首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Performance consistency of reduced atrazine use in sweet corn   总被引:1,自引:0,他引:1  
Atrazine is the most widely used herbicide in North American corn production; however, additional restrictions on its use in the near future are conceivable. Currently, a majority of commercial sweet corn fields suffer losses due to weeds, despite widespread use of atrazine. Field experiments were conducted in the primary North American production areas of sweet corn grown for processing to determine the implications of further reductions in atrazine use on weed control and crop yield. A range of atrazine doses (0-1120 g ha−1) applied postemergence with tembotrione (31 g ha−1) were tested in two hybrids differing in canopy architecture and competitive ability with weeds. Atrazine applied postemergence reduced risk (i.e. more variable outcomes) of poor herbicide performance. Atrazine doses up to 1120 g ha−1 with tembotrione improved grass control and broadleaf weed control in five of eight and seven of eight environments, respectively. Of the three environments which had particularly low broadleaf weed control (<50%) with tembotrione alone, sweet corn yield was improved with atrazine. Hybrid ‘Code128’ produced a taller, denser canopy which was more efficient at capturing light and competing with weeds than ‘Quickie’. As a result, greater crop competitiveness decreased risk of incomplete weed control as atrazine dose was reduced. Atrazine's contribution to weed control and yield protection was greatest when other aspects of weed management resulted in poor weed control. Should atrazine use be further restricted or banned altogether, this research demonstrates the importance of improving other aspects of weed management systems such as herbicidal and non-chemical tactics.  相似文献   

2.
Aerobic rice describes a management adaptation to reduced irrigation water supplies but, due to reduced intervals of flooding in this system, this requires revised weed management approaches to reduce costs and provide effective weed control. One approach is to make the crop more competitive and reduce the effects of weeds on the crop by using higher rice seeding rates. A study was conducted in the Philippines and India in 2008 and 2009 to assess the relations of seeding rates (15-125 kg ha−1) of hybrid and inbred varieties to crop and weed growth in aerobic rice. Plant densities, tillers, and biomass of rice increased linearly with increased in seeding rates under both weedy and weed free environments. Weed biomass decreased linearly with increasing seeding rates from 15 to 125 kg ha−1. Panicles and grain yields of rice in competition with weeds increased in a quadratic relation with increased seeding rates at both locations; however, the response was flat in the weed free plots. A quadratic model predicted that seeding rates of 48-80 kg ha−1 for the inbred varieties and 47-67 kg ha−1 for the hybrid varieties were needed to achieve maximum grain yield when grown in the absence of weeds, while rates of 95-125 kg seed ha−1 for the inbred varieties and 83-92 kg seed ha−1 for the hybrid varieties were needed to achieve maximum yields in competition with weeds. On the basis of these results, seeding rates greater than 80 kg ha−1 are advisable where there are risks of severe weed competition. Such high seeding rates may be prohibitive when using expensive seed, and maximum yields are not the only consideration for developing recommendations for optimizing economic returns for farmers. Results of the present study do suggest however that increasing seeding rates of aerobic rice does suppress weed growth and reduce grain yield losses from weed competition. This information could be incorporated in integrated crop management packages to manage weeds more effectively.  相似文献   

3.
Despite the availability of modern hybrids and better agronomic practices, there existed large gaps between attainable yield of maize (Zea mays L.) grown with recommended practices and producers’ harvest yields in the humid temperate regions of eastern Canada. A field experiment was conducted for 3 years in Ottawa, Canada, to determine the most important management yield-limiting factor(s) on rainfed maize grain production. A package of recommended practices (RP) was composed with the recommended levels of nitrogen (N), phosphorus (P), potassium (K), micronutrients, chemical weed control, and plant population density (PPD). Each factor was modified from the RP, making a total of 11 treatments. Under the low occurrence of diseases or insects, weed infestation was the most important yield-limiting factor, which reduced grain yield by 27–38%. While lack of preplant N application (100 kg ha−1) reduced yield by 10–22%, there was no yield increment with additional sidedressing N (50 kg N ha−1). Grain yield was reduced by 8–13% with low PPD (60,000 plants ha−1) in all years, whereas increasing PPD to 90,000 plants ha−1 did not improve yield, compared with the RP. Withhold P application did not affect yield in all years, but yield was reduced by up to 13% in the absence of K, and by 10% and 12% without Zn or Mn, respectively, in 1 year. Our results indicated that lack of weed control (i.e. herbicide use) was the major yield-limiting factor followed by fertilizer N and PPD. The responses of grain yield to K, Zn, and Mn were site and/or year specific. Our study provided experimental data and an insight understanding of yield gap between genotype's yield potential achievable with recommended practices and yields with producers’ practices.  相似文献   

