首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Wheat flour products are the main dietary component of the Qinghai–Tibetan Plateau (QTP) population in China.  However, the high altitude restricts the local wheat quality and quantity, and the applied nitrogen rate is higher than the optimal rate for wheat planting.  In this study, we considered whether reducing the amount of nitrogen fertilizer and introducing the superior varieties from the North China Plain (NCP) are viable ways to increase the wheat quality and quantity in the QTP.  Three and four winter wheat cultivars from QTP and NCP, respectively, were planted in Lhasa at an altitude of 3 647 m with reduced topdressing nitrogen application at the jointing stage.  The wheat from NCP exhibited higher grain hardness index and test weight, and better flour and dough quality.  Reducing the topdressing nitrogen fertilizer from 135 to 75 kg N ha−1 at the jointing stage (with the same basal fertilization of 105 kg N ha−1) did not significantly (P<0.05) affect the grain yield, grain quality, flour quality or dough quality in any of the cultivars.  In summary, introducing high-quality winter wheat varieties from the NCP to the Lhasa plateau is a viable way to enhance the wheat supply and quality in the QTP.  Reducing a certain amount of the nitrogen fertilizer is an economic and feasible approach for the QTP region.  相似文献   

2.
Utilizing the heterosis of indica/japonica hybrid rice (IJHR) is an effective way to further increase rice grain yield.  Rational application of nitrogen (N) fertilizer plays a very important role in using the heterosis of IJHR to achieve its great yield potential.  However, the responses of the grain yield and N utilization of IJHR to N application rates and the underlying physiological mechanism remain elusive.  The purpose of this study was to clarify these issues.  Three rice cultivars currently used in rice production, an IJHR cultivar Yongyou 2640 (YY2640), a japonica cultivar Lianjing 7 (LJ-7) and an indica cultivar Yangdao 6 (YD-6), were grown in the field with six N rates (0, 100, 200, 300, 400, and 500 kg ha–1) in 2018 and 2019.  The results showed that with the increase in N application rates, the grain yield of each test cultivar increased at first and then decreased, and the highest grain yield was at the N rate of 400 kg ha–1 for YY2640, with a grain yield of 13.4 t ha–1, and at 300 kg ha–1 for LJ-7 and YD-6, with grain yields of 9.4–10.6 t ha–1.  The grain yield and N use efficiency (NUE) of YY2640 were higher than those of LJ-7 or YD-6 at the same N rate, especially at the higher N rates.  When compared with LJ-7 or YD-6, YY2640 exhibited better physiological traits, including greater root oxidation activity and leaf photosynthetic rate, higher cytokinin content in the roots and leaves, and more remobilization of assimilates from the stem to the grain during grain filling.  The results suggest that IJHR could attain both higher grain yield and higher NUE than inbred rice at either low or high N application rates.  Improved shoot and root traits of the IJHR contribute to its higher grain yield and NUE, and a higher content of cytokinins in the IJHR plants plays a vital role in their responses to N application rates and also benefits other physiological processes.   相似文献   

3.
【目的】冬春干旱频发和氮的过度施用限制了西南丘陵旱地雨养农业区小麦的产量与可持续发展,探讨秋闲期秸秆覆盖与氮肥减施对旱地小麦根系分布、产量及水氮吸收利用的影响,为优化四川旱地小麦耕作制度和绿色高质高效生产提供依据。【方法】试验于2016–2018年在四川省仁寿县四川农业大学试验基地进行,采用裂区设计,在夏玉米收获后,以秋闲期秸秆粉碎覆盖(SM)和不覆盖(NM)为主区,以不施氮(N0:0)、减氮(RN:120 kg N·hm-2)和常规施氮(CN:180 kg N·hm-2)为裂区,研究分析土壤含水量、根长、根系分布、小麦产量、耗水量(ET)、水分利用效率(WUE)和氮素利用情况。【结果】与不覆盖相比,秋闲期秸秆覆盖显著提高播种至孕穗期0—10 cm和10—20 cm土层含水量及播种时与拔节期0―100cm土层土壤贮水量,秸秆覆盖的保墒效应可持续至孕穗开花阶段;覆盖显著促进小麦拔节期和开花期耕层根系生长,尤其是0—10 cm土层根系直径增加、根长密度显著提高;覆盖下小麦总耗水量、WUE、氮素吸收量、播种至拔节期氮素积累速率、拔节至开花期氮素积累速率、氮素籽粒生产效率(NUEg)、氮肥农学效率(AEN)和氮肥偏生产力(NPFP)两年均值较不覆盖分别提高11.4%、71.8%、73.1%、119.0%、100.0%、3.6%、264.7%和78.2%;覆盖下氮肥回收效率(REN)较不覆盖增加44.4个百分点。覆盖后冬小麦有效穗数、穗粒数和产量两年均值较不覆盖分别提高31.8%、44.4%和92.9%。秸秆覆盖效应大于施氮量效应。与常规施氮量相比,减氮处理未显著降低0—10 cm土层根长密度、耗水量、水分利用效率与籽粒产量;覆盖结合减氮显著提高群体氮素籽粒生产效率、氮肥农学效率、氮肥偏生产力和氮肥回收效率。【结论】秋闲期秸秆覆盖提高播种至拔节期土壤水分含量和储量,促进拔节期小麦根系在表层土壤中的生长,进而促进氮素吸收利用、提高冬小麦产量与水肥利用效率;秋闲期覆盖结合120 kg·hm-2施氮量是适宜四川旱地冬小麦的减氮增效高产栽培技术模式。  相似文献   

