首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
硒以及硒钴配合施用对紫花苜蓿生长的调控效应   总被引:4,自引:2,他引:2  
通过叶面喷洒硒肥以及硒钴配合肥研究其对不同生育期内紫花苜蓿生长的调控作用.结果表明:(1)2种微肥在苜蓿分枝期到开花期期间施用均能显著提高其茎叶比,降低鲜干比;(2)硒肥仅增加苜蓿营养生长期间的地上生物量,硒钴配合肥则显著增加苜蓿整个生长期间的地上生物量;(3)2种微肥均能够显著增加紫花苜蓿10~20cm土层中的地下生物量,有利于苜蓿对耕作层内土壤营养和水分的吸收和利用,其中叶面喷洒硒钴配合肥使10~20cm和0~50cm土层中的地下生物量比对照分别提高了18.9%和7.5%,比单施硒肥效果好;(4)硒肥以及硒钴配合肥对30~50cm土层地下生物量的生长有明显的抑制作用,影响到紫花苜蓿的抗旱能力且硒钴配合肥比硒肥的影响更大.  相似文献   

2.
为了明确柳枝稷(Panicum virgatum L.cv.Alamo)对土壤水分垂直分布条件的适应性、根系分布规律及生长特点,以便更好地确立根区水分最优调控措施,采用土柱法研究了不同土壤水分垂直分布特征对建植当年柳枝稷地上植株和根系指标的影响。结果表明:与对照相比,0~60 cm和0~120 cm土层土壤体积含水量低于10%时,除地上生物量和籽粒产量差异不显著外,其他指标均有显著差异(P<0.05),其中倒三叶长度分别降低12.5%和22.1%、宽度分别降低5.7%和18.4%、总叶绿素含量分别降低7.5%和10.6%、地下生物量分别降低56.5%和58.6%、根长分别降低41.0%和40.7%、根表面积分别降低45.6%和49.4%、根体积分别降低51.1%和56.0%,但地上生物量的水分利用效率分别提高17.5%和88.5%。表层0~60 cm灌水条件下,柳枝稷的根长、根表面积、地上生物量、籽粒产量和各土层根系生物量与对照差异不显著,但地上生物量的水分利用效率提高了111.0%。随着灌水层深度的增加,根系的生物量重心由62.9 cm(CK)下降至71.2 cm,不同直径的根系表现出了不同的适应情况。  相似文献   

3.
紫花苜蓿根系生物量垂直分布规律   总被引:3,自引:0,他引:3  
本文综述了紫花苜蓿(Medicago sativa L.)根系生物量垂直分布的影响因子和若干自然区域内紫花苜蓿根系生物量的垂直分布及其规律。紫花苜蓿根系生物量垂直分布的影响因子包括土层厚度、地下水位、土壤特性、施肥、灌溉、刈割、混播、品种和生长年限。土层越薄、地下水位越高、土壤障碍(酸、碱、盐、粘重和紧实)越重,紫花苜蓿根系生物量在土壤浅层的分布比例越高。施(磷)肥会提高紫花苜蓿根系生物量在土壤深层的分布比例。灌溉对紫花苜蓿根系生物量垂直分布的影响,因灌溉定额、灌水定额和灌水频率的不同而异,降低灌溉定额可提高紫花苜蓿根系生物量在土壤深层的分布比例;降低灌水定额和提高灌水频率则提高其在土壤浅层的分布比例。随着刈割频率的增加,紫花苜蓿根系生物量在土壤浅层的分布比例逐渐提高。与禾本科牧草混播,使紫花苜蓿根系生物量在表土层的分布比例提高。不同品种紫花苜蓿根系生物量的垂直分布比例存在差异。随着生长年限增加,紫花苜蓿根系生物量在土壤深层的分布比例提高。一般而言,由浅至深,紫花苜蓿根系生物量逐层递减,而且,随着土层深度增加呈指数函数规律递减。通常情况下,紫花苜蓿根系生物量在0~30cm土层的分布比例在60%~90%之间,0~60cm土层为65%~95%。  相似文献   

