂;单因素的适宜萃取条件为100mmol·L^-1有机酸溶液,固液比1∶5,恒定温度35℃,pH为3,反应时间24h,且萃取率随着电解质浓度的增大而提高;土壤中重金属存在形态与萃取效果有一定的相关性,稳定态(残渣态、硫化物和有机结合态、铁-锰氧化物结合态)金属含量高,表现为较低的萃取率;反之,萃取率高;柠檬酸、草酸、酒石酸3种萃取剂均能有效地降低衡阳污染土壤中的重金属浓度,3种萃取剂的萃取效率依次为酒石酸〉草酸〉柠檬酸。  相似文献   

16.

Purpose

To understand the bioleaching of metals from sludge by Acidithiobacillus thiooxidans, the aims of this study were to evaluate the experimental conditions affecting the efficiency of removal of the metals, including solids concentration, initial pH, sulfur concentration and inoculum level were examined, and following the bioleaching mechanism was proposed.

Materials and methods

A. thiooxidans were isolated from collected sludge samples containing bacteria from Fuzhou Jingshan sewage treatment plant, and identification of bacteria by sequencing the 16?s rDNA gene sequences. Conditions affecting the bioleaching and application were conducted by batch experiments. The analysis of Cr, Cu, Pb, and Zn was carried out using an atomic absorption spectrophotometer, and the pH and oxidation?Creduction potential (ORP) were measured using a pH meter and an ORP meter.

Results and discussion

The results show that a high metal leaching efficiency was achieved at low solid concentrations due to decreases in buffering capacity. In addition, the best conditions of the bioleaching included 2?% (w/v) solid concentration, 5.0 gL?1 sulfur concentration, and 10?% (v/v) inoculum concentration, where the removal efficiencies of Cr, Cu, Pb, and Zn in sewage sludge was 43.6?%, 96.2?%, 41.6?%, and 96.5?%, respectively.

Conclusions

We found that the bioleaching of Zn was governed by direct and indirect mechanisms, while the bioleaching of Cu, Pb, and Cr was mainly dominated by the bioleaching indirect mechanism. After processing with the proposed techniques, the heavy metals in the sewage sludge did meet the requirement of the national standards.  相似文献   

17.
采用塑料温棚内垄式堆积污泥培养蚯蚓方式,研究了蚯蚓处理对污泥重金属的影响。结果表明,污泥经蚯蚓处理后,理化性质发生了显著的变化,污泥的pH值、有机质、总氮和总磷都有不同程度的降低;蚯蚓能吸收富集污泥中的重金属,其中对重金属Cd有较强的富集能力;蚯蚓处理使污泥中重金属含量均出现不同程度的下降,重金属Cr、Zn、Pb、Cd、Cu、Ni分别减少27.98%、31.46%、32.81%、13.85%、23.86%和22.92%。利用盆栽试验,研究了污泥施用于土壤后生菜体内重金属积累的情况,结果表明,生菜体内重金属Zn、Cu、Pb和Ni的含量为污泥处理高于蚓粪处理;Cr和Cd则分别为差异不显著和略有降低。  相似文献   

18.
The influence of manure and composts on the leaching of heavy metals from soil was evaluated in a model lysimeter experiment under controlled conditions. Soil samples were collected from experimental fields, from 0- to 90-cm layers retaining the layout of the soil profile layers, after the second crop rotation cycle with the following plant species: potatoes, spring barley, winter rapeseed, and winter wheat. During the field experiment, 20 t DM/ha of manure, municipal sewage sludge composted with straw (SSCS), composted sewage sludge (SSC), dried granular sewage sludge (DGSS), “Dano” compost made from non-segregated municipal waste (CMMW), and compost made from municipal green waste (CUGW) was applied, i.e., 10 t DM/ha per crop rotation cycle. The concentrations (μg/dm3) of heavy metals in the leachate were as follows: Cd (3.6–11.5)?<?Mn (4.8–15.4)?<?Cu (13.4–35.5)?<?Zn (27.5–48.0)?<?Cr (36.7–96.5)?<?Ni (24.4–165.8)?<?Pb (113.8–187.7). Soil fertilization with organic waste materials did not contaminate the percolating water with manganese or zinc, whereas the concentrations of the other metals increased to the levels characteristic of unsatisfactory water quality and poor water quality classes. The copper and nickel content of percolating water depended on the concentration of those metals introduced into the soil with organic waste materials. The concentrations of Cd in the leachate increased, whereas the concentrations of Cu and Ni decreased with increasing organic C content of organic fertilizers. The widening of the C/N ratio contributed to Mn leaching. The concentrations of Pb, Cr, and Mn in the percolating water were positively correlated with the organic C content of soil.  相似文献   

19.
采用BCR提取法对以污泥和花生壳为原料制备的活性炭进行重金属形态分析,利用原子吸收法测定污泥热解前后Cd、Cr、Cu、Zn、Ni、Pb的不同形态含量。结果表明,污泥中Zn的含量最高,Zn和Cu的含量超过了污泥农用标准。热解可使污泥中的可溶解态和可还原态重金属转化为性质稳定的残渣态重金属,在此基础上,利用重金属潜在生态风险指数法(IR)对污泥活性炭的重金属潜在生态风险进行评价,结果得出花生壳添加量为20%,热解温度为600℃条件下,制备出来的活性炭风险最小。同时证实Cd的潜在生态风险系数较大,在利用时应引起足够的重视。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号