首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A better understanding of the agronomic importance of planting date and the influence of cold temperatures and photoperiod during germination and plant growth may lead to better management strategies for cultivation of the sweet white lupin (Lupinus albus). The effects of planting date (temperature and photoperiod) were determined on the number of days to flowering, yield and yield components of four early to medium and one late sweet white lupin genotype in a field trial at Potchefstroom, South Africa, planted during February 1996 to January 1997. Moisture stress was avoided through regular irrigation. Duration of the developmental phases planting date to emergence, emergence to floral initiation, initiation to first flower, duration of flower and days to physiological and harvest maturity was related to field measurements of temperature and photoperiod. Differences in the main determinants of yield, i.e. seeds per pod, pods per plant, single seed mass (SSM), plant and pod height and yield, were measured. Results showed that both temperature and photoperiod influence the growth and development of the Lupinus albus genotypes ‘Esta’, ‘Hantie’, ‘Tifwhite’, ‘Kiev’ and ‘LAL 186’. Temperature influences include the effect of vernalization at seedling emergence. Minimum grass temperatures under 5 °C at emergence are effective for vernalization. However, after grass temperatures at emergence increased again from June to December, to gether with an increase in the photoperiod length, ‘Tifwhite’ as well as the other genotypes still flowered earlier, confirming that these cultivars are long‐day plants, which is in accordance with controlled‐environment data. Cool vernalizing temperatures thus not only influence obligate vernalization requiring genotypes such as ‘Tifwhite’, but also influence the non‐obligate genotypes studied. Plan‐ting date had a significant influence on pods per plant, single seed mass (SSM) and seed yield. In all trials laterplanting, from June to November, decreased SSM and seed yield. The highest seed yield of 1.5 t ha?1 was obtained for the 10 June planting date and the lowest average yield of 0.450 t ha?1 for the 5 November planting date.  相似文献   

2.
The effects of short-term exposure of seedlings to suboptimal temperature (14 °C for 1 or 4 h in 24 h cycles) during chilling (5 °C for 12 days) on the water status and intensity of photosynthesis of tolerant (TG) and chilling-sensitive (SG) maize genotypes were studied. Daily warming for 1 or 4 h resulted in a decrease in the hydration of the seedlings to 31.1 % and 61.5 % (SG) and 14.8 % (TG) and 39.1 % (SG), respectively, in comparison with the continuously chilled control. During warming for 4 h, both genotypes absorbed water from soil in amounts that partly compensated for its loss through transpiration, after the plants had been moved to the lower temperature. A protective effect of shorter warming (1 h) on the hydration of the seedlings was a result of a strong, stomatal limitation of transpiration during the initial days of chilling. Warming for 1 or 4 h also increased the ability of TG stomata to close in reaction to water deficit in chilling conditions. The effect of increased temperature delayed the decrease of PN in leaves and limited RGR inhibition of the seedling mass caused by chilling. Daily warming of plants at the seedling phase (14 and 20 °C for 1 or 4 h) reduced the unfavourable effect of chilling (5 °C for a period of 8 days) on the final yield, the filling of caryopses and their number in a cob after growth in natural conditions.  相似文献   

3.
Vernalization and photoperiodism are two important physiological processes related to yield of many cool-season annual crops. The flowering response of 20 flax (Linum usitatissimum L.) genotypes to two vernalization regimes (vernalized and unvernalized) and two photoperiod treatments (10 and 14 h) was evaluated in a growth chamber study in 2010 and 2011. The results suggest that photoperiod, vernalization, and genotype all had an effect on earliness as measured by days to anthesis. Unlike flax grown in the Upper US Midwest and Canada, Texas flax is grown in the fall due to high spring and summer temperatures. Genotype interaction was observed with both vernalization and photoperiod. Specifically, flax genotypes from Texas (winter type) were sensitive to both vernalization and photoperiods for flowering. Texas genotypes delayed anthesis for 7 days or more in unvernalized seedlings, whereas flowering time of most other spring grown flax genotypes was unaffected by the vernalization treatments. Texas genotypes also delayed anthesis for 12 days or more under vernalized and short day conditions, whereas most other genotypes were not influenced by photoperiodism in vernalized seedlings. The selection for vernalization and photoperiodic sensitivity in Texas genotypes and introgression of these traits into recently adapted spring grown genotypes is needed for development of high yielding flax genotypes for southern Great Plains production areas.  相似文献   