4.
为探讨科尔沁沙地紫花苜蓿适宜灌溉量,以指针式喷灌机下建植两年紫花苜蓿为试验材料,根据联合国粮农组织推荐的Penman-Monteith方法,以日为步长计算紫花苜蓿实际需水量(ET_C)。基于ET_C设置四个灌溉水平W1(60%ET_C)、W2(80%ET_C)、W3(100%ET_C)、W4(120%ET_C),研究不同灌溉量对科尔沁沙地紫花苜蓿产量和水分利用效率的影响。结果表明:2018年刈割三茬的紫花苜蓿产量和水分利用效率随灌溉量增加呈现先增加后降低的趋势。其中第一茬内株高、生长速度、分枝质量随灌溉量的增加而增加,分枝数、地上生物量和水分利用效率随灌溉量增加变现为先增加后降低;第二茬产量在各处理间无显著性差异(P0.05),水分利用效率随灌溉量的增加逐渐降低;第三茬产量、水分利用效率在W2、W3处理下无显著性差异(P 0.05)。综合考虑产量、水分利用效率,建议生育期内采用W3的灌溉水平进行灌溉。  相似文献   

5.
不同灌溉方式对紫花苜蓿产量及灌溉水利用效率的影响   总被引:4,自引:0,他引:4  
郭学良  李卫军 《草地学报》2014,22(5):1086-1090
通过监测不同灌溉方式灌溉后水分的运动变化规律,调查不同土层中紫花苜蓿(Medicago sativa)根系的分布特征。结果表明:地下滴灌的水分主要集中于10~35 cm的土层,喷灌集中分布于10~40 cm的土层,漫灌水分可以渗透至60 cm以下。地下滴灌、喷灌和漫灌处理的苜蓿干草产量依次为21030,19035和17295 kg·hm-2;在0~30 cm土层中的根量为总根量分别为87.86%,85.72%和80.96%。地下滴灌、喷灌和漫灌处理灌溉水利用效率分别为33.0,23.3和13.3 kg·mm-1·hm-2。与漫灌相比,地下滴灌和喷灌的节水率分别达到了50.8%和37.5%。  相似文献   

6.
不同坪床配比百慕大T-419的生物量和根系分布特征研究   总被引:2,自引:1,他引:1  
黄晓露  刘君  杨志民 《草业学报》2009,18(5):98-106
本试验采用9种不同的坪床配比,对热带亚热带运动场常用品种百慕大T-419的生物量和根系分布特征进行了研究。结果表明,各处理的地上与地下生物量变化基本一致,中等含沙量的处理Ⅲ和Ⅶ的地上与地下生物量最高。不同处理的根系分布随土壤深度的增加而减少,集中分布于0~10 cm土层,方差分析表明,0~10 cm土层各处理间根系生物量差异显著,其中处理Ⅲ、Ⅵ和Ⅶ显著高于处理Ⅰ和对照CK,10~20和20 cm以下的生物量均无显著差异。地下总生物量与总根长相关系数为0.541(P<0.05),与根系表面积、根系体积相关系数分别为0.651和0.615(P<0.01);根尖数与总根长、平均直径相关系数分别为0.500和0.695(P<0.01)。  相似文献   

7.
采用分层取样方法对不同生长年限(10a、15a、3a、1a)紫花苜蓿0~150cm生物量空间分布特征进行的研究结果表明:不同生长年限紫花苜蓿地上生物量变化范围为1171.67~4085.33g/m2,其顺序为3a10a1a15a;地下生物量变化范围为648.62~2670.09g/m2,其顺序为10a15a3a1a;地下生物量与地上生物量的比值变化范围为0.23~2.12,其顺序为15a10a1a3a。不同生长年限紫花苜蓿地下生物量均主要分布0~30cm土层,1a占总地下生物量76.6%,3a占45.6%,10a占55.82%,15a占57.22%;而相同土层不同生长年限紫花苜蓿在0~30cm土层均以15a紫花苜蓿地下生物量最高,30~100cm土层则以10a紫花苜蓿最高。  相似文献   