4.
Nitrogen rates and plant genotypes effects yield and quality of medicinal plants therefore, this experiment was conducted in order to determine the effects of nitrogen rates on fennel accessions quality and quantity. The experimental design was a split plot with nitrogen rate (0, 40, 80, 120 and 160 Kg N ha−1) as main and accession (Isfahan, Tehran, Yazd and EU11486) as sub plots and replicated four times. The experiment was conducted at the Isfahan University of Technology Experimental Station, Isfahan, Iran during 2008-2009. Plant height, number of umbel per plant, 1000seed weight, number of seeds per umbel, seed yield, seed essential oil yield, seed and foliage essential oil contents and seed ash, protein and fiber contents were measured. Nitrogen fertilization increased all measured traits, but reduced ash content. On average, the highest seed and foliage essential contents and seed essential yield were produced at 160 kg per N ha−1 and EU11486 was a superior cultivar for these traits. However, there was an interaction between N rate and accession on all traits. Isfahan (11.65 kg ha−1), EU11486 (38.26 kg ha−1), Tehran (15.32 kg ha−1) and Yazd (22.06 kg ha−1) produced the highest seed essential oil yield under application of 160, 80, 160 and 120 kg N ha−1, respectively. Foliage of the accessions contained 0.45-0.91% essential oil and seeds of accessions contained 17.6-18.2% protein and 8.9-9.4% ash suggesting that foliage of fennel also is a good source of essential oil and seeds of fennel are good sources of protein and minerals. The results showed that N fertilization and accession can affect yield and quality of fennel and accessions responded differently to N fertilization rates, thus selection among the accessions and N rates for better fennel production is possible.  相似文献   

5.
The present investigation was conducted at Vittal, Karnataka, India during 2004-2007 to study the feasibility of intercropping of medicinal and aromatic plants (MAPs) in arecanut plantation. The results revealed that MAPs can be successfully grown as intercrops in arecanut plantation with increased productivity and net income per unit area. Kernel equivalent yield of MAPs varied between 272 kg ha−1 in case of Piper longum to 1218 kg ha−1 in Cymbopogon flexuosus. Pooled data indicated that Asparagus racemosus produced fresh root yield of 10,666 kg ha−1 of arecanut plantation and contributed to maximum kernel equivalent yield of 1524 kg ha−1 among all medicinal and aromatic plants. Intercropping of MAPs in arecanut was found economical. The net return per rupee investment was highest in C. flexuosus (4.25) followed by Bacopa monnieri (3.64), Ocimum basilicum (3.46) and Artemisia pallens (3.12). The total system productivity of arecanut + MAPs intercropping system varied from 2990 to 4144 kg ha−1. Arecanut + O. basilicum intercropping system registered significantly higher production efficiency 8.2 kg ha−1 day−1 than other systems. Intercropping of MAPs had more positive effect on soil pH in arecanut based cropping system. The soil pH was 5.6 in 2004 and it was 0.3-0.9 units higher in 2007. Soil organic carbon (SOC) content varied significantly due to intercropping of MAPs at the end of experiment. The SOC content increased in Aloe vera, A. pallens, P. longum and B. monnieri, while it depleted in grasses and rhizomatic MAPs. Based on demand and marketing opportunities for MAPs, farmers are advised to grow aromatic plants in large areas on a community basis to meet huge industrial demand and variety of medicinal crops in small areas to meet the requirement of traditional systems of medicine.  相似文献   

