首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
油菜种子发育是产量和品质形成的关键发育阶段,包含了复杂的发育过程和调控网络,有效地解析种子发育的转录调控机制具有重要的意义。以甘蓝型春油菜品种青杂5号为研究材料,利用RNA-seq技术对种子发育的后期(30-DAF,40-DAF)2个发育时间进行转录组测序,筛选差异基因,并利用GO数据库和KEGG数据库注释差异基因功能和可能参与的调控途径。结果表明,从油菜种子灌浆后期的2个时间点的转录组中分别检测到70 850和65 193个表达基因,筛选得到2 654个差异表达基因,其中1 941个基因下调表达,713个基因上调表达,29个基因表达差异倍数|log2Ratio|≥10。GO基因功能分析显示,生物学途径中富集最显著的条目是染色质组装相关的等生物学过程,分子功能方面富集最显著的条目依次是蛋白质代谢、营养库活性等功能类别,而在细胞组件方面富集最显著的条目是染色体相关的等细胞组件。Pathway显著性富集分析显示注释基因最多的途径是次生代谢途径,其次是淀粉、蔗糖代谢途径、苯丙素生物合成途径中的、碳代谢途径和氨基酸生物合成途径。甘蓝型油菜种子发育后期的转录组分析表明,种子发育30-DAF时期次生代谢物、脂质代谢等表达活跃,40-DAF时期逐渐转变为蛋白质、氨基酸生物合成、光合碳代谢、碳代谢等表达活跃,提示油菜种子灌浆后期仍处于复杂的物质与能量代谢调控过程。  相似文献   

2.
烟草具有超富集镉的能力,严重降低烟叶品质,影响其经济价值。为了阐释烟草响应镉胁迫的分子机制,本研究采集了镉浓度为0和500μmol L-1培养条件下的烟草叶片进行转录组测序。共获得76.94 Gb有效数据(Clean data),Q30碱基百分比均达到95.43%以上;在镉胁迫的烟草叶片中,共筛选出7735个差异表达基因,其中4833个基因表达上调,2902个基因表达下调,并通过qRT-PCR分析验证了转录组数据的可靠性。对差异转录本进行GO和KEGG富集分析,GO注释表明差异基因涉及代谢过程、应激反应、细胞结构体、催化活性和转录调节活性等;KEGG富集分析表明上调差异基因主要富集在氨基酸的生物合成、碳代谢、氧化磷酸化和柠檬酸循环等通路,下调差异基因则主要富集在光合作用、次生代谢产物的生物合成、代谢途径和植物激素信号转导途径。进一步分析植物激素信号转导通路发现,共有8条植物激素途径以不同的表达方式参与烟草对镉胁迫的响应。激素喷施烟草的实验结果表明,叶片通过调控赤霉素、油菜素内酯和茉莉酸途径以应对镉胁迫;拟南芥激素信号缺失突变体验证实验表明赤霉素、油菜素内酯、茉莉酸...  相似文献   

3.
为深入研究金花葵花朵开花前后基因和代谢物的变化,利用转录组学和代谢组学技术相结合的方法对金花葵花蕾和花朵进行检测。结果显示,通过转录组分析鉴定了206 636个Unigenes,筛选出42 618个差异表达Unigenes,其中包括63个差异表达转录因子家族,24个转录调节因子家族。GO分析结果显示,差异表达基因主要富集于囊泡介导的逆行运输等生物学过程。KOG功能注释显示,差异表达基因功能以通用功能预测居多,其次是信号转导机制、翻译后修饰蛋白周转以及碳水化合物的转运和代谢。差异表达基因KEGG富集分析表明,差异基因主要富集于代谢、植物激素和信号转导、淀粉和蔗糖代谢等代谢通路。通过代谢组学检测,筛选到差异显著代谢物135个,主要包括脂类、氨基酸及衍生物和黄酮类等,KEGG富集分析表明,差异代谢物主要富集于甘油磷脂代谢、糖基磷脂酰肌醇(GPI)-锚定生物合成和次生代谢产物的生物合成-未分类等过程,其中,缬氨酸,亮氨酸和异亮氨酸的降解代谢通路同时出现在了基因和代谢物KEGG代谢通路富集Top 20中。  相似文献   

