首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Cork in the outer bark of trees is among the valuable raw materials of biological origin due to properties that result mainly from its cellular structure. Large scale commercial utilization of cork has been only achieved with cork from Quercus suber. Another oak species, Quercus cerris, also contains substantial, albeit not continuous, regions of cork that are clearly visible to the naked eye but are so far considered as a waste material.Bark samples of Q. cerris var. cerris trees were collected from the And?r?n province, Turkey. Cork portions were separated and their cellular structure was investigated with optical and electron scanning microscopy observations. The results were compared with Q. suber cork.Q. cerris cork has the typical features of cork tissues with a regular and radially aligned structure of suberized cells without intercellular voids, showing a ring structure and a distinction of earlycork and latecork cells. Solid volume fraction was estimated at 25% (22% in earlycork, 36% in latecork).In Q. cerris cork cells are smaller, cell wall thickness and solid volume fraction are higher, and the tissue is less homogeneous with a higher content of lignified inclusions than in Q. suber cork. These factors will negatively influence quality in regard to density and mechanical properties associated to elasticity. However, this does not impair its use for production of granulates and agglomerates, e.g. for insulation and energy absorption. Separation of the cork fraction from the bark is a step required before further processing and use.  相似文献   

2.
Hot water and hot air treatments were evaluated for disinfesting anthurium, Anthurium andraeanum Lind., stem cuttings of the bacterial blight pathogen, Xanthomonas axonopodis pathovar dieffenbachiae (Xa pv. dieffenbachiae), and burrowing nematodes, Radopholus similis, and their effect on viability of the cuttings. Xa pv. dieffenbachiae suspended in distilled water in 1.5 ml microcentrifuge tubes, lost at least 6 logs of viability when exposed to hot water at 50 °C for 12 min or hot air at 50 °C, 60% RH for 35 min administered in commercial-sized heat treatment facilities. Stem cuttings exposed to hot air at 50 °C, 60% RH were disinfested of R. similis when their core temperatures attained 50 °C. Plant response to heat treatments varied among cultivars; however, all evaluated cultivars exhibited high tolerance to hot water at 50 °C for up to 24 min with equal or enhanced sprouting rates as compared to untreated checks. Sprouting rates of three of the four cultivars treated with hot air at 50 °C, 60% RH for up to 125 min were equal to or higher than untreated checks, while cuttings from the less tolerant cultivar ‘Tropic Fire’ registered lower sprouting rates for all hot air treatment durations as compared to untreated checks, Flower quality parameters, including average spathe size, stem diameter and number of flowers harvested from plants heat-treated as cuttings, were comparable to or higher than untreated checks for all treatments and cultivars. Disinfestation of anthurium stem cuttings for bacterial blight and the burrowing nematode can be achieved in hot water at 50 °C for 24 min without loss of sprouting rate or flower quality.  相似文献   

3.
Biocomposites derived from polymeric resin and lignocellulosic fibers may be processed at temperatures ranging from 100 °C to 230 °C for durations of up to 30 min. These processing parameters normally lead to the degradation of the fiber's mechanical properties such as Young's modulus (E), ultimate tensile strength (UTS) and percentage elongation at break (%EB). In this study, the effect of processing temperature and duration of heating on the mechanical properties of coir fibers were examined by heating the fibers in an oven at 150 °C and 200 °C for 10, 20 and 30 min to simulate processing conditions. Degradation of mechanical properties was evaluated based on the tensile properties. It was observed that the UTS and %EB of heat treated fibers decreased by 1.17-44.00% and 15.28-81.93%, respectively, compared to untreated fibers. However, the stiffness or E of the fibers increased by 6.3-25.0%. Infra red spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) were used to elucidate further the influence of chemical, thermal and microstructural degradation on the resulting tensile properties of the fibers. The main chemical changes observed at 2922, 2851, 1733, 1651, 1460, 1421 and1370 cm−1 absorption bands were attributed to oxidation, dehydration and depolymerization as well as volatization of the fiber components. These phenomena were also attributed to in the TGA, and in addition the TGA showed increased thermal stability of the heat treated coir fibers with reference to the untreated counterparts which was most probably due to increased recrystallization and cross linking. The microstructural features including microcracks, micropores, collapsed microfibrils and sort of cooled molten liquid observed on the surface of heat treated coir fibers from the scanning electron microscope (SEM) could not directly be linked to the effect of temperature and durations of heating although such features may have largely account for the lower tensile properties of heat treated coir fibers with reference to untreated ones.  相似文献   