4.
Germinating seeds and young winter rape plants were vernalized 56–63 days at 5 or 2°C under nine-hour days or in darkness. The highest percentage of generative plants and the most rapid flowering were obtained following the vernalization of young seedlings and germinating seed under conditions of nine-hour day, at 5°C. The least effective induction of generative development followed the vernalization at 2°C in continuous darkness. The vegetation period from the end of vernalization till the beginning of flowering was the shortest when four-week-old plants were vernalized under conditions of nine-hour day, yet the vegetation period from the beginning of germination to flowering was the shortest when seed germinating under conditions of nine-hour day were vernalized. The period was extending as older plants were being vernalized. Data indicating that the optimal temperature for vernalization of older plants is higher than for germinating seed and young seedlings were obtained.  相似文献   

5.
Floral traits of three Japanese and one European buckwheat varieties were studied in a phytotron under three photoperiods (short-day 10/14 h, long-day 14/10 h, extreme long-day 18/6 h) and two thermoperiods (25/20, and 15 °C constant temperature). The Japanese varieties showed a strong delay in flowering under prolonged day length, whereas one European variety reacted almost day-neutral. Also affected by the photoperiod were the number of flower clusters as well as their sizes. A constant low temperature of 15 °C led to a strong delay in flowering under short- and long-day in all the varieties tested. In particular, the Japanese varieties were sensitive to temperature, developing more flower clusters under high temperature. Furthermore the experiments revealed complex genotype/pliotopenod/thermoperiod interactions. The study, conducted to investigate the causes of low seed-set observed in buckwheat, offered some suggestions for new breeding strategies. Insensitive genotypes, showing less sensitivity to photoperiod as well as to thermoperiod, should be included in further buckwheat improvement.  相似文献   

6.
Germinating seeds and young plants of winter rape var. Górczañski were vernalized for 56–63 days under conditions of 9-hour day, at the temperature 2 and 5 °C and in continuous darkness at the temperature 2 °C. After vernalization the plants grew under conditions enabling to complete vernalization: in a glass-house at the temperature day/night 15/10 °C and in semi natural conditions of open vegetation hall in the period from June till August. After sub-optimal vernalization further growth of the plants at lowered temperature increased its effectiveness (completion of vernalization). Depending on the degree of the vernalization of the plants the completion of their vernalization was both obligatory, i.e. conditioning the acquisition of the ability of generative development, and facultative i.e. accelerating this development. It has been demonstrated that the population of plants of the examined variety is strongly differentiated not only with respect of vernalization requirements in the particular plants, but also what regards the effectiveness of vernalization completion. New observations have been made indicating that the mechanisms controlling the successive phases of generative development, i.e. phase of forming flower buds and the flowering phase are not identical which may be interpreted as indicating that the "flowering factor" is polymorphous.  相似文献   

7.
Summary Development in wheat is strongly controlled by sensitivity to vernalization and photoperiod, and to a lesser degree by non-vernalizing temperature and intrinsic earliness. A method to measure effect of vernalization in wheats with winter habit is described. Twenty seven wheats with winter habit and eight with spring/facultative habit were studied, comprising breeding lines and cultivars with maturities suited to south-central New South Wales. Effect of vernalization on the development of these wheats was quantified by integrating responses to vernalizing treatments of differing duration. Intrinsic earliness was measured as time for vernalized seedlings to grow to ear emergece in an 18h photoperiod with day/night temperature of 21/16°C, and response to photoperiod as the difference in time to ear emergence between 9 and 18h daylengths. Integrated response to vernalization is sensitive to both cumulative and thresh-hold responses and is applicable to wheats of all habit type. Integrated response to vernalization and intrinsic earliness were positively associated within wheats with winter habit. Wheats were largely of restricted origin, so that there were few allelic differences at Vrn loci to disrupt this association, which suggests intrinsic earliness may modify response to vernalization. Though integrated response to vernalization was measured with artificial treatments, it was strongly associated with ear emergence for wheats with winter habit when grown at a site in New South Wales.  相似文献   

