首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Multiple forms of the gonadotropin-releasing hormone (GnRH) exist in teleost fish. A salmonid fish, masu salmon Oncorhynchus masou has salmon GnRH (sGnRH) and chicken GnRH-II (cGnRH-II). sGnRH neurons were scattered from the olfactory nerve through the ventral telencephalon (VT) and the preoptic area (POA). sGnRH but not cGnRH-II was detected in the pituitary. sGnRH mRNA levels in the VT and the POA increased during gonadal maturation, suggesting that sGnRH neurons in these areas are involved in gonadal maturation. sGnRH neurons were first detected in a cluster near the olfactory epithelium 40 days after fertilization. sGnRH neurons were not detected in the brain by the olfactory epithelia lesion, suggesting that sGnRH neurons are derived from the olfactory epithelium. A pleuronectiform fish, barfin flounder Verasper moseri has sGnRH, cGnRH-II and seabream GnRH (sbGnRH). sGnRH and cGnRH-II-immunoreactive fibers were observed throughout the brain, but not in the pituitary. sbGnRH neurons were located in the POA and sent fibers to the pituitary, indicating that sbGnRH is involved in GTH secretion. Judging from the location of neuronal somata and their projections, it is indicated that three GnRH systems exist in the barfin flounder; the TN-, the MT- and the POA-GnRH system. However, in masu salmon, clear anatomical identification of the TN- and the POA-GnRH system is difficult, because the GnRH neurons located in the ventral forebrain are consecutive and the GnRH form produced in these neurons is the same (sGnRH). Thus, it is suggested in masu salmon that sGnRH neurons are derived from the olfactory epithelium, migrate into the brain and play different roles according to the location in the brain.  相似文献   

2.
Gonadotropin-releasing hormone and gonadotropin in goldfish and masu salmon   总被引:1,自引:0,他引:1  
Reproductive activities in vertebrates are regulated by an endocrine system, consisting of the brain-pituitary-gonad axis. In teleosts, gonadotropin-releasing hormone (GnRH) in the brain stimulates gonadotropin (GTH) release in the pituitary gland, but because of lack of the portal vessel, it is not known when and how much GnRH is released for the regulation of GTH release. There are multiple molecular types of GnRH in teleosts and several distinct populations of GnRH neurons in the brain. However, we do not know which types and populations of GnRH neurons regulate reproductive activities. Here we summarize our recent studies on GnRH and GTH in masu salmon Oncorhynchus masou and goldfish Carassius auratus. Immunocytochemistry showed the location and molecular types of GnRH neurons. Salmon (sGnRH) and chicken-II GnRH (cGnRH-II) neuronal fibers were widely distributed in the brain of both masu salmon and goldfish. Only sGnRH fibers were observed in the pituitary of masu salmon, whereas both sGnRH and cGnRH-II fibers were observed in the goldfish pituitary, indicating that species specific GnRH profiles are involved in the regulation of pituitary function in teleosts. A series of experiments in masu salmon and goldfish suggest that among GnRH neuron populations GnRH neurons in the ventral telencephalon and the hypothalamus regulate GTH release, and that GnRH of the terminal nerve origin is not essential to gonadal maturation and ovulation. The biological function of other GnRH neurons remains unkown. Two GTHs appear to be characteristic of teleost; however, regulation of reproduction by these GTHs is a question that remains to be elucidated. In salmonid species, it is proposed that GTH I stimulates early gonadal development, whereas GTH II acts in later stages. When GTH expression was examined in goldfish, both GTH I and II mRNA levels in the pituitary gland showed increases in accordance with gonadal development, unlike the sequential expression of GTH subunits in salmonids. The expression of these GTH subunit mRNAs were affected by water temperature, starvation, and steroid hormones in goldfish, but in what manner these two GTHs regulate gonadal development remains to be clarified.  相似文献   