4.
In this study, Nigella sativa L. oil was extracted using supercritical carbon dioxide with full factorial design to determine the best extraction condition (pressure, temperature and dynamic extraction time) for obtaining an extract with high yield, antioxidant activity and thymoquinone (TQ) quantity. The maximum thymoquinone content in the highest overall yield was achieved through SC-CO2 extraction condition of 150 bar, 40 °C, 120 min with the value of 4.09 mg/ml. The highest SC-CO2 extraction yield was 23.20% which obtained through extraction condition of 350 bar, 60 °C and 120 min. The extraction conducted at 350 bar, 50 °C, 60 min showed the lowest IC50 value (highest antioxidant activity) of 2.59 mg/ml using DPPH radical scavenging activity method. Fatty acid composition of the extracted oil with highest radical scavenging activity was obtained by gas chromatographic analysis.  相似文献   

5.
Pinus yunnanensis was subjected to water-bath and microwave treatments in 1% NaOH aqueous solutions at 100 °C with various ratios of bath heating time to microwave heating time (0/120, 20/100, 40/80, 60/60, 80/40, 100/20 and 120/0 min). The lignins dissolved in the alkali liquors were separated and purified, and their physicochemical features were comparatively characterized by sugar analysis, GPC, FT-IR, 13C and HSQC NMR, as well as thermogravimetric analysis (TGA). The results showed that the lignin fractions extracted with microwave heating (20-120 min) had high molecular weights and polydispersities (Mw 3150-5710 g/mol, Mn 2130-3020 g/mol, Mw/Mn 1.48-2.00) as compared to those prepared without microwave heating (Mw 3080 g/mol, Mn 2080 g/mol, Mw/Mn 1.48). The most striking characteristic of all lignin fractions was the almost absence of associated sugars (0.16-3.25%). The TGA results indicated that the thermal stability of the lignin fraction increased with the increment of the molecular weight. FT-IR and NMR spectra suggested that the lignin fractions showed similar structures which were mainly composed of guaiacyl (G) and minor amounts of p-hydroxyphenyl (H) units. Moreover, HSQC NMR spectrum of a typical lignin fraction (prepared with microwave heating for 120 min) revealed that it contained dominant amounts of β-O-4′ linkages (64.6%) and phenylcoumaran (β-5′) substructures (25.8%) together with small amounts of resinol (β-β′) substructures (6.7%) and coniferyl alcohol end groups (2.9%).  相似文献   

6.
Autocatalytic hydrothermal process conditions were used to study Ulex europæus (Gorse) as a source of xylan compounds. The aim was to study the possibilities for using this unutilised biomass material to produce xylans. Ulex is an evergreen shrub that grows in the northwest of Spain and has no economic value. Therefore, Ulex is considered a promising candidate as a biomass source. Ulex showed a total xylose content of 12%, thus qualifying it as a suitable material to extract xylan-derived compounds. Autohydrolysis was applied to extract xylans from Ulex. To find the best conditions for xylan extraction, samples of Ulex were subjected to different temperatures and time conditions. Results indicate that autohydrolysis is a suitable method to selectively extract xylans at temperatures between 160 and 190 °C for 5-30 min, reaching a maximum xylan recovery of almost 63% of the initial xylan at 180 °C for 30 min, with only small effects on cellulose and lignin contents.  相似文献   