8.
A two gene epistatic model in which a dominant “winter growth habit” allele at Vrn-H2 encodes a repressor with a corresponding binding site in a recessive vrn-H1 allele explains the vernalization response phenotypes in an array of barley germplasm. In order to validate the model genetically, we developed an F 2 population (and F 2-derived F 3 families) from the cross of Hardy (winter) × Jubilant (spring). Using gene-specific primers, we determined the Vrn-H1 and Vrn-H2 allele architecture of each F 2 plant and we measured the growth habit phenotype of each F 2 plant via phenotyping of its F 3 progeny under controlled environment conditions. We used a set of treatments involving plus/minus vernalization under long photoperiod and vernalization under short photoperiod. Alleles at the two loci showed expected patterns of segregation and independent assortment. Under long day conditions, the two Vrn genes were the primary determinants of heading date, regardless of the vernalization treatment. Under short photoperiod, the effects of these loci were not significant. There was incomplete dominance at Vrn-H1: heterozygotes were significantly later to head than Vrn-H1Vrn-H1 genotypes. Vrn-H2 genotypes were also significantly later to head, even when plants were vernalized. These results validate the two-gene epistatic model for vernalization response under long-day conditions. The results under short photoperiod, and the variance in flowering with vernalization, confirm that while the two Vrn genes are the primary determinants of vernalization response, they are part of a larger interactome that determines the timing of the vegetative to reproductive transition.  相似文献   

9.
I. Karsai    K. Mészáros    P. Szücs    P. M. Hayes    L. Láng  Z. Bedö 《Plant Breeding》1999,118(5):399-403
The objectives of this research were to determine the individual and interaction effects of the Ppd-H1 and Sh2 loci on agronomic traits under short- and long-photoperiod regimes. Nineteen doubled haploid (DH) lines from the ‘Dicktoo’בMorex’ mapping population, which represented the four genotypes at the Ppd-H1 and Sh2 loci, were pheno-typed in controlled environment photoperiods. Both Ppd-H1 and Sh2 had significant effects on several agronomic traits, in addition to their role in determining first node appearance and flowering time. The magnitude of these effects depended on daylight. Under long-day conditions (18 h) Ppd-H1, and under short-day conditions (12 h) Sh2 was a significant determinant of most characters. The interactions between these two loci were significant for several characters, particularly for yield components, under both long- and short-photoperiod regimes. Under the long-day treatment, Ppd-H1 influenced plant height through the determination of node number. There was an epistatic association between the two loci for both 1000-kernel weight and tillering. The combination of photoperiod insensitivity and vernalization requirement caused a significant increase in tillering. This was paralleled by a decrease in 1000-kernel weight. Under the long-day treatment, neither Ppd-H1 nor Sh2 influenced plant yield. Under short-day conditions, the combination of photoperiod insensitivity and vernalization requirement had a pronounced negative effect on plant yield.  相似文献   

10.
J. Hoogendoorn 《Euphytica》1985,34(2):559-571
Summary Differences in response to photoperiod and vernalization and genetic variation independent of photoperiod and vernalization (earliness per se), affecting time of ear emergence of wheat, were identified in controlled environment experiments with 33 varieties of diverse geographical origin. The results were compared with an analysis of time of ear emergence of 10409 T. aestivum accessions from the USDA Small Grain Collection grown from autumn sowings in Pendleton, Oregon, and spring sowings in Fargo, North Dakota. The effect of differences in photoperiod and vernalization sensitivity on time of ear emergence was similar to the effect of earliness per se, both under controlled environment conditions and in the field. Most of the accessions from low latitude regions reached ear emergence rapidly owing to their insensitivity to photoperiod and vernalization and earliness per se factors accelerating ear emergence. Lateness was common among accessions from Northern Europe, Afghanistan and Turkey, which was due to sensitivity to photoperiod and vernalization, and to earliness per se factors delaying ear emergence. The physiological basis of earliness per se is discussed.  相似文献   