6.
Cover cropping can have various beneficial effects to the cropping system such us the increase of soil nutrient content and weed suppression. In this respect, the species used for covering is of great importance. This paper reports results on the yield and weed control effects in potato crops preceded by different cover crops over a 2-year period (2003 and 2004) in Central Italy (Viterbo). Results were obtained in the frame of a more complex study set up in 2002 where in a 3-year chick-pea/potato/tomato rotation, each crop was preceded by 7 different soil managements: 5 cover crops (rapeseed, Italian ryegrass, hairy vetch, snail medick and subclover) + 1 unfertilised weedy fallow (cover crop absent) + 1 control (weedy fallow fertilised with mineral N at a rate of 170 kg ha−1 for potato). Two different weed control regimes in potato were also applied [weed-free crop (1 inter-row hoeing + 1 hilling up + manual weeding on the row); mechanical control (1 inter-row hoeing + 1 hilling up)]. Cover crops were sown in September and cut and ploughed just before potato planting in March. The potato crops following the cover crops were only fertilised with green manure. Averaged over years, all the cover crops produced more above-ground dry biomass than the weedy fallow (4.79 t ha−1 on average vs 2.36 t ha−1). Hairy vetch and subclover accumulated the highest N in the incorporated biomass (169 and 147 kg ha−1), followed by snail medick (108), rapeseed (99), ryegrass (88) and weedy fallow (47). Rapeseed and ryegrass were the most efficient weed suppressors and had the least proportion of weed biomass (<1%) of the total produced by the cover, while they also reduced weed emergence in the following potato crops (8.8 plants m−2vs 25.5 plants m−2 with all other cover crops). Following subclover and hairy vetch the potato crop yield was similar to that obtained by mineral N-P-K fertilisation (48.5 t ha−1 of fresh marketable tubers). Mechanical weed control compared to weed free crop always reduced potato yield and the reduction, averaged over years, was greater in N-P-K mineral fertilised control (−23.6%) and smaller in ryegrass (−7.9%).  相似文献   

7.
Row spacing and weed control timing affect yield of aerobic rice   总被引:2,自引:0,他引:2  
Field experiments were conducted during the wet season of 2009 and dry season of 2010 to determine the effects of row spacing and timing of weed control on weed growth and yield of aerobic rice. Ten weed management treatments were used to identify critical periods of weed competition with aerobic rice grown in three different row spacings (15-cm, 30-cm, and as paired rows 10-20-10-cm). Dominant weed species during both growing seasons were Rottboellia cochinchinensis, Digitaria ciliaris, Echinochloa colona, and Eleusine indica. Rice grown in 30-cm rows had greater weed biomass and less grain yield than in 15-cm and 10-20-10-cm rows; weed growth and grain yields were similar between 15-cm and 10-20-10-cm rows. Rice yields in the wet season ranged from 170 kg ha−1 where weeds were not controlled throughout the crop duration to 2940 kg ha−1 in weed-free treatment, indicating a 94% yield loss with uncontrolled weed growth. Similarly in the dry season, plots with no weed control (140 kg ha−1) compared to weed-free plots (3640 kg ha−1) indicate a 96% yield loss with no weed control. Gompertz and logistic equations were fitted to yield data resulting from increasing durations of weed control and weed interference, respectively. Critical periods for weed control in the wet season, to obtain 95% of a weed-free yield, were estimated as between 18 and 52 days after sowing (DAS) for crops in rows at 15-cm, 20-51 DAS at 10-20-10-cm, and 15-58 DAS at 30-cm. These intervals in the dry season were 17-56 DAS for crops in rows at 15-cm and 17-60 DAS at 10-20-10-cm and 15-64 DAS at 30-cm. Durations of the critical periods in the wet season were 31 days at 10-20-10-cm, 34 days at 15-cm and 43 days at 30-cm, while in the dry season, these were 43 days at 10-20-10-cm, 39 days at 15-cm and 49 days at 30-cm. In both seasons, crops in the wider spacing (30-cm) were vulnerable to weed competition for the longest period. The information gained from this study suggests that the aerobic rice yields better in 15-cm rows and 10-20-10-cm arrangements than in 30-cm rows and there is very little benefit of weed control beyond 8 weeks after sowing.  相似文献   