7.
The chemical composition, main physicochemical properties and thermal stability of oil extracted from Acacia senegal seeds were evaluated. The oil, moisture and the ash contents of the seeds were 9.80%, 6.92% and 3.82%, respectively. Physicochemical properties of the oil were iodine value, 106.56 g/100 g of oil; saponification value, 190.23 mg KOH/g of oil; refractive index (25 °C), 1.471; unsaponifiable matter, 0.93%; acidity, 6.41% and peroxide value, 5.43 meq. O2/kg of oil. The main fatty acids in the oil were oleic acid (43.62%) followed by linoleic acid (30.66%) and palmitic acid (11.04%). The triacylglycerols (TAGs) with equivalent carbon number ECN 44 (34.90%) were dominant, followed by TAGs ECN 46 (28.19%), TAGs ECN 42 (16.48%) and TAGs ECN 48 (11.23%). The thermal stability analysed in a normal oxidizing atmosphere showed that the oil decomposition began at 268.6 °C and ended at 618.5 °C, with two stages of decomposition at 401.5 °C and 576.3 °C. According to these results, A. senegal seed oil has physicochemical properties, fatty acids composition and thermal characteristics that may become interesting for specific applications in several segments of food and non-food industries.  相似文献   

8.
Gluten was extracted from flours of several different wheat varieties of varying baking quality. Creep compliance was measured at room temperature and tan δ was measured over a range of temperatures from 25 to 95 °C. The extracted glutens were heat-treated for 20 min at 25, 40, 50, 60, 70 and 90 °C in a water bath, freeze-dried and ground to a fine powder. Tests were carried out for extractability in sodium dodecyl sulphate, free sulphydryl (SH) groups using Ellman's method, surface hydrophobicity and molecular weight (MW) distribution (MWD) using field-flow fractionation and multi-angle laser light scattering. With increasing temperature, the glutens showed a decrease in extractability, with the most rapid decreases occurring between 70 and 90 °C, a major transition in tan δ at around 60 °C and a minor transition at 40 °C for most varieties, a decrease in free SH groups and surface hydrophobicity and a shift in the MWD towards higher MW. The poor bread-making variety Riband showed the highest values of tan δ and Newtonian compliance, the lowest content of free SH groups and the largest increase of HMW/LMW with increasing temperature. No significant correlations with baking volume were found between any of the measured parameters.  相似文献   

9.
We assessed the influences of ambient temperature, rainfall, shade cover and elevation on seasonal abundance of coffee leafminer Leucoptera coffeella (Guérin-Ménèville) and its natural enemies in coffee farms in the Soconusco region of Chiapas, Mexico. Mined coffee leaves were most abundant during the rainy season (i.e. historical average rainfall >200 mm/mo, April–November) compared to the dry season (<100 mm/mo, December–March), and at low (<600 m asl) relative to high (>900 m asl) elevations. The abundance of mined leaves increased with rainfall, and decreased with maximum daily temperatures. Coffee leafminer survivorship was highest during the dry season (>40%), when predation was lowest (<10%). Predation was the main source of coffee leafminer mortality, and was greatest during the rainy season (>25%) when coffee leafminer incidence was highest (>30% mined leaves per plant). None of the weather variables that were evaluated (viz. maximum and minimum temperatures, and rainfall) significantly impacted parasitism ratios. Shade cover moderated on-farm temperatures, by reducing maximum daily temperatures and any potential, direct impacts of rainfall on coffee leafminer, by providing partial shelter from rainfall, but did not significantly affect coffee leafminer incidence. In 48 h laboratory trials, coffee leafminer oviposition was highest at 28 °C (∼15 eggs/female), minimal at 25 °C (∼3 eggs) and nil at 20 °C, and higher during night-time hours (>8 eggs/female/day) compared to day-time hours (<1 egg). Historical average temperatures were higher at low elevation (yearly average ca. 25 °C; range = 18.0–32.0 °C) than at high elevation (ca. 21 °C; 13.5–28.5 °C), and we predicted that physical environmental conditions (i.e. night-time hours with temperatures > 20 °C) were permissive of coffee leafminer oviposition during twice as many hours each year at low elevation (4060 h) compared to high elevation (2081 h). Overall, our results suggested that evident differences in the abundance of coffee leafminer between elevations may be due in considerable part to differences in ambient temperatures, particularly night-time temperatures, rather than rainfall, shade cover, or elevation per se.  相似文献   