11.
Tef [ Eragrostis tef (Zucc.) Trotter] is an annual C4 grass crop that originated in Ethiopia. It has potential as a grain crop in the Great Plains because of its tolerance to drought and high temperatures. In Ethiopia, tef seed is typically broadcast on the soil surface and lightly incorporated. Shallow planting depths are used because the seed is very small and emergence can be limited by soil crusting. If planting equipment is to be used, planting depth may be important for successful tef production. The objective of this study was to identify optimal depths and soil temperatures to aid in developing tef planting recommendations for the central Plains. Tef was planted at five depths (0, 0.6, 1.3, 2.5 and 5.0 cm) in pots filled with a silt loam soil, and pots were placed in growth chambers at four temperature regimes (day/night: 15/19 °C; 19/23 °C; 23/27 °C and 27/31 °C). No plants emerged from the 5.0-cm depth, so this depth was not included in the analysis. Emergence was greatest for planting depths of 0.6 and 1.3 cm and lower at 0 and 2.5 cm depths. Temperature did not affect final emergence, measured 21 days after planting (DAP), but did influence emergence rates during the first 9 DAP. Plant dry matter production increased as planting depth increased, but plant dry matter per pot was not different among planting depths greater than 0.9 cm, suggesting that compensation between plants across different plant densities began early in the plants' life cycles. Our results show that tef seed can emerge from depths between 0.6 and 1.3 cm and that soil temperatures below 19 °C can slow emergence but should not affect final stands.  相似文献   

12.
Summary The inheritance of flowering time and its component processes, vernalization and photoperiod response, were studied in two crosses of subterranean clover (Trifolium subterraneum L.) using a field sowing and four controlled environment sowings with different combinations of vernalization and photoperiod. Time to flowering was under polygenic control and was highly heritable. For both vernalization and photoperiod response, there was dominance for a low response, or earliness. A simple genetic control was indicated for photoperiod response. The results for vernalization response were not clear cut, although the character appeared to be under polygenic control. An interaction between vernalization and photoperiod response was evident in three of the four cultivars studied. This made it impossible to separate the effect of these two component processes and complicated the study of their inheritance. Node of first flower on the main stem was closely related to flowering time and its use led to similar conclusions in the inheritance studies.  相似文献   

13.
Summary The effect of gibberellic acid containing mixtures, silver thiosulphate and extended photoperiod on flowering induction in 16 non-flowering potato genotypes and on flowering enhancement in 14 normally potato flowering genotypes was studied in sub-tropical plains of India during short-day autumn crop season of 2000–2001 and 2001–2002. Extended photoperiod alone was not successful in induction of flowering. Silver thiosulphate in combination with extended photoperiod effectively induced flowering in 16 potato genotypes studied for flowering induction. Induced flowers of some genotypes were male fertile. Normal berry setting was observed on induced flowers and seeds obtained from such berries germinated normally. Gibberellic acid containing treatments were not very effective in flower induction as they induced some flowering only in few genotypes. In the normally flowering genotypes silver thiosulphate enhanced maximum flowering and duration of flowering to a great extent.  相似文献   

14.
Vernalization insensitivity is a key feature of domesticated chickpea, and its genetic basis is not well understood. We studied vernalization response among hybrid progeny derived from two domesticated × wild crosses. The wild parents are vernalization‐sensitive, late‐flowering genotypes while both domesticated parents are vernalization insensitive. Parental lines and hybrid progeny were tested with (28 days at 4°C) and without vernalization (control). The difference in mean days to flower (?DTF) between control and vernalization treatments was used to assess the flowering vernalization response. A wide range of ?DTF values was observed among the hybrid progeny. Strong genotype by environment interaction effect on ?DTF was observed for the parental accessions and hybrid progeny. We used the ?DTF values to select vernalization responsive and non‐responsive progeny lines. However, the genotype × environment interaction strongly interfered with our selection. Chickpea breeders interested in using the wild progenitor as a donor of exotic traits should be aware of the possibility of introducing vernalization response alleles that may alter the phenology of their breeding materials in an unpredictable manner.  相似文献   