8.
Retention and/or reincorporation of plant residues increases soil organic nitrogen (N) levels over the long-term is associated with increased crop yields. There is still uncertainty, however, about the interaction between crop residue (straw) retention and N fertilizer rates and sources. The objective of the study was to assess the influence of straw management (straw removed [SRem] and straw retained [SRet]), N fertilizer rate (0, 25, 50 and 75 kg N ha−1) and N source (urea and polymer-coated urea [called ESN]) under conventional tillage on seed yield, straw yield, total N uptake in seed + straw and N balance sheet. Field experiments with barley monoculture (1983-1996), and wheat/barley-canola-triticale-pea rotation (1997-2009) were conducted on two contrasting soil types (Gray Luvisol [Typic Haplocryalf] loam soil at Breton; Black Chernozem [Albic Argicryoll] silty clay loam at Ellerslie) in north-central Alberta, Canada. On the average, SRet produced greater seed yield (by 205-220 kg ha−1), straw yield (by 154-160 kg ha−1) and total N uptake in seed + straw (by 5.2 kg N ha−1) than SRem in almost all cases in both periods at Ellerslie, and only in the 1997-2009 period at Breton (by 102 kg seed ha−1, 196 kg straw ha−1 and by 3.7 kg N ha−1) for both N sources. There was generally a considerable increase in seed yield, straw yield and total N uptake in seed + straw from applied N up to 75 kg N ha−1 rate for both N sources at both sites and more so at Breton, but the response to applied N decreased with increasing N rate. The ESN was superior to urea in increasing seed yield (by 109 kg ha−1), straw yield (by 80 kg ha−1) and total N uptake in seed + straw (by 2.4 kg N ha−1) in the 1983-1996 period at Breton (mainly at the 25 and 50 kg N ha−1 rates). But, urea produced greater straw yield (by 95 kg ha−1) and total N uptake in seed + straw (by 3.3 kg N ha−1) than ESN in the 1983-1996 period at Ellerslie. The N balance sheets over the 1983-2009 study duration indicated large amounts of applied N unaccounted for (ranged from 740 to 1518 kg N ha−1 at Breton and from 696 to 1334 kg N ha−1 at Ellerslie), suggesting a great potential for N loss from the soil-plant system through denitrification and/or nitrate leaching, and from the soil mineral N pool by N immobilization. In conclusion, the findings suggest that long-term retention of crop residue may gradually improve soil productivity. The effectiveness of N source varied with soil type.  相似文献   

9.
Mesotrione has recently been registered for weed control in maize in Ontario, Canada; however, there is still little information on the doses required to provide 90% control for the complete spectrum of broadleaved weeds that the product controls. Our objective was to determine mesotrione doses that would provide at least 90% control of four economically important weeds, without impacting final maize yield by more than 5% in comparison to a weed-free control. Sixteen field trials were conducted at six Ontario locations in 1999–2001 to evaluate the effectiveness of mesotrione at doses ranging from 9 to 280 g ai ha−1. The doses required to reduce weed biomass by at least 90% (I90) varied with location and year, and for common lambsquarters and velvetleaf differed by application timing. For lambsquarters, the estimated doses required ranged from 10 to 1984 g ai ha−1 for preemergence applications and 15–38 g ai ha−1 for postemergence applications. Doses of 45 and 19–243 g ai ha−1 were required to effectively reduce the biomass of redroot pigweed. Velvetleaf was effectively controlled preemergence with 288 g ai ha−1 and postemergence with 31 g ai ha−1 of mesotrione. Final maize yield was only reduced by more than 5% of a weed-free control when a dose of less than 35 g ai ha−1 of mesotrione was applied. These results show that biologically effective weed control with reduced doses of mesotrione is possible depending on the spectrum of broadleaved weed species present in the field.  相似文献   