3.
The roles of salmon GnRH (sGnRH) and gonadal steroid hormones in regulation of LH synthesis and release were examined in primary pituitary cell cultures of masu salmon (Oncorhynchus masou). Pituitaries were taken from fish at four reproductive stages: in March (initiation of sexual maturation); May (early maturation); July (pre-spawning); and September (spawning period). Amounts of LHβ subunit mRNA in the pituitary cells were determined by real-time PCR, and LH levels in the medium were determined by RIA. sGnRH and gonadal steroids including estradiol-17β (E2), testosterone (T) and 11-ketotestosterone (11-KT) were added to the cultures to examine their direct effects on LH response. sGnRH had no significant effect on LHβ mRNA levels at any stages, although a stimulatory trend was noted in March. In contrast, E2 and T considerably increased LHβ subunit mRNA levels in March and May during initial stages of maturation, and the effects were less pronounced in July and September. On the other hand, sGnRH stimulated LH release at all stages in the males and the effects were most prominent in July and September. E2 and T also stimulated LH release in July and September, but their effects were weaker than that of sGnRH. The present results indicate that sGnRH and gonadal steroids directly regulate LH synthesis and release in masu salmon pituitary cells: sGnRH mainly stimulates LH release in the late stage of sexual maturation; whereas, E2 and T are effective in stimulating LH synthesis at earlier stages of maturation.  相似文献   

4.
Distinct expression of GnRH genes in the red seabream brain   总被引:1,自引:0,他引:1  
This paper reports the molecular cloning of a cDNA encoding the precursor of seabream gonadotropin-releasing hormone (prepro-sbGnRH) and the localization of salmon GnRH (sGnRH) and seabream GnRH (sbGnRH) expressing neurons in the brain of the red seabream (Pagrus major). The cloned prepro-sbGnRH cDNA has a 285 bps open reading frame encoding a 23 amino acid signal peptide, a 10 amino acid sbGnRH, the cleavage site (Gly-Lys-Arg), and a 59 amino acid GnRH-associated peptide. The expression of sGnRH and sbGnRH peptides, and prepro-sGnRH and prepro-sbGnRH mRNA were studied using immunocytochemistry and non-radioactive in situ hybridization, respectively. We found cell bodies that reacted positively with both the sGnRH cRNA probe and anti-sGnRH serum, but not with the sbGnRH cRNA probe or anti-sbGnRH serum in the ganglion of the terminal nerve. Cell bodies that reacted positively with the sbGnRH cRNA probe, anti-sbGnRH serum, and anti-sGnRH serum, but negatively with the sGnRH cRNA probe were found in the preoptic area (POA). Immunocytochemistry showed that a distinct bundle of axons arises in the POA which projected to the pituitary gland. These results suggest that sbGnRH is the most relevant hypophysiotropic form of GnRH.  相似文献   

5.
Levels of two types of gonadotropin-releasing hormone (salmon GnRH and chicken GnRH-II) in the brain and pituitary, and content of gonadotropin (GTHIβ and IIβ) in the pituitary were measured in male masu salmon from hatching to gonadal maturation for three years in order to clarify the involvement of GnRHs in precocious maturation. Underyearling precocious males were distinguishable in summer of year 1 and were marked by an increased GSI. Spermiation was observed among these individuals thereafter every autumn. Pituitary GTHIβ content in both precocious and immature males, and GTHIIβ content in precocious males showed seasonal fluctuations — high in autumn and low in winter. Pituitary GTHIIβ content was low in immature males. Pituitary sGnRH content in precocious males increased from spring to autumn during the three-year period. sGnRH concentrations in discrete brain areas showed seasonal changes — high during autumn to winter and low in summer. Concentrations in the olfactory bulbs and hypothalamus increased significantly in association with testicular maturation during year 3. sGnRH concentrations in the hypothalamus were significantly higher in precocious males than in immature males; this was possibly due to positive feedback of steroid hormones. cGnRH-II was undetectable in the pituitary and no distinct changes were observed in its concentration in the brain in relation to maturation. The phenomenon of underyearling precocious maturation is considered to be triggered before the onset of early summer. It is suggested that males which mature precociously are larger in size and contain much sGnRH in the pituitary before the outward signs of precocity appear; sGnRH may stimulate GTH II synthesis and induce precocious maturation.  相似文献   

