首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 343 毫秒
1.
随着智慧农业技术和大田种植技术的不断发展,自动除草具有广阔的市场前景。关于除草剂自动喷洒的有效性,农田杂草的精准、快速地识别和定位是关键技术之一。基于此提出一种改进的YOLOv5算法实现农田杂草检测,该方法通过改进数据增强方式,提高模型泛化性;通过添加注意力机制,增强主干网络的特征提取能力;通过改进框回归损失函数,提升预测框的准确率。试验表明,在芝麻作物和多种杂草的复杂环境下,本文方法的检测平均精度均值mAP为90.6%,杂草的检测平均精度AP为90.2%,比YOLOv5s模型分别提高4.7%和2%。在本文试验环境下,单张图像检测时间为2.8 ms,可实现实时检测。该研究内容可以为农田智能除草设备提供参考。  相似文献   

2.
基于双目相机与改进YOLOv3算法的果园行人检测与定位   总被引:2,自引:0,他引:2  
景亮  王瑞  刘慧  沈跃 《农业机械学报》2020,51(9):34-39,25
针对复杂果园环境中行人难以精确检测并定位的问题,提出了一种双目相机结合改进YOLOv3目标检测算法的行人障碍物检测和定位方法。该方法采用ZED双目相机采集左右视图,通过视差原理获取图像像素点的距离信息;将双目相机一侧的RGB图像作为用树形特征融合模块改进的YOLOv3算法的输入,得到行人障碍物在图像中的位置信息,结合双目相机获得的像素位置信息计算出相对于相机的三维坐标。用卡耐基梅隆大学国家机器人工程中心开放的果园行人检测数据集测试改进的YOLOv3算法,结果表明,准确率和召回率分别达到95.34%和91.52%,高于原模型的94.86%和90.19%,检测速度达到30.26 f/ms。行人检测与定位试验表明,行人障碍物的定位在深度距离方向平均相对误差为1.65%,最大相对误差为3.80%。该方法具有快速性和准确性,可以较好地实现果园环境中的行人检测与定位,为无人驾驶农机的避障决策提供依据。  相似文献   

3.
针对甜菜机械化收获中机收甜菜识别不精确致使破损率计算不准确的问题,提出一种基于YOLOv4的机收甜菜破损检测方法。利用不同距离、不同角度和不同遮挡程度的甜菜照片制作数据集,对基于YOLOv4的机收甜菜破损检测模型进行训练和测试。测试结果表明:基于YOLOv4的机收甜菜破损检测模型识别完整甜菜精确率和召回率分别为94.02%和91.13%,识别破损甜菜的精确率和召回率分别为96.68%和95.21%,破损检测模型的mAP值为96.44%,比Faster R-CNN和SSD模型的mAP值分别高2.62%和5.65%。由此可得,提出的基于YOLOv4的机收甜菜破损检测模型可以更准确地完成对机收甜菜中完整甜菜和破损甜菜的识别,满足甜菜破损率计算的需求。  相似文献   

4.
玉米苗期杂草的实时检测和精准识别是实现精准除草和智能农业的基础和前提。针对保护性耕作模式地表环境复杂、杂草易受地表秸秆残茬覆盖影响、现有算法检测速度不理想等问题,提出一种适用于Jetson TX2移动端部署的秸秆覆盖农田杂草检测方法。运用深度学习技术对玉米苗期杂草图像的高层语义信息进行提取与分析,构建玉米苗期杂草检测模型。在YOLO v5s模型的基础上,缩小网络模型宽度对其进行轻量化改进。为平衡模型检测速度和检测精度,采用TensorRT推理加速框架解析网络模型,融合推理网络中的维度张量,实现网络结构的重构与优化,减少模型运行时的算力需求。将模型迁移部署至Jetson TX2移动端平台,并对各模型进行训练测试。检测结果表明,轻量化改进YOLO v5ss、YOLO v5sm、YOLO v5sl模型的精确率分别为85.7%、94%、95.3%,检测速度分别为80、79.36、81.97 f/s, YOLO v5sl模型综合表现最佳。在Jetson TX2嵌入式端推理加速后,YOLO v5sl模型的检测精确率为93.6%,检测速度为28.33 f/s,比模型加速前提速77.8%,能够在保证检...  相似文献   