10.
Winter mustard (Brassica juncea L.) is not a common crop in the Southeastern United States. With increased interest in biodiesel production, there has been corresponding interest in mustard in this region. The objective of this study was to evaluate the effect of N fertilization (0, 50, 100, 150 kg N ha−1) on productivity, oil content, and oil composition of winter mustard ‘Pacific Gold’ grown at three locations in Mississippi (Stoneville, and two locations at Verona, namely Verona silt loam (Verona-SL) and Verona clay (Verona-C)). Nitrogen did not affect oil content (percent oil). Seed and oil yields (kg ha−1) increased with N application relative to the unfertilized control. At the Verona-C location, the concentration of oleic acid was higher in the 50 kg N ha−1 treatment. At Stoneville, linolenic acid concentration was higher in the 150 kg N ha−1 and lower in the 100 kg/N ha−1 treatment, while it was not different in the other treatments. Overall, the yield of the fatty acids (FA) palmitic, palmitoleic, stearic, oleic, linoleic, linolenic, arachidic, eicosanoic, behenic, erucic, lignoceric, and nervonic acid increased with higher N rates (100 or 150 kg N/h). The highest yield of FA in the two Verona locations were achieved in the 100 kg N ha−1, while greatest yield of FA at Stoneville was achieved in the highest N rate (150 kg N ha−1). Means of mustard oil yields in our study in the higher fertility treatment ranged from 737 to 1094 kg ha−1. This study demonstrated winter mustard production in Mississippi and possibly other areas in the Southeastern United States can be successful and could provide seed and oil yields comparable to yields from other production areas.  相似文献   

11.
Artemisinin isolated from the aerial parts of Artemisia annua L. is a promising and potent antimalarial drug. It posses remarkable activity against both chloroquinine resistant as well as chloroquinine sensitive strains of Plasmodium falciparum. It is also useful in the treatment of cerebral malaria. The relatively low content of artemisinin in A. annua and unavailability of cost effective and viable synthetic protocol however, are major obstacles to the commercial production of the drug. The enhanced production of artemisinin is hence, highly desirable, which can be achieved by adequate and judicious supply of plant nutrients. The present experiment was therefore, designed to study the effect of organic manure (15 tonnes ha−1) and chemical fertilizers (N40+40, P40, K40, S15+15 kg ha−1; nitrogen, phosphorus, potassium and sulphur) on the accumulation of artemisinin and biomass in various plant parts through the developmental stages of A. annua L. Artemisinin yield (kg ha−1) was also determined through the developmental stages of A. annua L. Artemisinin content and artemisinin yield of dried leaves were increased significantly at pre-flowering stage in the plants treated with NPKS (27.3% and 53.6%) and NPK (18.2% and 33.5%), respectively, when compared with control. Maximum dry yield of leaf ranging from 2596 to 3141 kg ha−1 was observed at pre-flowering stage with various treatments.  相似文献   

12.
Artemisia annua L. is an annual aromatic antibacterial herb, with effective antimalarial properties due to the presence of artemisinin. The intention of the present study was to establish plant survival, growth attributes, yield attributes and artemisinin yield of A. annua cv CIM - Arogya with different transplanting months in two cropping seasons (March 2005-February 2006 and March 2006-February 2007) under temperate climatic conditions of Himalaya, India. Artemisinin yield in the dried leaves was found maximum amongst the plants that were transplanted in March (24.39 kg ha−1) and minimum in those transplanted in November (3.39 kg ha−1).  相似文献   

13.
Castor plant (Ricinus communis L.) produces a very important oil for chemical and biofuel industries. However, doubts remain about what the best plant arrangement is to obtain the maximum yield of seeds and oil from short height castor genotypes cultivated in higher plant population. This study evaluated two castor genotypes (FCA-PB and IAC 2028) in 5 plant arrangements (row spacing × in-row spacing): 0.90 m × 0.44 m (traditional), 0.90 m × 0.20 m, 0.75 m × 0.24 m, 0.60 × 0.30 m, and 0.45 m × 0.40 m, in spring-summer and fall-winter cropping seasons in Botucatu, São Paulo State, southeastern Brazil. The traditional plant arrangement comprised an initial plant population of 25,000 plants ha−1, while the others comprised 55,000 plants ha−1. The IAC 2028 genotype presented the greatest plant height, first raceme insertion height, basal stem diameter, number of fruits per raceme and 100 seed weight; however, seed yield and seed oil content were equal between genotypes. Wider stems and higher number of racemes per plant and fruits per raceme were observed with a 0.90 m × 0.44 m plant arrangement, but due to the lowest plant population (25,000 plants ha−1) in this plant arrangement, the higher values of the yield components mentioned above did not result in higher yield. The higher plant population (55,000 plants ha−1) by narrower row spacings (0.45 or 0.60 m) combination produced a higher castor seed yield. The effect of plant arrangement was more intense in the spring-summer cropping season.  相似文献   