4.
《分子植物育种》2021,19(12):3868-3877
为探究怀玉山高山马铃薯平原生境变种的机制,本研究以怀玉山高山马铃薯(麻籽洋芋)正常种(CK组)及其变种(BZ组)的试管苗为试验材料进行转录组分析。结果表明,CK组和BZ组共产生差异表达基因6 917个。GO富集分析显示,差异基因主要注释到光合作用光系统Ⅰ光捕获、光合作用光捕获、蛋白质发色团连锁、酰胺生物合成过程、肽生物合成过程、光系统Ⅰ、细胞质小核糖体亚单位、光系统、大核糖体亚单位、核糖体小亚基、色素结合、叶绿素结合、结构分子活性、核糖体的结构组成、作用于糖基键的水解酶活性等功能。KEGG富集分析显示,差异基因主要注释到光合作用-天线蛋白、核糖体、糖酵解、类固醇生物合成、生物素代谢、果糖和甘露糖代谢、甘氨酸、丝氨酸和苏氨酸代谢、苯丙酸生物合成、氨基糖和核苷酸糖代谢、光合作用、谷胱甘肽代谢等代谢途径。RT-qPCR检测了10个差异基因在怀玉山高山马铃薯正常种及其变种试管苗的表达量,结果均与RNA-seq一致。本研究结果将为进行怀玉山高山马铃薯平原生境变种过程中基因表达分析提供参考。  相似文献   

5.
柱头外露作为提高作物异交率、制种纯度和降低制种成本的优良性状,在杂交制种中得到了广泛的利用。绿豆是一种闭花授粉的作物,被报道的柱头外露突变体很少。通过对冀绿7号的化学诱变,发现了1个柱头外露突变体se2,为明确该突变体柱头外露的分子机制,对该突变体及其野生型冀绿7号即将开放的花蕾进行了转录组测序(RNA-seq)分析。根据差异倍数|log2(Fold Change)|≥1,P≤0.05的标准筛选,在se2中共得到572个差异表达基因(differentially expressed genes, DEGs),其中262个DEGs上调, 310个DEGs下调。在基因本体(gene ontology, GO)数据库中,差异表达基因显著富集到代谢和生物合成等生物过程,定位在质外体和细胞壁、细胞膜等区域,与结合、氧化还原等分子功能有关。在京都基因与基因组百科全书(kyoto encyclopedia of genes and genome, KEGG)数据库中,差异表达基因显著富集在植物激素信号传导、次生代谢物生物合成等通路。功能注释发现许多有关细胞壁合成和代谢、细胞分裂...  相似文献   

6.
利用二代高通量测序技术对低温胁迫处理的冰菜进行测序,构建冰菜转录组数据库.分别得到24.13 Gb有效数据和24045条Unigene的注释,得到DEGs 1902个(T0 vs T1)和2134个(T0 vs T2).T0 vs T1组和T0 vs T2组分别有40和41个功能小类化归GO数据库;分别有20和24个功能分类注释到KOG数据库;155和272条基因注释到KEGG数据库,并分别富集在74和105条代谢通路.T0 vs T1组DEGs主要注释到植物信号转导等4个代谢通路;T0 vs T2组DEGs注释到苯丙醇类生物合成等11个代谢通路,其中正向影响代谢途径:丙酮醇类生物合成、嘌呤代谢、谷胱甘肽代谢、脂肪酸代谢、类黄酮代谢、氨基酸的生物合成代谢途径等;负向影响代谢途径:植物-病原互作、植物激素信号转导、淀粉和蔗糖代谢等途径.通过对淀粉和蔗糖代谢途径关键基因分析表明:低温胁迫1 h (T1),海藻糖6-磷酸合酶、海藻糖-6-磷酸酯酶、β-淀粉酶、葡萄糖-1-磷酸腺苷酰转移酶、糖原磷酸化酶等5个关键基因表现为上调表达,未见下调表达基因;低温胁迫36 h (T2),海藻糖-6-磷酸合酶、己糖激酶、β-淀粉酶等3个关键基因上调表达,葡萄糖内酯-1,3-β-葡萄糖苷酶基因下调表达.选取淀粉和蔗糖代谢途径中8个DEGs,经RT-qPCR分析,8个DEGs的相对表达量与转录组表达水平相符.  相似文献   