6.
Levels of two moleculer types of gonadotropin-releasing hormone (GnRH), salmon GnRH (sGnRH) and chicken GnRH–II (cGnRH–II) in the various brain regions and pituitary gland of sockeye salmon (Oncorhynchus nerka) and chum salmon (O. keta) during smoltification and spawning migration, respectively, were measured using specific time-resolved fluoroimmunoassay (TR-FIA) systems. Changes in sGnRH levels in different brain regions tended to be specifically synchronized with serum thyroid hormone or pituitary gonadotropin (GTH) levels during smoltification and spawning migration, respectively. In contrast, cGnRH–II levels did not show such synchronized changes. SGnRH and cGnRH–II in various brain regions might have different roles during smoltification and spawning migration of salmonid fishes.  相似文献   

7.
Profiles of plasma growth hormone (GH) in male tilapia hybrid (Oreochromis niloticus x O. aureus) were measured and compared at different times of the year. The profiles did not appear to be repetitive, however, differences in their nature were observed at the different seasons; the most erratic profiles were seen in the height of the reproductive season (July), while the peaks were more subdued in the spring and disappeared in the autumn. Peaks in male fish were more prominent than in the females when measured in July. Perifused pituitary fragments from fish with a high GSI responded to salmon gonadotropin-releasing hormone (sGnRH) analog (10 nM-1 M), while those from fish with a low GSI barely responded to even the highest dose. Exposure of perifused pituitary fragments from sexually-regressed fish to carp growth hormone-releasing hormone (cGHRH; 0.1 M) or sGnRH (I M) stimulated GH release only after injection of the fish with methyl testosterone (MT; 3 injections of 0.4 mg kg 1). The same MT pretreatment did not alter the response to dopamine (DA; 1 or 10 M). GH pituitary content in MT-treated fish was lower than in control fish, which may be explained by the higher circulating GH levels in these fish, but does not account for the increased response to the releasing hormones. Castration abolished the response of cultured pituitary cells to sGnRH (I fM-100 nM) without altering either their basal rate of secretion or circulating GH levels. Addition of steroids to the culture medium (MT or estradiol at 10 nM for 2 days) enabled a GH response to sGnRH stimulation in cells from sexually regressed fish. Pituitary cells which had not been exposed to steroids failed to respond to sGnRH, although their response to forskolin or TPA was similar to that of steroid-exposed cells. It would appear, therefore, that at least one of the effects of the sex steroids on the response to GnRH is exerted proximally to the formation of cAMP, or PKC, presumably at the level of the receptor. An increase in the number of receptors to the GH-releasing hormones, following steroid exposure, would explain also the changing nature of the GH secretory profile in different stages of the reproductive season.  相似文献   

8.
The present study was designed to obtain basic endocrine information on GTH I and GTH II in previtellogenic and prespermatogenic coho salmon (immature). Levels of GTH II in pituitary extracts were 6.5 ± 2.0 and 6.7 ± 2.0 pg/μg pituitary protein in male and female fish, respectively. In contrast, the pituitary content of GTH I was approximately 100-fold higher than GTH II (1.302 ± .22 and 1.173 ± .21 ng/μg pituitary protein in male and female fish, respectively). Plasma levels of GTH II in immature salmon were not detectable by RIA whereas plasma GTH I levels were approximately 0.62 ± 0.12 and 0.78 ± 0.13 ng/ml in male and female fish, respectively. Highly purified coho salmon GTH I and GTH II stimulated testicular testosterone production and ovarian estradiol productionin vitro in a similar manner, though GTH II appeared more potent than GTH I. Therefore, it appears that although the salmon pituitary contains predominantly GTH I prior to puberty, the gonad can respond to both GTH I and GTH II.  相似文献   

9.
Three molecular species of gonadotropin releasing hormone (GnRH) mRNA-containing neuronal populations (terminal nerve: salmon-GnRH; preoptic area: seabream-GnRH; midbrain: chic- ken-GnRH-II) have been localized in teleosts. While the termi- nal nerve GnRH neurons originate from the olfactory placode, a separate intracerebral source of origin for preoptic and midbrain neurons is possible. The preoptic GnRH neurons are regulated by gonadal steroids and gonadal maturation, however, the regulation and role of terminal nerve and midbrain GnRH neurons in teleosts reproduction is speculative and debatable.  相似文献   