14.
Fibre hemp and energy sunflower are potential energy crops for production of solid biomass as renewable energy. The current study estimated (i) the lignin content of fibre hemp and energy sunflower plants grown on different nitrogen treatments and (ii) the quality of the briquettes made from different plant types of fibre hemp (i.e. monoecious and dioecious), energy sunflower and the combination of fibre hemp and energy sunflower. The monoecious and dioecious fibre hemp cultivars (Chameleon, Finola and Santhica-27, USO-31, respectively) and the energy sunflower cultivar Wielkopolski were grown in the experimental field in 2008-2010 on Stagnic Luvisol soil. The plants were grown on N treatments of N0, mineral nitrogen (100 kg N ha−1), cattle slurry (100 kg N ha−1), sewage sludge (100 kg N ha−1) and vetch (100 kg N ha−1). Calorific values (16.6-17.4 MJ kg−1) of briquettes pressed from different materials did not differ significantly and had relatively low sulphur (<0.05%) and chlorine content (0.03-0.37%). Briquettes with higher compactness were made from the sunflower and the dioecious hemp. Dioecious hemp had significantly higher lignin content. The dioecious hemp needs lower GDD values for maturating, its stems lignin content was higher than of monoecious hemp by harvest time and therefore this plant type is more suitable for briquetting in Nordic climatic conditions. Comparison of the different N treatments indicated that application of sewage sludge decreased the emergence and density of the fibre hemp plants and the lignin content per kg of DM.  相似文献   

15.
Farmers are interested to produce sweet maize under organic production systems and propane flaming could be a potential alternative tool for weed control in organic sweet maize production. Therefore, the objective of this study was to investigate the response of sweet maize to broadcast flaming as influenced by propane dose and crop growth stage. Field experiments were conducted at the Haskell Agricultural Laboratory of the University of Nebraska, Concord, NE in 2008 and 2009 using five propane doses applied at three different growth stages of V2 (2-leaf), V5 (5-leaf) and V7 (7-leaf). The propane doses were 0, 13, 24, 44 and 85 kg ha−1. The response of sweet maize to propane flaming was evaluated in terms of visual crop injury, effects on plant height, yield components (plants m−2, tillers plant−1, number of ears plant−1, cob length and number of seeds cob−1) and fresh marketable yield. The response of different growth stages of sweet maize to propane doses was described by log-logistic models. Based on most parameters tested, V7 was the most tolerant while V2 was the least tolerant stage for broadcast flaming. The maximum yield reductions with the highest propane dose of 85 kg ha−1 were 22%, 12% and 6% for V2, V5 and V7 stages, respectively. Furthermore, a 5% yield reduction was evident with 23, 25 and 36 kg ha−1 of propane for V2, V5 and V7 growth stages, respectively, suggesting that plants flamed at V7 stage can tolerate higher dose of propane for the same yield reduction compared to the other growth stages. We believe that flaming has a potential to be used effectively in organic sweet maize production if properly used.  相似文献   