4.
The rice–crayfish farming model has been rapidly developed and become an economically viable method to supply food in China in recent years.  However, its environmental and economic sustainability has not been thoroughly investigated.  This study uses a survey in 2016 and a field experiment in 2017 in Qianjiang, Hubei Province, China to assess the relative economics of concurrent rice–wheat (RW), rice–crayfish (RC), and crayfish monoculture (CM) models in waterlogged land areas.  The field survey indicated that the RC model had a higher benefit–cost ratio (3.5:1) than the RW (2.0:1) and CM (3.1:1) models and the RC model protected farmers’ enthusiasm for grain production facing unfavourable weather conditions.  The field experiment aimed to explore nitrogen management strategies in RC fields.  In the experiment, four levels of nitrogen concentration gradient - 0 kg N ha–1 (0 N), 75 kg N ha–1 (75 N), 150 kg N ha–1 (150 N) and 225 kg N ha–1 (225 N), were set in a 2-year-old rice–crayfish (RC2) field, an 8-year-old rice–crayfish (RC8) field, and a RW field as a control.  The field experiment results suggested that the peak  rice yield in RW, RC2, and RC8 occurred when 225 N, 150 N and 75 N were used, respectively.  In RC2 and RC8, however, residual feed-nitrogen that was not used by crayfish was utilized by rice plants.  Thus, an optimal amount of nitrogen in RC fields was proposed to improve the nitrogen use efficiency and reduce environmental pollution by nitrogen fertilizer.  Farmers use less nitrogen but have higher net income in RC than in RW and CM.  It is necessary to sustainably develop integrated farming technologies (i.e., proper field configurations for rice fields) to effectively sustain rice production.  The results also showed that the RC farming model was a viable diversification option for rice farmers in waterlogged land.    相似文献   

5.
The rice cultivars carrying dep1 (dense and erect panicle 1) have the potential to achieve both high grain yield and high nitrogen use efficiency (NUE).  However, few studies have focused on the agronomic and physiological performance of those cultivars associated with high yield and high NUE under field conditions.  Therefore, we evaluated the yield performance and NUE of two near-isogenic lines (NILs) carrying DEP1 (NIL-DEP1) and dep1-1 (NIL-dep1) genes under the Nanjing 6 background at 0 and 120 kg N ha–1.  Grain yield and NUE for grain production (NUEg) were 25.5 and 21.9% higher in NIL-dep1 compared to NIL-DEP1 averaged across N treatments and planting years, respectively.  The yield advantage of NIL-dep1 over NIL-DEP1 was mainly due to larger sink size (i.e., higher total spikelet number), grain-filling percentage, total dry matter production, and harvest index.  N utilization rather than N uptake contributed to the high yield of NIL-dep1.  Significantly higher NUEg in NIL-dep1 was associated with higher N and dry matter translocation efficiency, lower leaf and stem N concentration at maturity, and higher glutamine synthetase (GS) activity in leaves.  In conclusion, dep1 improved grain yield and NUE by increasing N and dry matter transport due to higher leaf GS activity under field conditions during the grain-filling period.  相似文献   

6.
Lodging in maize leads to yield losses worldwide.  In this study, we determined the effects of traditional and optimized nitrogen management strategies on culm morphological characteristics, culm mechanical strength, lignin content, root growth, lodging percentage and production in maize at a high plant density.  We compared a traditional nitrogen (N) application rate of 300 kg ha–1 (R) and an optimized N application rate of 225 kg ha–1 (O) under four N application modes: 50% of N applied at sowing and 50% at the 10th-leaf stage (N1); 100% of N applied at sowing (N2); 40% of N applied at sowing, 40% at the 10th-leaf stage and 20% at tasseling stage (N3); and 30% of N applied at sowing, 30% at the 10th-leaf stage, 20% at the tasseling stage, and 20% at the silking stage (N4).  The optimized N rate (225 kg ha–1) significantly reduced internode lengths, plant height, ear height, center of gravity height and lodging percentage.  The optimized N rate significantly increased internode diameters, filling degrees, culm mechanical strength, root growth and lignin content.  The application of N in four split doses (N4) significantly improved culm morphological characteristics, culm mechanical strength, lignin content, and root growth, while it reduced internode lengths, plant height, ear height, center of gravity height and lodging percentage.  Internode diameters, filling degrees, culm mechanical strength, lignin content, number and diameter of brace roots, root volume, root dry weight, bleeding safe and grain yield were significantly negatively correlated with plant height, ear height, center of gravity height, internode lengths and lodging percentage.  In conclusion, treatment ON4 significantly reduced the lodging percentage by improving the culm morphological characteristics, culm mechanical strength, lignin content, and root growth, so it improved the production of the maize crop at a high plant density.  相似文献   