10.
Theca and granulosa layers were removed from ovarian follicles of mature Atlantic salmon (Salmo salar) and were separately incubated under sterile conditions with and without a partially purified salmon gonadotrophin preparation (GTH). Aliquots of the incubation media were removed at intervals and analysed for the steroids 17, 20-dihydroxy-4-pregnen-3-one (1720P), 17-hydroxyprogesterone, progesterone, androstenedione, testosterone and oestradiol. The biosynthesis of C19 and C21 steroids was very largely restricted to the thecal tissue and was markedly stimulated in the presence of GTH. Androstenedione (max 65 ng/ml) and testosterone (max 14 ng/ml) were released from the earliest stages of incubation whereas the release of 17-hydroxyprogesterone (max 51 ng/ml) and progesterone (max 5.5 ng/ml) commenced only after a lengthy induction period. A trace (1.0 ng/ml) of 1720P was produced by the theca in the presence of GTH but oestradiol was not detected. The granulosa preparations released levels of 17-hydroxyprogesterone and androstenedione only marginally above the detection limits (ca 0.7 ng/ml) and there was little stimulation of output with GTH. Oestradiol (max 4 ng/ml) was released only in the presence of GTH. 1720P, progesterone and testosterone were not detected as products of this tissue. These results, together with those derived earlier from incubations of complete follicles support the view that the synthesis of 1720P is essentially a two-cell process in which 17-hydroxyprogesterone produced in the theca is subject to the action of steroid 20-hydroxysteroid dehydrogenase in the granulosa. The temporal pattern of release of steroids in these and earlier experiments is considered in relation to mechanisms of steroid biosynthesis and to their possible roles in oocyte final maturation.  相似文献   

11.
This paper studies the molecular variants of gonadotropin-releasing hormone (GnRH) present in the brain of the protogynous swamp eel, Synbranchus marmoratus, and the effects of the administration of salmon GnRH analogue (sGnRH-A) and the dopamine receptor antagonist, domperidone (DOM) on final maturation and gamete release in this species. Evidence for the presence of two GnRH variants, sGnRH and cIIGnRH were obtained by reverse phase high-pressure liquid chromatography (RP-HPLC) and radioimmunoassay with different antisera. The effects of treatment with sGnRH-A+DOM were checked by three ways: oocyte and milt release by stripping, histological analysis of the gonadal tissue, and androgen serum levels at different times throughout the experiment. In males, spermiation was induced after three weeks of treatment. In the female group, sGnRH-A+DOM did not induce ovulation at the end of the experiment. Histological analysis of the gonads from the female group showed evidence of sex reversal. All the treated fish had elevated androgen serum levels from the third week, with respect to control fish. In all cases, serum estradiol levels were undetectable. These results suggest that treatment with sGnRH analog and DOM induce sex reversal in female and spermiation in males. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
13.
Effects of gonadotropin-releasing hormone (GnRH) on thyroxine (T4) release in vivo and in vitro were studied in barfin flounder Verasper moseri, masu salmon Oncorhynchus masou and goldfish Carassius auratus. Seabream GnRH (sbGnRH) at a dose of 200 ng/50 g body weight (BW) significantly increased plasma T4 levels 1 h after the in vivo injection in the barfin flounder, but thereafter the levels normalized. Salmon GnRH (sGnRH) significantly increased plasma T4 levels l h after the injection with a significant return to initial levels in male masu salmon and male goldfish. In contrast, sGnRH and cGnRH-II in barfin flounder, and cGnRH-II in male masu salmon and male goldfish were not effective in stimulating T4 release. To clarify direct involvement of GnRH in T4 release, dissected lower jaw including scattered thyroid follicles was incubated with sbGnRH (1 μg/well) in barfin flounder, and with two doses (0.1 and 1 μg/well) of sGnRH in masu salmon and goldfish in vitro. T4 concentrations of control were stable during 24 h. Incubation of lower jaw with high dose (1 μg/well) of GnRH significantly (P<0.05) increased T4 concentrations of incubation medium at 1 h in all experimental fishes. These results indicate that direct stimulation of T4 secretion by GnRH occurs widely in teleost fish.  相似文献   