16.
Wild oat (Avena fatua L.) is the most troublesome weed in cereal crops in Argentina. With the aim of studying the effects of different herbicides, doses, and wild oat growth stage at application on weed control and crop yield, field experiments were conducted in wheat and barley crops during three growing seasons in the south of Buenos Aires Province, Argentina. Treatments were post-emergence applications of new herbicide, pinoxaden + cloquintocet mexyl (5%-1.25%), at doses that ranged from 20 g to 60 g a.i. pinoxaden ha−1, applied at two to three leaves and the beginning of tillering of wild oat. In addition, standard treatments were included and applied at the same wild oat growth stages. Diclofop methyl at 511 g a.i. ha−1 and fenoxaprop-p-ethyl at 55 g a.i. ha−1 were applied in barley. In wheat, diclofop methyl was replaced by clodinafop-propargyl + cloquintocet mexyl (24%-6%) at 36 g a.i. clodinafop-propargyl + 9 g cloquintocet mexyl ha−1 and in 2008/09 wheat experiments, iodosulfuron plus metsulfuron methyl (5%-60%) at 3.75 g a.i. ha−1 + 3 g a.i. ha−1 also was included. In both crops, pinoxaden at 30 g a.i. ha−1 and at higher rates, fenoxaprop-p-ethyl and clodinafop-propargyl gave the best control of wild oat. In 2006/07 wheat crops, treatments applied at tiller initiation provided better control than the early timing averaged across herbicides. However, wheat yield generally was greater with early application. In barley, wild oat control and crop yield were similar regarding time of application. Variations in crop yield were correlated with grain number m−2 both in wheat and barley, but relationships between both grain number and spikes m−2 and with grains per spike were identified only in wheat.  相似文献   

17.
Large scale cultivation of the cardoon Cynara cardunculus L. for biomass production was installed using common agricultural practices and machinery in a total of 77.4 ha in southern Portugal in a region characterized by very hot and dry summers. This species is a perennial with an annual growth cycle. Installation by sowing was successful in spite of the extreme drought that occurred during this first cycle (221 mm), and the plants developed well during the second cycle (with 556 mm rainfall) with a mean density of 27 thousand plants per ha. Aerial photographs showed that 45.8 ha of the field had over 50% of ground cover by cardoon plants. The observed differences in soil occupation could be explained by rock outcrops, soil heterogeneity and land topography. The field biomass yield was estimated at 7.5 t ha−1 and the plants at harvest had on average 2.1 m height and 2.2 cm stalk diameter, with 5.3 capitula per plant. Stalks represented 59.1% of total dry biomass. The capitula contain small oil seeds with an average of 126 seeds per capitulum and weighing 32 g per 1000 seeds. The mean seed yield was 603 kg ha−1. The results of this experiment confirm that Cynara crops are suitable for biomass production in Mediterranean regions and that large scale operation can be applied including whole plant harvest or field fractionation for seed recovery. Careful attention to cultural practices was deemed important for field homogeneity and production. The observed plant variation, namely in oil seed production, suggests potential improvements through breeding.  相似文献   

18.
Poor yields of East African highland bananas (Musa spp., AAA-EAHB) on smallholder farms have often been attributed to problems of poor soil fertility. We measured the effects of mineral fertilizers on crop performance at two sites over two to three crop cycles; Kawanda in central Uganda and Ntungamo in southwest Uganda. Fertilizers were applied at rates of 0N–50P–600K, 150N–50P–600K, 400N–0P–600K, 400N–50P–0K, 400N–50P–250K and 400N–50P–600K kg ha−1 yr−1. In addition 60Mg–6Zn–0.5Mo–1B kg ha−1 yr−1 was applied to all treatments, with the exception of the control plots which received no fertilizer. Fresh bunch mass and yield increased with successive cycles. Yield increases above the control ranged from 3.1 to 6.2 kg bunch−1 (average bunch weight for all treatments 11.5 kg bunch−1) and 2.2–11.2 Mg ha−1 yr−1 (average yield for all treatments 15.8 Mg ha−1 yr−1) at Kawanda, compared with 12.4–16.0 kg bunch−1 (average bunch weight for all treatments 14.7 kg bunch−1) and 7.0–29.5 Mg ha−1 yr−1 (average yield for all treatments 17.9 Mg ha−1 yr−1) at Ntungamo. The limiting nutrients at both sites were in the order K > P > N. Potassium, N and P foliar nutrient mass fractions were below previously established Diagnosis and Recommendation Integrated System (DRIS) norms, with the smallest K mass fractions observed in the best yielding plots at Ntungamo. Total nutrient uptakes (K > N > P) were higher at Ntungamo as compared with Kawanda, probably due to better soil moisture availability and root exploration of the soil. Average N, P and K conversion efficiencies for two crop cycles at both sites amounted to 49.2 kg finger DM kg−1 N, 587 kg finger DM kg−1 P and 10.8 kg finger DM kg−1 K. Calibration results of the model QUEFTS using data from Ntungamo were reasonable (R2 = 0.57, RMSE = 648 kg ha−1). Using the measured soil chemical properties and yield data from an experiment at Mbarara in southwest Uganda, the calibrated QUEFTS model predicted yields well (R2 = 0.68, RMSE = 562 kg ha−1). We conclude that banana yields can be increased by use of mineral fertilizers, but fertilizer recovery efficiencies need to improve substantially before promoting wide-scale adoption.  相似文献   