15.
Wheat is one of the most widely cultivated crops and, being the staple diet of more than 40 countries, it plays an imperative role in food security. Wheat has remarkable genetic potential to synchronize its flowering time with favourable environmental conditions. This ability to time its flowering is a key factor for its global adaptability and enables wheat plant to produce satisfactory grain yield under very diverse temperature and soil moisture conditions. Vernalization (Vrn), photoperiod (Ppd) and earliness per se (Eps) are the three genetic systems controlling flowering time in wheat. The objective of this review is to provide comprehensive information on the physiological, molecular and biological aspects of the three genetic constituents of flowering and maturity time in wheat. Reviews written in the past have covered either one of the aspects; and generally focused on one of the three genetic constituents of the flowering time. The current review provides (a) a detailed overview of all three gene systems (vernalization, photoperiod and earliness per se) controlling flowering time, (b) details of the primer sequences, their annealing temperatures and expected amplicon sizes for all known markers of detecting vernalization and photoperiod alleles, and (c) an up to date list of QTLs affecting flowering and/or maturity time in wheat.  相似文献   

16.
Characterization of large numbers of breeding lines for vernalization and photoperiod response in wheat is needed to enhance adaptation. A total of 20 wheat lines were evaluated for response to vernalization and photoperiod under two controlled environments and high ambient air temperatures under field conditions. Vernalized and non-vernalized seedlings were transplanted into pots and placed in three photoperiod (8, 12 and 16 h of light) cabinets, in the greenhouse or in growth chambers. Days to anthesis decreased with increasing photoperiod. Vernalized plants flowered earlier than non-vernalized. There was a significant correlation between days to anthesis in the greenhouse and the growth chamber (r = 0.88, P < 0.001). Basal vegetative period, effect of vernalization and photoperiod from the two screening techniques were positively correlated with each other. Growth habit, vernalization requirement and heading date in the field were highly correlated with the main effect of vernalization in the two controlled environments. The results indicate that selection for vernalization response in a large number of genotypes can be achieved under high ambient air temperatures in the field and the selected material can subsequently be screened for photoperiod response under greenhouse conditions.  相似文献   

17.
In potato, dry matter (DM) production and partitioning between plant organs and N accumulation are affected by N application; however, since cultivars differ in these processes, N fertilization must be adjusted to each cultivar. This paper studies the response of potato cultivars differing in maturity to N fertilization in the south-east of the Buenos Aires Province (37°45'S, 58°18'W) in two growing seasons. Treatments combined four N doses (0–180 kg ha−1) and four cultivars: Jaerla (early), Spunta (mid-early), Mailén INTA (medium late) and Huinkul MAG (late). DM and N content were measured in leaves, stems and tubers throughout the growing season and intercepted photosynthetically active radiation was regularly assessed. There was an increase in tuber yield up to intermediate N doses (60 kg ha−1 in 1990 and 120 kg ha−1 in 1991). Tuber yield was similar for Spunta and Huinkul MAG. There was no interaction between cultivar and N fertilization for tuber dry matter yield. DM partitioning to leaves and tubers during the growing season differed among cultivars, but N availability affected partitioning similarly for all cultivars. Jaerla had a high and Huinkul MAG had a low radiation use efficiency between plant emergence and the beginning of tuber formation. Jaerla, Spunta and Mailén INTA reached maximum N content in foliage at ≈60 days after emergence and Huinkul MAG 20 days later. Total N content at maturity varied between 120 and 250 kg ha−1 and was affected by cultivar and N dose. The results will help to improve N fertilization recommendations and management practices as related to each cultivar under the environmental conditions of this region.  相似文献   