5.
杂草是导致农作物减产不保量的重要因素,针对田间自然环境下杂草识别精度低和识别范围局限的问题,提出一种基于改进Faster R-CNN与迁移学习的农田杂草识别算法。首先,采集多场景下不同时段不同角度的杂草图片,通过旋转、裁剪和调节色彩等方式扩充数据集;然后,在原始Faster R-CNN网络的基础上利用改进的双阈值非极大抑制算法(Non Maximum Suppression,NMS)查找置信度较高的边界框;最后,将AlexNet、GoogleNet、VGG16和ResNet50等作为模型的区域建议网络,并将其最优模型参数迁移至农田杂草识别任务中。通过在多样本数据集和少量物种样本数据集上进行测试验证,试验结果表明,算法可以实现96.58%的精确率、94.82%的召回率和95.06%的F1-score,相比当前主流算法在保持识别精度较高的基础上,具有更广的识别范围。  相似文献   

6.
【目的】为在养殖场实现非接触对病死、死因不明或染疫猪猪头进行目标检测。【方法】课题组提出了一种基于YOLOv3的病死猪猪头的识别方法,将采集的病死猪图片通过处理制成数据集,并按一定比例分成训练验证集与测试集,通过YOLOv3模型训练,得到预训练权重参数,用评价指标对模型检测效果进行评估,从而获得最优模型的训练测试比。【结果】在训练测试比为8∶2时,YOLOv3算法模型对病死猪猪头的识别平均精度值达91.74%,准确率达95.56%,召回率达89.58%,满足目标检测精度要求,且该模型的平均准确率、准确率、召回率均高于SSD和FasterR-CNN算法模型。【结论】YOLOv3算法模型有助于在对病死猪进行无害化处理时,为机械手提供抓取目标,实现处理设备的智能化、无人化发展。  相似文献   

7.
农田杂草根除是促进农业稳定生产的前提。由于杂草种类多,且相同物种因大小、颜色和位置的变化多样,导致传统农田杂草检测算法性能不高。提出一种基于多尺度注意力和深度可分离卷积的农田杂草检测算法。首先,利用深度可分离卷积改进主干网络VGG-16,降低模型参数量,加快模型的训练;然后,采用多尺度注意力模块提取杂草的多尺度特征,增强模型对形态图像特征的捕获能力。通过在不同时间段测试多个农田杂草样本,结果表明:本文算法的精准率为94.69%、召回率为94.88%和F1值为93.82%。与当前主流杂草检测模型相比,在保持较高检测性能的基础上,具有更低的时间开销,可应用于农田杂草的自动检测。  相似文献   

8.
基于改进YOLOv5m的采摘机器人苹果采摘方式实时识别   总被引:1,自引:0,他引:1  
为准确识别果树上的不同苹果目标,并区分不同枝干遮挡情形下的果实,从而为机械手主动调整位姿以避开枝干对苹果的遮挡进行果实采摘提供视觉引导,提出了一种基于改进YOLOv5m面向采摘机器人的苹果采摘方式实时识别方法。首先,改进设计了BottleneckCSP-B特征提取模块并替换原YOLOv5m骨干网络中的BottleneckCSP模块,实现了原模块对图像深层特征提取能力的增强与骨干网络的轻量化改进;然后,将SE模块嵌入到所改进设计的骨干网络中,以更好地提取不同苹果目标的特征;进而改进了原YOLOv5m架构中输入中等尺寸目标检测层的特征图的跨接融合方式,提升了果实的识别精度;最后,改进了网络的初始锚框尺寸,避免了对图像里较远种植行苹果的识别。结果表明,所提出的改进模型可实现对图像中可直接采摘、迂回采摘(苹果上、下、左、右侧采摘)和不可采摘果实的识别,识别召回率、准确率、mAP和F1值分别为85.9%、81.0%、80.7%和83.4%。单幅图像的平均识别时间为0.025s。对比了所提出的改进算法与原YOLOv5m、YOLOv3和EfficientDet-D0算法在测试集上对6类苹果采摘方式的识别效果,结果表明,所提出的算法比其他3种算法识别的mAP分别高出了5.4、22、20.6个百分点。改进模型的体积为原始YOLOv5m模型体积的89.59%。该方法可为机器人的采摘手主动避开枝干对果实的遮挡,以不同位姿采摘苹果提供技术支撑,可降低苹果的采摘损失。  相似文献   