8.
三种供水处理对紫花苜蓿播种当年生长及品质的影响   总被引:3,自引:2,他引:1  
研究了三种供水处理(W1、W2、W3灌溉量分别近似为650mm、580mm、500mm)对河西地区种植的紫花苜蓿第1年的生长状况、株高、叶面积、地上生物量、地下生物量及其营养品质的影响.结果表明,W1下生长速率最大,比W2、W3分别高9.5%和33.3%,初花期生长速率差异较大;随水分供应量增加,叶面积指数增大,开花期达到最大值,之后下降,整个生育期内叶面积指数变化呈抛物线形状.地上生物量与水分供应量呈线性正相关;根系主要分布在土壤表层0~40cm.W1和W2对紫花苜蓿的营养品质影响差异不明显,但W3的影响显著.同一水分处理下,蛋白质(CP)与脂肪(CE)含量随生育期延迟而减少,粗纤维(CF)含量则增加.在该地区灌溉选择W2处理(灌水580mm),即保持在最大土壤饱和持水量的70%,既能保证紫花苜蓿较高的地上生物量和较好的品质,又能节约当地的水资源.  相似文献   

9.
紫花苜蓿根系生长特征研究   总被引:5,自引:4,他引:1  
根据2003-2004年天水农业气象试验站、清水县气象站紫花苜蓿Medicage sativa 2年栽培试验资料,分析了紫花苜蓿的根系生长特征及其与环境因素的关系。结果表明:紫花苜蓿生育期所需用的气象资源与建植时间长短有关,建植1年的植株在播种-结荚期需用的光照、热量资源都高于建植2年的植株;结荚期以后,建植1年的植株生长速度加快,生育期时间缩短,需用的气象资源接近或少于建植2年的植株。根系的伸长速度与地上枝叶的生长速度关系密切,生长最快的时段是在地上枝叶停止生长或生长缓慢的冬、秋季节,最缓慢的时期是分枝到刈割的枝叶旺盛生长期。根系生物量与10 cm地温≥0 ℃积温呈非线性关系,在积温≥3 500 ℃后生物量开始迅速增长;根系的含水量在10 cm土层地温≥0 ℃积温达到1 580~1 815 ℃及5 344~5 941 ℃时达到最大。在相同的时段内,紫花苜蓿的土壤水分利用能力远强于粮食作物,其100 cm 土层内的水分累积消耗量比麦田偏高30%,地下土壤干层迹线比麦田深40 cm,持续的时间比麦田长约120 d。  相似文献   

10.
紫花苜蓿根系生物量   总被引:3,自引:1,他引:2  
本文综述了紫花苜蓿(Medicagosativa L.)根系生物量的影响因子和若干自然区域内的紫花苜蓿根系生物量。影响紫花苜蓿根系生物量的影响因子包括土层厚度、地下水位、土壤特性、淹水、耕作、施肥、灌溉、刈割、生长调节剂、混播、植株密度、品种和生长年限。土壤障碍(酸、碱、盐、粘重和紧实)越重、土层越薄、地下水位越高,紫花苜蓿根系生物量越小。淹水降低紫花苜蓿根系生物量。深耕可增加紫花苜蓿根系生物量,播种当年效果尤为明显。施肥可增加紫花苜蓿根系生物量。灌溉可增加紫花苜蓿根系生物量,灌溉模式及灌溉量适当时可获得相对较大的根系生物量。刈割频率越高,紫花苜蓿根系生物量越低。添加生长调节剂可增加紫花苜蓿根系生物量。混播降低紫花苜蓿根系生物量。在一定范围内,紫花苜蓿根系生物量随着植株密度的增加而增加。不同品种(材料)的根系生物量存在一定差异。生长年限越长,紫花苜蓿根系生物量越大。在每个生长季内紫花苜蓿根系生物量呈逐渐提高趋势,但在返青之初和每次刈割之后出现降低,3~4周后恢复至刈割前水平,其后则继续增加。不同自然区域紫花苜蓿的根系生物量差异较大。在相对正常的栽培管理条件下,生长1年紫花苜蓿的根系生物量约在2~7t.hm-2之间,生长2年者约为3~9 t.hm-2,生长3~5年者约为4~21 t.hm-2。  相似文献   