7.
《分子植物育种》2021,19(19):6376-6385
为了从转录组水平分析烯效唑缓解干旱胁迫的分子机制,以大麻品种‘汉麻2号’为材料,试验共设清水浸种的正常供水(CK),清水浸种的干旱处理(D),烯效唑浸种的干旱处理(SD) 3个处理,干旱胁迫处理4 d,利用RNA-Seq技术对叶片进行转录组测序分析并探讨半乳糖代谢、植物激素信号转导和氮代谢通路及相关基因。结果表明,CK vs D与D vs SD比较发现,全部差异表达基因有2 423个,其中不同处理共有差异表达基因1 109个。通过GO富集分析表明,两个比较中有1 402和1 144个差异表达基因在生物学过程、细胞组分和分子功能均有分布,且分类结果相似。差异基因GO主要富集在蛋白质折叠、氧化还原过程、胞浆、叶绿体包膜、水解酶活性、氧化还原酶活性等功能。KEGG富集结果表明,差异基因KEGG主要富集在半乳糖代谢、苯丙酸生物合成、植物激素信号转导、氮代谢、丙氨酸、天冬氨酸和谷氨酸代谢、氨基酸的生物合成等代谢途径。本研究主要分析了半乳糖代谢、植物激素信号转导和氮代谢途径,其中半乳糖代谢中UDP糖焦磷酸化酶基因,UDP葡萄糖4-差向异构酶基因,棉子糖合酶基因,水苏糖合酶基因,β-呋喃果糖苷酶基因等,植物激素信号转导中生长素响应蛋白,脱落酸受体,蛋白磷酸酶,脱落酸不敏感蛋白等,氮代谢中高亲和性硝酸盐转运蛋白,谷氨酸脱氢酶基因,谷氨酰胺合成酶基因和碳酸酐酶基因在烯效唑处理下表达水平发生变化。本研究为深入了解烯效唑处理对大麻响应干旱胁迫的分子调控机制、关键基因克隆以及功能验证等提供研究基础和理论依据。  相似文献   

8.
《分子植物育种》2021,19(18):6020-6034
为揭示茶树被茶饼病危害诱导的防御反应机制,本研究选择抗病和感病茶树品种为材料,通过转录组测序和数字表达谱分析茶树叶片被茶饼病危害前后的基因表达差异。结果显示,共筛选出差异表达基因974条,其中共有的为122条,抗病品种中特异364条,感病品种中特异的为488条。对差异表达基因进行分析发现,茶饼病危害主要影响了茶树体内代谢途径、内质网蛋白质加工、次生代谢产物的生物合成、植物病原相互作用、植物激素信号转导途径、淀粉与蔗糖的代谢、苯丙醇生物合成等通路中关键基因的表达水平,这些差异基因包括抗病蛋白基因(R protein)、水解酶基因、细胞壁加固基因、转录因子基因、植物激素及其信号转导基因、次生代谢和氧化酶类、转运蛋白等。利用RT-qPCR对筛选的6个基因进行验证,其表达模式与测序结果一致。本研究初步明确了茶饼病侵染对茶树基因转录水平的影响,为揭示茶树抗病的分子机制奠定了基础。  相似文献   

9.
侧根是水稻根系的重要组成部分,具有重要的意义。本研究通过Illumina Hiseq2000测序平台,对无侧根突变体RM109与其野生型对照根系进行转录组测序,进而比较分析差异表达基因,初步揭示影响水稻侧根发育的相关基因。结果表明无侧根突变体与野生型对照根系相比出现了2 327个差异基因,其中上调表达的有1 131个,下调表达的有1 196个,有36个基因表达差异倍数高达100倍以上(|log2Ratio|≥6.7)。通过Gene ontology (GO)数据库、KEGG pathway数据库比对分析注释差异表达基因的功能和参与的分子调控途径。GO分析结果表明被注释的差异基因划分成50个功能类别,KEGG分析共有352个显著差异基因可以详细注释到149条分类代谢途径中,共有36个表达差异基因富集于植物激素信号转导途径,36个差异表达基因中有2个是与植物根系生长发育相关的Aux/IAA基因,6个植物生长素响应SAUR基因。本研究为进一步为水稻侧根发育分子机理研究提供基础,为水稻根系育种提供理论参考。  相似文献   

10.
植物激素在调节和控制植物生长发育、代谢过程、应对逆境等方面具有重要的作用。为明确水稻苗期植物激素对低温的应答机制,本研究以野生型粳稻品种‘中花11’为研究材料,经低温处理后,利用RNA-Seq技术分析植物激素调控水稻幼苗对低温胁迫的应答模式。通过转录组测序,共获得9.9×10~7条干净的序列,筛选出2 044个差异表达基因(DEGs)。首先,GO富集分析结果表明差异表达基因主要富集在生物学过程、细胞组分和分子功能三个方面。进一步的KEGG通路分析表明,差异表达基因主要富集在代谢途径、次生代谢生物合成、植物激素信号转导等途径。其中植物激素信号转导中低温应答的差异表达基因为31个,分别为25个上调表达基因和6个下调表达基因;主要参与了茉莉酸和脱落酸信号途径。这些研究结果对水稻苗期植物激素的低温应答机制完善和栽培调控具有重要的参考价值。  相似文献   