10.
Sugarcane bagasse cellulose was subjected to the extremely low acid (ELA) hydrolysis in 0.07% H2SO4 at 190, 210 and 225 °C for various times. The cellulose residues from this process were characterized by TGA, XRD, GPC, FTIR and SEM. A kinetic study of thermal decomposition of the residues was also carried out, using the ASTM and Kissinger methods. The thermal studies revealed that residues of cellulose hydrolyzed at 190, 210 and 225 °C for 80, 40 and 8 min have initial decomposition temperature and activation energy for the main decomposition step similar to those of Avicel PH-101. XRD studies confirmed this finding by showing that these cellulose residues are similar to Avicel in crystallinity index and crystallite size in relation to the 110 and 200 planes. FTIR spectra revealed no significant changes in the cellulose chemical structure and analysis of SEM micrographs demonstrated that the particle size of the cellulose residues hydrolyzed at 190 and 210 °C were similar to that of Avicel.  相似文献   

11.
Mature red fruits of Opuntia ficus-indica contain two soluble pigment, betanin and indicaxanthin. The optimal conditions for dye extraction were to mix 50 g of juice from cactus pears with 100 mL of acidified water as solvent for dye extraction. Two main dyes were purified from the pigment extract by chromatography and identified by UV-vis, HPLC and LC-MS techniques as indicaxanthin (15 mg per 100 g) and betanin (280 mg per 100 g). The effect of dye bath pH, salt concentration, dyeing time and temperature was studied. The optimal conditions for dyeing modified acrylic fabrics with betanin dye were carried out at 50 °C for 45 min at pH 5. Un-mordanted samples have good properties of water and washing fastness. Mordant CoSO4 was found to give good light fastness (rating 5).  相似文献   

12.
A comparative study on the chemical composition of oak cork (Quercus suber L.) and corresponding industrial residues and birch (Betula pendula L.) outer bark is reported. Cork oak samples have lower extractives contents (6–9%) and higher contents of carbohydrates and lignin (23–27 and 33–38%, respectively) than those found for birch outer bark (40, 6 and 9%, respectively); suberin contents accounted for around 30% of cork, 11% of industrial cork powder and 45% of birch outer bark. Analysis of the suberin monomeric composition revealed that C18 and C22 ω-hydroxyfatty acids (including mid-chain epoxy- and dihydroxy-derivatives), followed by α,ω-dicarboxylic acids, are the main components in both suberins, with 9,10-epoxy-18-hydroxyoctadecanoic, 18-hydroxyoctadec-9-enoic, 9,10,18-trihydroxyoctadecanoic and octadec-9-enoic acids as the major components. The differences in the relative amounts of these acids in the suberin samples and the impact on the potential exploitation of the different industrial by-products are discussed.  相似文献   