19.
Poor seed yield of soybean in Mediterranean-type environments may result from insufficient iron (Fe) uptake and poor biological nitrogen (N) fixation due to high bicarbonate and pH in soils. This study was conducted to evaluate the effects of N and Fe fertilization on growth and yield of double cropped soybean (cv. SA 88, MG III) in a Mediterranean-type environment in Turkey during 2003 and 2004. The soil of the experimental plots was a Vertisol with 176 g CaCO3 kg−1 and pH 7.7 and 17 g organic matter kg−1 soil. Soybean seeds were inoculated prior to planting with commercial peat inoculants. N fertilizer rates were 0, 40, 80, and 120 kg N ha−1 of which half was applied before planting and the other half at full blooming stage (R2). Fe fertilizer rates were 0, 200 and 400 g Fe EDTA (5.5% Fe and 2% EDTA) ha−1. It was sprayed as two equal portions at two trifoliate (V2) and at five trifoliate stages (V5). Plants were sampled at flower initiation (R1), at full pod (R4) and at full seed (R6) stages. Application of starter N increased biomass and leaf area index at R1 stage whereas Fe fertilization did not affect early growth parameters. N application continued to have a positive effect on growth parameters at later stages and on seed yield. Fe fertilization increased growth parameters at R4 and R6 stages, and final seed yield in both years. This study demonstrated an interactive effect of N and Fe fertilization on growth and yield of soybean in the soil having high bicarbonate and pH. There was a positive interaction between N and Fe at the N rates up to 80 kg N ha−1. However, further increase in N rate produced a negative interaction. Fertilization of soybean with 80 kg N ha−1 and 400 g Fe ha−1 resulted in the highest seed yield in both years. We concluded that application of starter and top dressed N in combination with two split FeEDTA fertilization can be beneficial to improve early growth and final yield of inoculated soybean in Mediterranean-type soils.  相似文献   

20.
The nitrogen (N) requirement of dedicated crops for bioenergy production is a particularly significant issue, since N fertilisers are energy-intensive to make and have environmental impacts on the local level (NO3 leaching) and global level (N2O gas emissions). Nitrogen nutrition of Miscanthus × giganteus aboveground organs is assumed to be dependent on N stocks in belowground organs, but the precise quantities involved are unknown. A kinetic study was carried out on the effect of harvest date (early harvest in October or late harvest in February) and nitrogen fertilisation (0 or 120 kg N ha−1) on aboveground and belowground biomass production and N accumulation in established crops. Apparent N fluxes within the crop and their variability were also studied.Aboveground biomass varied between 24 and 28 t DM ha−1 in early harvest treatments, and between 19 and 21 t DM ha−1 in late harvest treatments. Nitrogen fertilisation had no effect on crop yield in late harvest treatments, but enhanced crop yield in early harvest treatments due to lower belowground biomass nitrogen content. Spring remobilisation, i.e. nitrogen flux from belowground to aboveground biomass, varied between 36 and 175 kg N ha−1, due to the variability of initial belowground nitrogen stocks in the different treatments. Autumn remobilisation, i.e. nitrogen flux from aboveground to belowground organs, varied between 107 and 145 kg N ha−1 in late harvest treatments, and between 39 and 93 kg N ha−1 in early harvest treatments. Autumn remobilisation for a given harvest date was linked to aboveground nitrogen accumulation in the different treatments. Nitrogen accumulation in aboveground biomass was shown to be dependent firstly on initial belowground biomass nitrogen stocks and secondly on nitrogen uptake by the whole crop.The study demonstrated the key role of belowground nitrogen stocks on aboveground biomass nitrogen requirements. Early harvest depletes belowground nitrogen stocks and thus increases the need for nitrogen fertiliser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号