11.
杜仲(Eucommia ulmoides)的果实是提取杜仲胶和杜仲籽油的重要原材料,在工业、医疗、食品等领域开发前景广阔。为了揭示雌蕊原基发育相关基因的表达情况,本研究以杜仲果用良种‘华仲6号’(Huazhong No.6)为材料,利用lllumina Hiseq X-10高通量测序平台,分别对花序原基分化期和雌蕊原基分化期的花芽进行转录组测序,通过生物信息学对2个发育时期的雌花芽转录组进行比较分析,筛选出与杜仲雌蕊原基发育相关的差异基因。结果显示,转录组测序共获得68.11 Gb数据,各样品的Clean reads与杜仲基因组进行序列比对,比对效率为91.59%~92.05%,同时2个发育时期共筛选出485个差异表达基因,其中219个差异基因在雌蕊原基分化期表达上调,266个表达下调。差异基因GO富集结果表明,花的发育、光周期现象、激素生物合成以及蛋白结合转录因子活性等相关的生物途径被富集。KEGG富集结果表明淀粉和蔗糖代谢、碳代谢、昼夜节律和植物激素信号转导等代谢通路被富集。结果表明光周期途径是诱导杜仲成花的重要途径,且雌蕊原基发育受碳水化合物、植物激素和其他代谢物质调控。本研究为杜仲花器官发育调控基因的挖掘提供了基础数据,也为果用杜仲的分子育种提供了参考。  相似文献   

12.
分析干旱胁迫下枇杷叶片的转录组,挖掘功能基因并对其差异表达基因进行筛选和分析,为枇杷抗旱提供理论依据。利用新一代高通量测序技术测序,对测序结果进行de novo拼接、功能注释和ORF预测,将差异表达基因在COG、GO和KEGG数据库中进行比对注释。测序结果表明,获得转录本共88 530个,平均长度为740.64 bp,ORF41 748条。COG、GO和KEGG数据库将转录本分别划分为24,54个功能类别及291条代谢通路中。25 197个差异表达的基因在30条代谢通路中显著富集,与酶活性、激素合成代谢和信号转导等相关的差异基因积极响应枇杷干旱,其中双萜类、油菜素类固醇和类胡萝卜素3条生物合成途径中的差异基因呈现出较为一致的表达。采用实时荧光定量(qRT-RCR)对选取的差异基因进行验证,其中过氧化物酶、蛋白激酶byr2、丝氨酸苏氨酸蛋白激酶、脱落酸8'-羟化酶、吲哚-3-乙酰乙酸合酶相关基因上调表达,细胞色素P450 734A1基因下调表达。为枇杷提供了较为全面的基因信息和代谢途径数据,为干旱胁迫下枇杷分子调控机制的深入研究奠定了基础。  相似文献   

13.
旨在获得黄精转录组数据库并挖掘参与其种子发育和休眠解除相关基因,以休眠解除前后的黄精种胚为试材,利用新一代高通量测序手段对供试样品进行转录组测序,并进行系统的生物信息学分析。黄精种子休眠解除前后样品中共得到79716个差异表达基因,上调的表达基因有60074个,下调的表达基因有19642个。休眠解除前后的黄精种胚中共有130284个差异表达基因被GO功能注释到生物进程、分子功能和细胞组分3个大类56个亚类,注释的差异表达基因与代谢过程、生物调控、细胞组分合成和酶催化活性等密切相关。KEGG代谢通路结果表明,共有65038个差异表达基因,涉及138个代谢通路,主要参与碳代谢、次生代谢产物的生物合成和多糖的代谢。基于KEGG数据库中注释结果,共发现15条与黄精种胚休眠解除相关的代谢通路。黄精种子发育与休眠解除过程,大量的种胚形态建成、多糖分解及蛋白质合成差异基因参与表达,并涉及到多个代谢途径的相互作用,构成复杂的休眠解除调控网络。  相似文献   