13.
The ability of hydrolytic enzyme production by two different isolates of Macrophomina phaseolina was studied on apple pomace as a substrate for solid state fermentation (SSF). Initial moisture level, temperature and fermentation period was optimized so as to achieve higher output. Among the two different isolates, microsclerotial (MphP) and mycelial (MphM), MphP was observed as a potential source of different hydrolytic enzymes as compared to MphM. MphP gave higher enzyme activities (IU/gram dry substrate (gds): filter paper cellulase (FPase) activity 196.21 ± 16.3 (120 h), carboxymethyl cellulase (CMCase) 279.34 ± 28.25 (72 h), β-glucosidase (BGL) 129.82 ± 12.41 (96 h), xylanase 2527.88 ± 46.15 (120 h), and amylase 2780.72 ± 38.13 (96 h), respectively at 70% (v/w) IML. The incubation temperature was also found to have impact on the enzyme production ability of Macrophomina strains. The higher enzyme activities were achieved (IU/gds) as follows FPase 276.13 ± 25.02 (40 °C, 120 h), CMCase 278.11 ± 24.47 (35 °C, 144 h), BGL 189.47 ± 15.05 (30 °C, 144 h), xylanase 3845.77 ± 43.38 (35 °C, 144 h) and amylase activity of 3309.45 ± 29.22 (35 °C, 120 h), respectively using MphP at 70% (v/w) IML. This study reports for the first time the potential of carbohydrate degrading enzyme bioproduction by different isolates of M. phaseolina.  相似文献   

14.
Rice starch suspensions of 10% dry matter (DM) were treated by heat (0.1 MPa at 20–85 °C) or pressure/heat combinations (100–600 MPa at 20, 40 and 50 °C) for 15 min to investigate their gelatinization and rheological characteristics. The maximum swelling index of about 12 g water per gram of DM was obtained by thermal treatment at 85 °C, meanwhile, that of 7.0 g was observed by 600-MPa pressurization at 50 °C. The higher temperatures or pressures resulted in the higher degrees of gelatinization. Furthermore, treatments of 0.1 MPa at 85 °C, 500 MPa at 50 °C and 600 MPa at various temperatures caused complete gelatinization of rice starch. The consistency index (K) and storage modulus (G′) dramatically increased from 70 °C or 400 MPa. The G′ values were higher in pressure-treated samples than those in thermal-treated samples. Therefore, an application of pressure/heat combinations as a processing method to improve the quality of rice starch products would be possible.  相似文献   

15.
Supercritical carbon dioxide (SC-CO2) was employed to extract oil from hemp (Cannabis sativa L.) seeds. For ground seeds, the supercritical extraction was carried out at temperatures of 40, 60 and 80 °C and pressures of 300 and 400 bar. Different solvent-ratios were applied. Supercritical CO2 extractions were compared with a conventional technique, n-hexane in Soxhlet. The extraction yields, fatty acid composition of the oil and oxidation stability were determined. The seed samples used in this work contained 81% PUFAs, of which 59.6% was linoleic acid (ω-6), 3.4% γ-linolenic (ω-3), and 18% α-linolenic (ω-6). The highest oil yield from seeds was 22%, corresponding to 72% recovery, at 300 bar and 40 °C and at 400 bar and 80 °C. The highest oxidation stability corresponding to 2.16 mM Eq Vit E was obtained at 300 bar and 80 °C.  相似文献   

16.
Polyol production from chemical modification of date seeds has been investigated through oxypropylation and liquefaction techniques (using organic solvents in the presence of a catalyst). The obtained products were characterized using infrared spectroscopy analysis, 1H NMR, thermogravimetric analysis and other parameters such as hydroxyl number (IOH) and viscosity. Results showed that 93% of the solid substance was converted into polyol in the oxypropylation reaction at the date seeds/propylene oxide ratio of 0.25 and 10% potassium hydroxide at 160 °C. The oxypropylated product has IOH of 779 mg KOH/g and viscosity of 6.9 Pa s. Regarding the liquefaction technique, results show that a yield of 95% was obtained at the date seeds/liquefying solvent ratio of 0.25 in 60 min of reaction at 160 °C. The liquefied product shows IOH of 336 mg KOH/g and viscosity of 0.9 Pa s.  相似文献   