18.
Three experiments were conducted to investigate the effects of high temperatures during seed filling on the alkaloid content of narrow-leaf lupin cultivars. Six cultivars of Lupinus angustifolius were grown in field experiments under different weather conditions in four subsequent years. A high content of alkaloids was found in the seeds harvested in 2006, in which the growing season was characterized by high ambient temperatures during seed filling. A second experiment was performed in the green house at different temperatures (10, 20 and 30 °C) using one cultivar in 2006. This experiment confirmed the results of the field experiments as higher temperatures resulted in a higher alkaloid content of the seeds. In a third temperature stress experiment, three cultivars were grown under long day conditions at day/night temperatures of 30 °C/16 °C and 20 °C/16 °C in growth chambers in comparison with an outdoor control at mean temperatures of 15.5 °C. Like in the other experiments, the seed alkaloid content increased with rising temperature. From these results, it may be concluded that the seed alkaloid content is strongly influenced by the temperature during initiation of flowering up to pod ripening. This has to be taken into account e.g. in trials for cultivar release in which the alkaloid content is a knock-out criterion.  相似文献   

19.
An understanding of the changes in phenology resulting from durum wheat breeding in Italy can inform breeding objectives for durum wheat improvement in Mediterranean environments. The phenology of a set of 20 durum wheat cultivars, grouped according to their period of release into ‘old’, ‘intermediate’ and ‘modern’, was compared in two sowings (September and May) with or without artificial vernalization. The vernalization treatment and the 6 h range in daylength and wide variation in temperature were responsible for the variation in anthesis date from 817 to 2105 °Cd (base 0 °C) from sowing. Old cultivars had the greatest photoperiod sensitivity and cold requirement, intermediate ones the greatest earliness per se and modern ones the least photoperiod sensitivity and greatest earliness per se. The first substantive effect of breeding in Italy on phenology was achieved with introgression from syriacum germplasm, which increased earliness both by an increase in earliness per se and a reduction in photoperiod sensitivity. The next step, characterized by the introduction of the semi-dwarfing gene Rht1, had a specific effect of reducing photoperiod sensitivity, although the modern group of varieties has a relatively low level of earliness per se, which is fundamental for preserving and increasing the length of the TS-anthesis period. Some quantitative cold requirement still persists in Italian germplasm, although all the cultivars tested are classified as spring types. The main phenological events affected by the changes in anthesis date resulting from breeding depend on the mechanism involved. Variability among cultivars within each group is also described.  相似文献   

20.
Flood  R. G.  Halloran  G. M. 《Euphytica》1984,33(1):91-98
Summary Studies were made of days to ear emergence under the constant temperatures of 9, 14, 19 and 25°C and 16 h photoperiod in three sets of wheat lines each possessing genotypes differing for developmental responses.Days to ear emergence in three near-isogenic lines of the wheat cultivar Triple Dirk, which differed for vernalization response, increased as the strength of the response increased. At the four temperatures Triple Dirk D (Vrn 1 vrn 2) was not significantly different from normal Triple Dirk (Vrn 1 Vrn 2) but Triple Dirk B (vrn 1 Vrn 2) was significantly (P=0.01) later than normal Triple Dirk at each temperature. This indicates that the vrn 1 allele confers stronger vernalization response than vrn 2 over the range of temperatures (9–24°C). However, Triple Dirk C (vrn 1 vrn 2) failed to head after 120 days at each temperature indicating strong interaction between vrn 1 and vrn 2 with each other (and possibly the Triple Dirk back-ground) to give a much stronger vernalization response than predictions from additivity of their individual effects.The second set comprised the four Chinese Spring/Thatcher chromosome substitution lines CS/T 3B, 6B, 7B and 5D, plus Chinese Spring and Thatcher, and were grown in the unvernalized condition. CS/T 5D was similar in days to ear emergence as Chinese Spring at all four temperatures but the other three lines were earlier to ear emergence, particularly as the temperature increased. Days to ear emergence was fastest at 14°C in all lines, except CS/T 3B, in which it decreased progressively from 9 to 24°C.The third set of Chinese Spring and Thatcher and the homoeologous group 2 chromosomes of Thatcher substituted in Chinese Spring, the group which is considered to be involved in the control of photoperiod sensitivity. The three substitution lines responded differently to temperature compared with Chinese Spring and with each other, with chromosome 2D being the least, and chromosome 2B the most, responsive to temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号