14.
蝴蝶兰花色丰富且极具变化,是研究花着色机制的理想材料。本研究利用RNA Sequencing(RNA-Seq)技术比较三种不同色系蝴蝶兰花器官转录组,鉴定蝴蝶兰花色苷合成的相关基因,从转录组水平揭示蝴蝶兰花色苷生物合成的分子调控机制。选取白花蝴蝶兰(PAPW)、红花蝴蝶兰(PAPR)和黄花蝴蝶兰(PAPY)为试验材料,对其花苞及盛开花朵分别釆样,分别提取三个样品的总RNA,利用Illumina Hiseq 2 000进行测序分析,过滤处理后分别得到总Clean reads片段为60 031 912、57 685 822和55 765 402个,GC含量分别为47.78%、47.36%和49.48%,平均长度约为575 bp,N50长度为940 bp,对获得的All-unigenes进行功能注释,注释到Swiss-Prot、Nt、KO、Nr、GO和KOG数据库的Unigenes分别是22 321、19 199、8 671、28 952、20 152和10 380个;PAPR和PAPW相比差异基因共有642个,上调基因有354个,下调基因有288个;PAPY和PAPW相比差异基因共有2 459个,上调基因有132个,下调基因2 327个;KEGG代谢分析表明,2个对比组中的差异基因富集在不同代谢通路中。PAPR和PAPW差异基因主要富集在类黄酮生物合成,苯丙氨酸代谢和钙信号通路等代谢通路,其中类黄酮生物合成中差异基因为8个(7个上调,1个下调)。PAPY和PAPW差异表达基因主要富集在DNA复制,烷、哌啶和吡啶生物碱和细胞凋亡等代谢通路,其中,参与到淀粉与蔗糖代谢中的差异基因最多,有34条(1个上调,33个下调)。这些信息为蝴蝶兰不同花色苷形成相关关键基因的研究提供了重要依据。  相似文献   

15.
为了解中波紫外线(UV-B)对糯玉米种子活力影响的分子机理,设置0 min(对照)、30 min、1 h、2 h、4 h和8 h共6个不同时长的UV-B辐照对糯玉米自交系N51种子进行处理,同时进行相关活力指标和转录组学分析。结果表明,糯玉米自交系N51各处理与对照及各处理间差异均不显著。在0 min、30 min、1 h、2 h、4 h、8 h范围内,发芽势、发芽指数和活力指数均呈先上升后下降的趋势,且在1 h处理下达到最高,综合各个活力指标表明,UV-B辐照处理1 h促进玉米种子萌发效果最显著。依据0 min、1 h、2 h等3个时长处理下,糯玉米种子活力指标呈先升后降的趋势,转录组测序分析共筛选出先上调再下调的差异表达基因5个,先下调后上调的差异表达基因869个。GO注释分类表明,UV-B处理主要通过影响类囊体、光合系统光合作用、光合膜、光合作用-天线蛋白、代谢途径、氮代谢途径等影响糯玉米自交系N51种子萌发;KEGG通路富集包括苯丙素类生物合成、类黄酮生物合成、淀粉和蔗糖代谢等途径。  相似文献   

16.
为了明确突变体颖壳蜡质含量显著变化的分子机制,本研究对源自济麦22颖壳蜡质缺失突变体glossy1与野生型进行了转录组分析。结果表明,在glossy1突变体中,共筛选到12,230个差异表达基因,其中5811个基因在突变体中上调表达,6419个下调表达。GO(gene ontology)功能富集分析发现,差异基因主要富集在蜡质合成和转运途径,具体分布在酰基转移酶活性、脂质结合和水解酶活性等条目,由此推测这些途径与小麦穗部蜡质缺失性状是紧密相关的。我们还利用RT-qPCR检测了参与蜡质代谢途径部分基因的表达,结果与转录组结果是一致的。本研究为今后探究小麦蜡质代谢的分子机制和基因调控网络提供了数据支持,同时也为抗逆小麦育种奠定了理论基础。  相似文献   

17.
马铃薯块茎受到创伤后诱发的木栓化,对块茎的愈伤和保持良好品质等方面具有重要作用。为探究马铃薯块茎创伤木栓化过程中的分子机制,本研究以‘D47’为实验材料,在马铃薯块茎创伤后0、27、54 h分别取样进行转录组测序及分析。结果表明,创伤27 h后诱导的DEGs有8 184个,其中显著上调4 829个,显著下调3 355个;与27 h相比,54 h有3 385个DEGs,其中显著上调2 259个,显著下调1 126个。GO富集分析表明,差异基因主要集中在氧化还原酶活性、氧化还原过程、生物过程、代谢过程和催化活性。KEGG富集分析表明差异表达基因主要富集在苯丙烷生物合成、苯丙氨酸代谢、谷胱甘肽代谢、植物激素信号转导、脂肪酸代谢途径。实时荧光定量PCR验证结果表明,6个DEGs的差异表达结果与转录组分析的结果基本一致,证明转录组数据的可靠性。  相似文献   