17.
This research work involves the dyeing of wool with indicaxanthin, a natural dye extracted from fruits of Opuntia ficus-indica. The optimal conditions for dye extraction were to mix 50 g of Juice from cactus pears with 100 mL of 80% aqueous ethanol as solvent for dye extraction. Liquid chromatography was applied for the separation. Two main dyes were obtained, which were identified as indicaxanthin (75 mg per 50 g) and betanin (5 mg per 50 g). The effect of dye bath pH, salt concentration, dyeing time and temperature were studied. The optimal conditions for wool dyeing with indicaxanthin dye were carried out at 70 °C for 90 min with the pre-treatment of various metal salts as mordant. The colour yields of the dye on the wool were found to be highly dependent of the pH, optimum results being obtained at pH 4. The K/S of wool increased in the order of the dyeing using KAl (SO4)2 > MnSO4 > CoSO4 > FeSO4 > none > ZnSO4 > CuSO4. Un-mordanted samples have good properties of water and washing fastness. Mordants KAl (SO4)2 and CoSO4 were found to give good light fastness (rating 5).  相似文献   

18.
A Box-Behnken experimental design and response surface methodology were employed to optimize the pretreatment parameters of a formic/acetic acid delignification treatment of Miscanthus × giganteus for enzymatic hydrolysis. The effects of three independent variables, namely cooking time (1, 2 and 3 h), formic acid/acetic acid/water ratio (20/60/20, 30/50/20 and 40/40/20) and temperature (80, 90 and 107 °C) on pulp yield, residual Klason lignin content, concentration of degradation products (furfural and hydroxymethylfurfural) in the black liquor, and enzymatic digestibility of the pulps were investigated. The major parameter influencing was the temperature for pulp yield, delignification degree, furfural production and enzymatic digestibility. According to the response surface analysis the optimum conditions predicted for a maximum enzymatic digestibility of the glucan (75.3%) would be obtained using a cooking time of 3 h, at 107 °C and with a formic acid/acetic acid/water ratio of 40/40/20%. Glucan digestibility was highly dependent on the delignification degree.  相似文献   

19.
The present work deals with production of ethanol from sweet sorghum bagasse by a zygomycetes fungus Mucor hiemalis. The bagasse was treated with phosphoric acid and sodium hydroxide, with or without ultrasonication, prior to enzymatic hydrolysis by commercial cellulase and β-glucosidase enzymes. The phosphoric acid pretreatment was performed at 50 °C for 30 min, while the alkali treatment performed with 12% NaOH at 0 °C for 3 h. The pretreatments resulted in improving the subsequent enzymatic hydrolysis to 79-92% of the theoretical yield. The best hydrolysis performance was obtained after pretreatment by NaOH assisted with ultrasonication. The fungus showed promising results in fermentation of the hydrolyzates. In the best case, the hydrolyzate of NaOH-ultrasound pretreated bagasse followed by 24 h fermentation resulted in about 81% of the corresponding theoretical ethanol yield. Furthermore, the highest volumetric ethanol productivity was observed in the hydrolyzates of NaOH pretreated bagasse, especially after ultrasonication in pretreatment stage.  相似文献   

20.
In order to further exploit the by-products of Isatis indigotica Fort., the seed oil was studied for its extraction and physicochemical properties. Ultrasound-assisted extraction (UAE) was used, and the parameters affecting seed oil recovery were optimized through response surface methodology (RSM). The optimum conditions were as follows: solvent-to-sample, 24:1; particle size, 110 meshes; extraction temperature, 49 °C; and extraction time, 44 min. Which resulted in a maximum oil recovery of 81.20 ± 0.21% (n = 3). Furthermore, the effects of UAE on the yield, fatty acid compositions, physicochemical properties, and microstructure of the seed powder were also investigated by calculating the recovery rate, utilizing a gas chromatograph fitted with a mass spectrometer (GC-MS), and performing scanning electron microscopy, respectively. The results show that UAE was an effective method for the seed oil extraction and the high content of unsaturated fatty acids (93.81%) demonstrates the oil has potential benefits for the cosmetics, edible products, or pharmaceutical industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号