11.
分根区交替灌溉是一种具有节水潜力的灌溉方式,为了揭示紫花苜蓿(Medicago sativa L.)根系对分根区交替灌溉的响应,在甘肃武威绿洲农业高效用水国家野外科学观测研究站设置3种占田间持水量(Field capacity, FC)不同比例的灌水梯度(T1:80%~100%FC,T2:60%~80%FC,T3:40%~60%FC)去开展分根区交替灌溉与不分根区灌溉的对比试验。结果表明:分根区交替灌溉在80%~100%FC灌水量时,根颈直径小于不分根区灌溉,60%~80%FC和40%~60%FC灌水量时,根颈直径大于不分根区灌溉。分根区交替灌溉的根系分支多于不分根区灌溉,但根平均直径小于不分根区灌溉。两种灌溉方式下紫花苜蓿地上部和地下部的生物量均随着灌水量梯度的下降而下降。同一灌水梯度下,不分根区灌溉的地下和地上生物量均高于分根区交替灌溉。上述结果说明紫花苜蓿采用分根区交替灌溉方式对根系生长发育具有重要影响。  相似文献   

12.
以紫花苜蓿为材料,通过盆栽砂培的方法,设置接种(40 mL 含有印度梨形孢菌丝体的菌剂)+干旱(土壤含水量为田间最大持水量的15%~20%)、未接种(40 mL无菌水)+干旱、接种+正常供水(土壤含水量保持在田间持水量的75%~80%)、未接种+正常供水4个处理,研究印度梨形孢真菌与紫花苜蓿共生对干旱胁迫下紫花苜蓿生长及抗旱性的影响。结果表明,印度梨形孢真菌在紫花苜蓿根部定殖率较高,达87.4%;与未接种+干旱处理相比,接种印度梨形孢对干旱胁迫下紫花苜蓿地上部和根系有明显影响,其中,地上部鲜重、干重、叶绿素含量、叶片相对含水量及叶片数分别比未接种处理显著增加了63.4%,69.2%,12.5%,17.1%和5.7片,根系鲜重、干重、主根长及侧根数分别增加了33.3%,57.1%,5.1 cm和5条(P<0.05);与未接种+干旱处理相比,接种后的紫花苜蓿叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、脯氨酸(Pro)和可溶性糖(SS)含量明显增强,分别是未接种处理的1.71,1.27,1.22,1.49和1.48倍(P<0.05),而超氧阴离子()与丙二醛(MDA)含量大幅度降低。因此,印度梨形孢真菌与紫花苜蓿共生可以促进干旱胁迫下紫花苜蓿生长,主要是通过刺激抗氧化酶活性和渗透调节物质的累积来抵抗干旱逆境。而在正常供水条件下,接种印度梨形孢没有明显的促进生长的作用。  相似文献   