14.
Growth hormone (GH) transgenic (T) coho salmon consistently show remarkably enhanced growth associated with increased appetite and food consumption compared to non-transgenic wild-type (NT) coho salmon. To improve understanding of the mechanism by which GH overexpression mediates food intake and digestion in T fish, feed intake and gastric evacuation rate (over 7 days) were measured in size-matched T and NT coho salmon. T fish displayed greatly enhanced feed intake levels (~ 2.5-fold), and more than 3-fold increase in gastric evacuation rates relative to NT coho salmon. Despite the differences in feed intake, no differences were noted in the time taken from first ingestion of food to stomach evacuation between genotypes. These results indicate that enhanced feed intake is coupled with an overall increased processing rate to enhance energy intake by T fish. To further investigate the molecular basis of these responses, we examined the messenger RNA (mRNA) levels of several genes in appetite- and gastric-regulation pathways (Agrp1, Bbs, Cart, Cck, Glp, Ghrelin, Grp, Leptin, Mc4r, Npy, and Pomc) by qPCR analyses in the brain (hypothalamus, preoptic area) and pituitary, and in peripheral tissues associated with digestion (liver, stomach, intestine, and adipose tissue). Significant increases in mRNA levels were found for Agrp1 in the preoptic area (POA) of the brain, and Grp and Pomc in pituitary for T coho salmon relative to NT. Mch and Npy showed significantly lower mRNA levels than NT fish in all brain tissues examined across all time-points after feeding. Mc4r and Cart for T showed significantly lower mRNA levels than NT in the POA and hypothalamus, respectively. In the case of peripheral tissues, T fish had lower mRNA levels of Glp and Leptin than NT fish in the intestine and adipose tissue, respectively. Grp, Cck, Bbs, Glp, and Leptin in stomach, adipose tissue, and/or intestine showed significant differences across the time-points after feeding, but Ghrelin showed no significant difference between T and NT fish in all tested tissues.  相似文献   

15.
ABSTRACT:   Wild adult maturing and immature female Japanese flounder Paralichthys olivaceus were collected in June 2004 and January 2005, respectively, to clarify a possible role of gonadotropin-releasing hormones (GnRHs) in reproduction. Levels of salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II) and sea bream GnRH (sbGnRH) in the brain and pituitary were examined by time-resolved fluoroimmunoassay. Three forms of GnRHs were detected in the discrete brain at various levels. In the pituitary of both maturing and immature fish, sbGnRH was abundant together with a pronounced amount of sGnRH, whereas cGnRH-II was almost below the detectable limit. In maturing fish, levels of sbGnRH were high in the telencephalon, hypothalamus and pituitary, while levels of sbGnRH of immature fish were very low in these regions. These results indicate that sbGnRH is mainly responsible for gonadotropin secretion, and that sbGnRH in the anterior part of the brain is associated with gonadal maturation in the Japanese flounder.  相似文献   

16.
Treatment of sham-operated female silver eels with carp pituitary extract stimulated ovarian development and induced increases in pituitary gonadotropin (GTH) and gonadoliberin (GnRH) contents. Both effects of carp pituitary extract were abolished in ovariectomized eels, indicating the involvement of the gonads. Endogenous sexual steroids, the secretion of which was increased during sexual maturation, should be responsible for the stimulation of GTH and GnRH levels. Ovariectomy itself had no significant effect on pituitary GTH and GnRH contents, reflecting the fact that, at the silver stage, sexual steroid levels are too low to exert any significant effect on pituitary GTH and GnRH. The positive feedback control exerted by the gonads on GTH and GnRH levels during sexual maturation, in the eel as well as in some other teleosts, would produce an amplification of the pubertal stimulation of the hypothalamo-pituitary-gonadal axis.  相似文献   

17.
The brain of the pejerrey (Odontesthes bonariensis) has recently been shown to contain three forms of gonadotropin-releasing hormone (GnRH): salmon GnRH (sGnRH), chicken GnRH-II (cGnRH-II) and pejerrey GnRH (pjGnRH), nevertheless neuroanatomical studies on the distribution of these peptides are lacking. In this study we investigated the distribution of immunoreactive GnRH in the brain of adult pejerrey. Four different policlonal antisera and a monoclonal antibody against different GnRH variants were applied on cryosections and visualized using the ABC method. Three antisera (PBL#49, sGnRH#2 and cII741) revealed three different immunoreactive areas: the terminal nerve ganglion (at the junction between the olfactory bulbs and the anterior telencephalon), the preoptic area just anterior to the hypothalamus and the midbrain tegmentum. Fibers immunoreactive to GnRH were detected in different brain areas: the olfactory bulbs, the ventral thelencephalon, the hypothalamus, the mesencephalic area and an important innervation entering into the pituitary gland. Two other antibodies (LRH13 and s1668) labeled the two nuclei corresponding to the forebrain but not the midbrain tegmentum. As both antibodies have low crossreactivity to cGnRH-II, the data suggest that this group of cells express cGnRH-II. In summary, three different areas with immunoreactivity to GnRH were detected in the pejerrey brain. The distribution of sGnRH, pjGnRH and cGnRH-II expressing neurons, is discussed.  相似文献   