9.
针对现有花椒簇检测算法模型参数量多、计算量大、检测速度低、很难部署到嵌入式设备的问题,提出一种基于轻量化YOLOv5s的花椒簇检测算法模型。首先将ShuffleNet v2主干网络替代原YOLOv5s中的主干网络进行重构;同时将SPPF嵌入至ShuffleNet v2骨干中;其次引入轻量级注意力机制CBAM;最后使用SIoU_Loss代替CIoU_Loss作为回归损失函数。试验结果表明:改进后的轻量化YOLOv5s网络参数降低85.6%,计算量降低87.7%,对花椒簇的检测精度mAP@0.5达到92.6%,较原YOLOv5s模型提高3.4%,mAP@0.5:0.95达到61.4%,检测时间为11 ms,相比原模型16 ms缩短31.3%,可以满足在现场环境下对花椒簇的检测。  相似文献   

10.
针对现有检测算法难以检测自然场景下小而密集的柑橘问题,提出一种DS-YOLO(Deformable Convolution SimAM YOLO)密集柑橘检测算法。引入可形变卷积网络(Deformable Convolution)代替原YOLOv4中的特征提取网络部分卷积层,使特征提取网络能自适应提取遮挡、重叠等导致柑橘形状信息缺失的位置特征,在特征融合模块中,增加新的检测尺度并融合SimAM注意力机制,增强模型对于小而密集柑橘特征的提取能力。试验结果表明:DS-YOLO算法相较于原YOLOv4准确率提高8.75%,召回率提高7.9%,F1分数提高5%,能够较准确检测自然环境下的密集柑橘目标,为密集水果产量预测和采摘机器人提供了有效的技术支持。  相似文献   

11.
为提高智能甘蔗收获的准确性,降低算法对部署的高算力要求,利用轻量级目标检测算法YOLOv4-tiny相对YOLOv4算法更简化的网络结构、更高的推理速度等优点,提出基于MobileNet和网络瘦身的两种YOLOv4-ting识别算法方案,并比较二者的精度和模型复杂度。其中,基于网络瘦身算法的YOLOv4-tiny在精度较瘦身前(947%)下降0.6%的情况下,模型复杂度下降为原来的1/3,即瘦身后的FLOPs和Params分别为1.1 G和1 789 658。而以MobileNet为Backbone的YOLOv4-tiny在精度下降1.92%的情况下,它的FLOPs和Params为1.29 G、2 600 068,其在精度和模型复杂度上的表现都不如瘦身后的YOLOv4-tiny模型。结果表明:基于网络瘦身算法的YOLOv4-tiny甘蔗茎节识别模型可有效降低模型复杂度,其计算量对嵌入式设备和移动式设备友好。该研究可为智能甘蔗收割机构的开发提供技术参考。  相似文献   

12.
为实现田间环境下对玉米苗和杂草的高精度实时检测,本文提出一种融合带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration, MSRCR)增强算法的改进YOLOv4-tiny模型。首先,针对田间环境的图像特点采用MSRCR算法进行图像特征增强预处理,提高图像的对比度和细节质量;然后使用Mosaic在线数据增强方式,丰富目标检测背景,提高训练效率和小目标的检测精度;最后对YOLOv4-tiny模型使用K-means++聚类算法进行先验框聚类分析和通道剪枝处理。改进和简化后的模型总参数量降低了45.3%,模型占用内存减少了45.8%,平均精度均值(Mean average precision, mAP)提高了2.5个百分点,在Jetson Nano嵌入式平台上平均检测帧耗时减少了22.4%。本文提出的Prune-YOLOv4-tiny模型与Faster RCNN、YOLOv3-tiny、YOLOv4 3种常用的目标检测模型进行比较,结果表明:Prune-YOLOv4-tiny的mAP为96.6%,分别比Faster RCNN和YOLOv3...  相似文献   