13.
水肥耦合对巨能草生长和光合色素的影响   总被引:2,自引:0,他引:2  
采用盆栽控制实验的方式,利用控水、控肥的实验方法,设计了干旱(25% FC)、对照(75% FC)和水淹(100% FC)3个水分梯度以及低、中、高3个养分水平的完全随机组合实验,研究了不同水肥耦合条件对巨能草生长与光合色素的影响。结果表明,巨能草的地上生物量、地下生物量、生物总量和根冠比都受到了水肥交互作用的显著影响。在正常水分条件下,高肥处理下的分蘖数、株高、地下生物量、地上生物量和生物总量都是最大的,是9种水肥配比中巨能草生物量积累最佳的水肥配比。可见,良好的水肥条件是巨能草获得高产的前提。水淹和干旱都不利于植株的分蘖和高生长,但干旱条件下可通过施肥提高植株的分蘖能力。水淹环境下,不宜施用过多肥料,中等施肥量最有利于巨能草地下生物量的积累,其根冠比显著增大,有利于植物根系适应水淹条件下的缺氧环境。与水淹条件相比,干旱条件更不利于巨能草地上生物量的积累,为了适应干旱环境,巨能草会把更多的同化物质分配给地下部分,进而增大根冠比,从而表现出较高的生理可塑性以适应极端的干旱环境。有趣的是,水分胁迫下的光合色素含量显著高于正常水分,且随着施肥量的增加,光合色素的含量都有所增加,干旱处理下的增加尤为显著。由此可见,在水分胁迫环境下,巨能草会通过其各种形态和生理适应机制来适应环境,表现出一定的耐涝性和抗旱性,且施肥能够在一定程度上降低水分胁迫对植物生长的影响。  相似文献   

14.
为了探索紫花苜蓿(Medicago sativa L.)对干旱胁迫的响应机制,本研究通过温室栽培试验探索了3个品种紫花苜蓿在不同生育期对干旱胁迫的形态和生理响应。结果表明:紫花苜蓿在不同生育期对干旱胁迫的响应比较一致,但是不同品种间存在差异。综合紫花苜蓿的3个生育期,‘敖汉’和‘中苜1号’紫花苜蓿的地上生物量受干旱胁迫影响较大,对干旱胁迫响应迅速;‘三得利’的地上生物量对轻度干旱胁迫无明显响应,对中度或重度干旱有一定的响应。‘敖汉’和‘中苜1号’紫花苜蓿的根冠比对干旱胁迫的响应比‘三得利’要灵敏,‘敖汉’苜蓿根冠比增加最显著;花期3个品种紫花苜蓿的根冠比以及根冠比增加幅度均为3个生育期中最大。在3个生育期干旱胁迫下‘敖汉’和‘中苜1号’根系ABA含量均呈升高趋势;分枝期干旱胁迫下‘三得利’根系ABA含量也呈升高趋势,但在花期和结荚期其根系ABA含量对干旱胁迫的响应滞后。  相似文献   

15.
紫花苜蓿种质苗期抗旱性综合评价研究   总被引:6,自引:2,他引:4  
为筛选优异的抗旱种质资料,采用室内盆栽法,对来自俄罗斯的18份紫花苜蓿(Medicago sativa L.)种质资源的抗旱性进行研究.在日光温室模拟干旱胁迫条件下,通过测定存活率、株高、地上生物量、地下生物量、根冠比、根系长度等形态指标,比较聚类分析法、抗旱性等级评价赋分法、标准差系数赋予权重法三种综合评价方法的差异,同时筛选抗旱种质材料.结果表明:标准差系数赋予权重法得出供试材料抗旱性强弱为:M7>M8>M3>M10>M9>M4>M11>M2>M12>810>M>M14>M1>CK>M15>M1>M13>M17>M5,评价结果与材料实际观测基本一致.标准差系数赋予权重法不但考虑不同指标的权重,还定量地鉴定每份材料的抗旱能力,比聚类分析法和抗旱性等级评价赋分法的结果更具科学合理性.  相似文献   