18.
Plasma somatolactin (SL) concentrations were examined in chum salmon in relation to gonadal maturation; immature salmon in the Bering Sea at various stages of maturation, and mature salmon during upstream migration caught at the ocean, bay and river. Plasma SL concentrations as well as plasma prolactin (PRL) and growth hormone (GH) levels in the immature fish caught in the Bering Sea were maintained essentially at similar levels. Plasma SL in mature salmon increased significantly from the fish in the ocean to the fish in the river in both sexes. Although all the fish had fully developed gonads, females completed ovulation while still in the bay, whereas final spermeation in males was achieved after entry into the river. Thus, no clear correlation was seen between plasma SL levels and final gonadal maturation. On the other hand, plasma PRL concentrations in both male and female fish were higher in the fish in the river than those in the ocean and bay, and plasma GH levels were higher in both sexes in the fish in the bay and river than those in the ocean. Plasma levels of triglycerides, glucose, free fatty acids and ionized sodium and calcium were also examined. Significant-negative correlations were seen between plasma SL and plasma ionized calcium in mature male salmon, and between plasma SL and plasma triglycerides in mature female salmon. Although our findings do not rule out the possibility of the involvement of SL in final maturation, the results indicate that SL seems to be involved at least in energy and/or calcium metabolism during the spawning migration.  相似文献   

19.
This study was conducted to investigate whether aromatization to estrogen could be the cause for the paradoxical feminization of gonads of sexually-undifferentiated fish after treatment with androgen at either high doses or for long periods. The aromatizable androgen 17-methyltestosterone (MT) and the nonaromatizable androgen 17-methyldihydrotestosterone (MDHT) were administered to groups of newly hatched coho salmon (Oncorhynchus kisutch) in a single 2h immersion at concentrations ranging from 6.25 to 6,400µg/l. The effects of treatment were evaluated by determining the resultant proportion of males in each experimental group. The effects of steroid administration on the final mean weight, length and condition factor were also determined. An increase in all these three variables was observed in the groups treated with the higher doses of MT. Regarding the resultant sexual phenotype, the response to both androgens was similar at the majority of doses tested. However, at the highest dose, the proportion of females increased with respect to that of males for MT, but not for MDHT. Since the major difference between the two androgens tested is their capacity to be aromatized, it seems that aromatization to estrogen, rather than inhibition of the biosynthesis of endogenous androgen, may explain the paradoxical feminization encountered.  相似文献   

20.
Multiple greyish‐white visceral nodules containing abundant rapidly growing and acid‐fast bacteria, subsequently identified as Mycobacterium salmoniphilum, were detected in moribund and newly dead market‐sized fish during a period of increased mortality in an Atlantic salmon, Salmo salar, farm in western Norway. Isolates cultured from diseased fish were phenotypically consistent with Mycobacterium sp. previously isolated from Atlantic salmon [MT 1890 (= NCIMB13533), MT1892, MT1900 and MT1901] in the Shetland Isles, Scotland. Partial sequences of 16S rDNA, ribosomal RNA internal transcribed spacer (ITS1), 65‐kDa heat‐shock protein (Hsp65) and β subunit of RNA polymerase (rpoB) revealed 97‐99% similarity with M. salmoniphilum type strain ATCC 13758T. The source of infection was not confirmed. Koch’s postulates were fulfilled following experimental challenge of Atlantic salmon with field isolate NVI6598 ( FJ616988 ). Mortality was recorded in experimentally infected fish; however, the infection remained subclinical in the majority of affected fish over the 131‐day challenge period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号