18.
朱砂根是紫金牛科中药植物,主要活性成分为齐墩果烷型三萜类化合物朱砂根皂苷。为探索朱砂根三萜皂苷生物合成的分子基础,采用Illunima HiseqTM 4000对无菌水、2 mmol/L SA处理的3年生朱砂根植株进行转录组测序,基于Blast完成Unigene分类、功能注释、代谢通路分析、蛋白功能注释、差异表达基因分析、代谢途径关键基因挖掘等。共获得41.63 Gb数据,拼接组装获得102 491条Unigenes,平均长度831 bp,注释率50.21%。筛选出3 417个SA应答差异表达基因,其中2 725个基因上调,692个基因下调。差异表达基因显著富集于次生代谢物生物合成、代谢途径、氨基糖和核苷酸糖代谢、糖酵解/糖异生、碳代谢等通路。与朱砂根三萜皂苷相关的代谢通路,包括萜类骨架生物合成(ko00900)和倍半萜与三萜生物合成(ko00909),共筛选出8个关键酶、11条差异表达Unigenes。SA处理后萜类骨架生物合成MVA途径HMGR、HMGS、MVK、GGPS、SS、SQE基因差异表达显著,MEP途径DXS、DXR、MCT、CMK、MDS、HDR基因差异表达不显著。催化...  相似文献   

19.
杨慧菊  郭华春 《作物学报》2017,43(3):454-463
以马铃薯品种合作88为材料,利用数字基因表达谱(DGE)技术,对–2℃低温胁迫处理后的马铃薯叶片c DNA文库进行差异基因表达谱分析。结果表明,有28 505个基因受低温胁迫诱导差异表达,其中上调表达基因13 703个,下调表达基因14 802个。GO功能显著性富集分析表明,DEGs主要涉及信号生物代谢过程、氧化还原过程、能量代谢、次生代谢过程以及催化活性。KEGG富集分析表明,上调表达基因主要富集于苯丙烷、光合作用天线蛋白、类胡萝卜素的生物合成、苯丙氨酸代谢及淀粉与蔗糖代谢途径,而下调表达基因主要富集于植物激素信号转导途径。利用实时荧光定量PCR(q RT-PCR)验证4个DEGs在低温胁迫条件下的差异表达,其结果与DGE分析结果基本一致,证实了DGE测序结果的可靠性。  相似文献   

20.
为探讨烟草与黑胫病菌亲和互作在转录水平的分子机制,本研究利用Solexa高通量测序技术分析感病品种红大接菌前0 h和接菌后12 h、24 h、48 h和72 h茎部组织的基因表达谱。将5个时间点样品的Unigene表达量依次进行两两相比,4个时间点分别鉴定出11 434、12 190、5 128、7 428个差异表达基因。GO功能分析表明,已注释的差异表达基因显著富集到细胞组分中的细胞壁、胞外区域和质膜上,分子功能的催化活性、激酶活性、核酸结合转录因子活性和信号转导活性,并主要参与响应刺激、响应胁迫、次级代谢、信号转导等生物学过程。Pathway分析显示,差异表达基因显著富集到多条次生代谢产物生物合成途径和碳水化合物代谢途径,以及与抗病相关的植物与病原菌互作、植物激素信号转导等途径。14类共计36个已知功能差异基因参与植物与病原菌互作Pathway,多数属于PTI途径调控基因,且基因表达量在黑胫病菌侵染中期(48 h)达到最高;仅有4类ETI途径调控基因差异表达,其中抗病负调控因子RIN4在黑胫病侵染前、中期(24 h,48 h)上调表达,信号组分HSP90接菌后24 h下调表达。由此可以推测,受黑胫病菌侵染后,红大品种中PTI途径调控基因能有效响应黑胫病菌胁迫反应,从而提高对黑胫病菌的抵抗能力,而ETI途径调控基因不能有效响应黑胫病菌胁迫反应。本研究初步揭示了烟草黑胫病感病品种在转录水平上的表达差异,为培育优质抗病新品种提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号