16.
林子然  张英俊 《草业科学》2018,35(1):115-122
丛枝菌根真菌(AMF)是一种存在于生态系统中重要的土壤微生物,广泛应用于植物的防旱、抗旱。本研究选用紫花苜蓿(Medicago sativa)为试验材料,分别研究了接种丛枝菌根真菌、磷和水分对其生物量、株高、脯氨酸和丙二醛含量的影响。结果表明,磷浓度变化对紫花苜蓿生长发育状况影响不显著,而接种AMF后可大幅度改善紫花苜蓿的抗旱性能。其中,水分充足(即田间持水量75%~80%)条件下紫花苜蓿生长状况最好;随着水分降低,紫花苜蓿生物量与株高显著下降,脯氨酸、丙二醛含量增加,酶活性下降。接种AMF对紫花苜蓿的生长状况以及相关生理生化指标均有显著改善作用。综合接种AMF和磷处理结果显示,施加0.25 mmol·L-1KH2PO4Hogland营养液并接种AMF的试验组抗旱效果最好,说明在干旱胁迫下,一定施磷水平下接种AMF可有效地提高紫花苜蓿的抗旱性。  相似文献   

17.
毛培春  孟林  高洪文  张国芳  田小霞 《草地学报》2011,19(4):619-624,630
在温室条件下,采用反复干旱法,对引进的20份无芒雀麦(Bromus inermis Leyss.)种质材料,以存活率、株高、绿叶数、地上生物量、地下生物量和根冠比6个指标的抗旱系数值,采用聚类分析法、标准差系数赋予权重法进行综合评价。结果表明:20份无芒雀麦苗期抗旱性划分成3个级别,其中抗旱性较强的有9份材料,抗旱性较弱有6份材料,抗旱性居中的有5份材料。20份无芒雀麦种质材料苗期抗旱性排序结果为ZXY06P-1621抗旱性最强,ZXY05P-1171最弱。不同抗旱级别种质材料的光合特性表现为:随着持续干旱胁迫延续,其光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)均呈下降趋势,复水后迅速上升;而CO2浓度的变化趋势则呈相反变化趋势,且在整个胁迫过程中变化差异不显著。干旱胁迫下抗旱性强的材料能够保持较高的光合性能。  相似文献   

18.
以紫花苜蓿作为研究对象,通过采用Sufer软件对滴灌AM真菌孢子前后土壤的水、盐分和丛枝菌根真菌(AMF)孢子进行等值线图的绘制,分析滴灌前后的运移状态;在苜蓿的生长期进行定期滴灌菌肥AMF孢子,在50 d后测定苜蓿植株菌根侵染率、根瘤数、产孢性能和生物量等指标,分析不同AMF的滴灌效果,对苜蓿进行关于滴灌AMF孢子水溶液的可行性研究。结果表明,1)AMF孢子在水溶液中的数量随着时间的延长而不断降低,滴灌前土壤含水量呈现出表层低而深层高的总体特点。土层的电导率分布范围较均匀。AM真菌孢子主要集中在土层10~25 cm处。滴灌后,水分大部分集中在距离滴头30 cm左右的土层,含水量较滴灌前升高。在滴头附近盐分向四周扩散,在30~45 cm处形成盐分高值区。孢子主要集中在距滴头0~25 cm左右,对于远距离的湿润区,其孢子数有一定的下降趋势。滴灌不同AM菌种孢子水溶液及滴灌距离对苜蓿生长的影响具有一定的差异性。近距离滴灌的植株地上生物量和株高显著高于远距离滴灌的植株(P<0.05);2)滴灌菌种根内球囊霉(Gi)的苜蓿植株干物质(地上、地下)显著高于对照6.59%和13.29%(P<0.05)。菌种摩西球囊霉(Gm)、内球囊霉(Gi)和幼套球囊霉(Ge)处理的地下干重显著高于对照处理9.05%,13.29%和9.96%(P<0.05),地表球囊霉(Gv)处理的地下干重与对照无显著性差异(P>0.05)。Gi处理苜蓿的分枝数显著高于对照处理19.73%(P<0.05),其他菌种间无显著性差异但都显著高于对照处理(P<0.05)。Gi和Ge处理的苜蓿植株的根瘤数、孢子数和侵染率显著高于对照组(P<0.05)。滴灌菌种间菌根侵染率和根瘤数无显著性差异(P>0.05)。滴灌距离对植株地下部干重、株高、孢子数有显著性影响(P<0.05)。滴灌距离和滴灌菌种的互作除了对菌根侵染率、根瘤数和根长具有显著地影响外(P<0.05),对其余的各指标都没有显著性影响(P>0.05)。综合分析Gi菌种的滴灌应用对苜蓿的效果较好。  相似文献   