13.
疏花是梨生产中的重要农艺措施,机械化智能疏花是当今高速发展的疏花方式,花朵与花苞的分类与检测是保证疏花机器正常工作的基本要求。本研究针对目前梨园智能化生产中出现的梨树花序检测与分类问题,提出了一种基于改进YOLOv5s的水平棚架梨园花序识别算法Ghost-YOLOv5s-BiFPN。通过对田间采集的梨树花苞与花朵图像进行标注与数据扩充后送入算法进行训练得到检测模型。Ghost-YOLOv5s-BiFPN运用加权双向特征金字塔网络(Bi-directional Feature Pyramid Network,BiFPN)替换原始的路径聚合网络(Path Aggregation Network,PAN)结构,对网络提取的不同尺寸目标特征进行有效的融合。同时运用Ghost模块替换传统卷积,在不降低准确度的同时减少模型参数量和提升设备运行效率。田间试验结果表明,改进的Ghost-YOLOv5s-BiFPN算法对梨树花序中花苞与花朵的检测精度分别为93.2%和89.4%,两种目标平均精度为91.3%,检测单张图像时间为29 ms,模型大小为7.62 M。相比于原始YOLOv5s算法,检测精度与召回度分别提升了4.2%和2.7%,检测时间和模型参数量分别降低了9 ms和46.6%。本研究提出的算法可对梨树花苞与花朵进行精确的识别和分类,为后续梨园智能化疏花的实现提供技术支持。  相似文献   

14.
针对不同光照,遮挡重叠,大视场等复杂环境下,自动采摘机器人无法快速准确地识别果蔬目标的问题,提出一种用于复杂环境下果蔬检测的改进YOLOv5(You Only Look Once v5)算法。首先,在主干网络Backbone中的CBL模块中嵌入卷积注意力机制(Convolutional Block Attention Module, CBAM),提高目标特征的提取能力。其次,引入完全交并比非极大抑制算法(Complete IOU Non-maximum suppression, CIOU-NMS),考虑长宽边长真实差,提高回归精度。最后,用加权双向特征金字塔网络(Bidirectional Feature Pyramid Network, BiFPN)替换原始YOLOv5的路径聚合网络(PANet),融合多尺度特征提高识别精度和准确率。以苹果为例进行试验,结果表明:改进YOLOv5算法精准率为94.7%,召回率为87%,平均精度为92.5%,相比于原始YOLOv5算法AP提高3.5%,在GPU下的检测时间为11 ms,可以实现复杂情况下的果蔬快速准确识别。  相似文献   

15.
针对果园目标检测时相机抖动以及物体相对运动导致检测图像模糊的问题,本文提出一种将DeblurGAN-v2去模糊网络和YOLOv5s目标检测网络相融合的D2-YOLO一阶段去模糊识别深度网络,用于检测识别果园模糊场景图像中的障碍物。为了减少融合网络的参数量并提升检测速度,首先将YOLOv5s骨干网络中的标准卷积替换成深度可分离卷积,并且在输出预测端使用CIoU_Loss进行边界框回归预测。融合网络使用改进的CSPDarknet作为骨干网络进行特征提取,将模糊图像恢复原始自然信息后,结合多尺度特征进行模型预测。为了验证本文方法的有效性,选取果园中7种常见的障碍物作为目标检测对象,在Pytorch深度学习框架上进行模型训练和测试。试验结果表明,本文提出的D2-YOLO去模糊识别网络准确率和召回率分别为91.33%和89.12%,与分步式DeblurGAN-v2+YOLOv5s相比提升1.36、2.7个百分点,与YOLOv5s相比分别提升9.54、9.99个百分点,能够满足果园机器人障碍物去模糊识别的准确性和实时性要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号