19.
试验旨在研究紫花苜蓿(Medicago sativa L.)生物量、水分生理状态以及叶片形态对水分胁迫的响应并确定参试紫花苜蓿品种的御旱能力。通过温室盆栽试验,对3个品种的紫花苜蓿进行了4个梯度的水分胁迫处理,测量了根干重、茎干重、叶干重、叶水势、相对叶片含水量、叶长、叶宽、叶面积以及相关指标的胁迫指数。结果显示:紫花苜蓿根、茎、叶的干重对水分胁迫的响应依品种和胁迫程度的不同而不同;随着水分胁迫程度的增加,根冠比呈增大趋势;叶水势、叶片相对含水量、根系含水量胁迫指数以及叶片含水量胁迫指数均呈下降趋势;叶片变短变窄,叶面积变小,比叶面积胁迫指数呈下降趋势。3个紫花苜蓿品种中‘敖汉’的根冠比最大且比叶面积胁迫指数最小,其御旱能力最强,‘中苜1号’次之,‘三得利’最弱。  相似文献   

20.
高寒区缺乏耐寒苜蓿品种和适宜的栽培技术,严重阻碍了该区域旱作苜蓿和草地畜牧业的发展。为高寒区苜蓿的高产栽培提供理论依据,在天祝高寒牧区研究了垄沟覆膜、垄沟覆膜+覆土、平膜全覆和垄沟4种种植方法下苜蓿生长特性及第2年苜蓿返青时的根颈和根系形态特征。结果表明,垄沟覆膜处理显著提高了高寒区苜蓿的生长,促进了苜蓿根颈、根颈芽和根系的生长。在种植当年,垄沟覆膜下苜蓿的自然株高可达41.2 cm,2级分枝数达25.1个,鲜草和干草产量分别达975.44和249.37 kg/hm2,均显著高于垄沟覆膜+覆土、平膜全覆和垄沟处理(P<0.05)。与垄沟种植方式相比,垄沟覆膜种植方式下的苜蓿鲜草产量提高了74%,干草产量提高了73.2%。垄沟覆膜处理下苜蓿单株根颈返青芽数(17.0个/株)和根颈直径(9.87 mm)分别是垄沟处理(6.5个/株,2.00 mm)的2.63和4.94倍。垄沟覆膜和平膜全覆的苜蓿根颈入土深度分别为3.37和3.35 cm,显著低于垄沟覆膜+覆土处理(4.71 cm)与垄沟处理(4.73 cm)。垄沟覆膜处理下的苜蓿单株根体积(9.288 cm3/株)、根表面积(466.287 cm2/株)、根系生物量(7.76 g/株)、主根长度(85.55 cm)、主根直径(8.36 mm)和侧根数(26.27个)均显著高于平膜全覆处理、垄沟覆膜+覆土处理和垄沟处理(P<0.05)。平膜全覆处理和垄沟覆膜+覆土处理间的根颈芽数、根颈直径、根表面积、根体积和根系生物量差异不显著(P>0.05),但显著高于垄沟处理(P<0.05)。平膜全覆处理、垄沟覆膜+覆土和垄沟处理间的主根长度、主根直径和根系生物量差异不显著(P>0.05)。试验表明,垄沟覆膜处理极大地提高了苜蓿的根颈粗、根颈芽、主根深、根体积、根系表面积和根系生物量,提高了苜蓿产草量,建议在类似甘肃天祝高寒区的地区使用垄沟覆膜技术建植苜蓿人工草地。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号