7.
Crop straw return after harvest is considered an important way to achieve both agronomic and environmental benefits.  However, the appropriate amount of straw to substitute for fertilizer remains unclear.  A field experiment was performed from 2016 to 2018 to explore the effect of different amounts of straw to substitute for fertilizer on soil properties, soil organic carbon (SOC) storage, grain yield, yield components, nitrogen (N) use efficiency, phosphorus (P) use efficiency, N surplus, and P surplus after rice harvesting.  Relative to mineral fertilization alone, straw substitution at 5 t ha–1 improved the number of spikelets per panicle, effective panicle, seed setting rate, 1 000-grain weight, and grain yield, and also increased the aboveground N and P uptake in rice.  Straw substitution exceeding 2.5 t ha–1 increased the soil available N, P, and K concentrations as compared with mineral fertilization, and different amounts of straw substitution improved SOC storage compared with mineral fertilization.  Furthermore, straw substitution at 5 t ha–1 decreased the N surplus and P surplus by up to 68.3 and 28.9%, respectively, compared to mineral fertilization.  Rice aboveground N and P uptake and soil properties together contributed 19.3% to the variation in rice grain yield and yield components.  Straw substitution at 5 t ha–1, an optimal fertilization regime, improved soil properties, SOC storage, grain yield, yield components, N use efficiency (NUE), and P use efficiency (PUE) while simultaneously decreasing the risk of environmental contamination.  相似文献   

8.
To achieve the dual goals of high yield and good quality with low environmental costs, slow-release fertilizer (SRF) has been widely used in lotus cultivation as new type of fertilizer instead of traditional nitrogen fertilizer.  However, the optimal amount of SRF and how it would promote lotus rhizome quality remain unclear.  This study was designed to investigate the photosynthetic characteristics and the synthesis, accumulation, and physicochemical properties of lotus rhizome starches under six SRF levels (CK, S1, S2, S3, S4, and S5).  Compared with CK (0 kg ha–1), the net photosynthetic rate (Pn) and SPAD values of leaves remained at higher levels under SRF treatment.  Further research showed that SRF increased the lotus rhizome yield, the contents of amylose, amylopectin, and total starch, and the number of starch granules.  Among the six SRF levels, S3 (1 035 kg ha–1) showed the greatest difference from CK and produced the highest levels.  With the increasing SRF levels, the peak, hot and final viscosities decreased at first and then increased, but the setback viscosity and pasting temperature increased.  In order to interpret these changes at the molecular level, the activities of key enzymes and relative expression levels of starch accumulation related genes were analyzed.  Each of these parameters also increased under SRF treatment, especially under the S3 treatment.  The results of this study show that SRF, especially S3 (1 035 kg ha–1), is a suitable fertilizer option for lotus planting which can improve lotus rhizome quality by affecting starch accumulations related enzymes and genes.  These results will be useful for SRF application to high-quality lotus rhizome production with low environmental costs.  相似文献   

9.
The use of nitrogen (N)-efficient rice (Oryza sativa L.) varieties could reduce excessive N input without sacrificing yields. However, the plant traits associated with N-efficient rice varieties have not been fully defined or comprehensively explored.  Here, three japonica N-efficient varieties (NEVs) and three japonica N-inefficient varieties (NIVs) of rice were grown in a paddy field under N omission (0 N, 0 kg N ha–1) and normal N (NN, 180 or 200 kg N ha−1) treatments.  Results showed that NEVs exhibited higher grain yield and nitrogen use efficiency (NUE) than NIVs under both treatments, due to improved sink size and filled-grains percentage in the former which had higher root oxidation activity and greater root dry weight, root length and root diameter at panicle initiation (PI), as well as higher spikelet–leaf ratio and more productive tillers during the grain-filling stage.  Compared with NIVs, NEVs also exhibited enhanced N translocation and dry matter accumulation after heading and improved flag leaf morpho–physiological traits, including greater leaf thickness and specific leaf weight and higher contents of ribulose-1,5-bisphosphate carboxylase/oxygenase, chlorophyll, nitrogen, and soluble sugars, leading to better photosynthetic performance.  Additionally, NEVs had a better canopy structure, as reflected by a higher ratio of the extinction coefficient for effective leaf N to the light extinction coefficient, leading to enhanced canopy photosynthesis and dry matter accumulation.  These improved agronomic and physiological traits were positively and significantly correlated with grain yield and internal NUE, which could be used to select and breed N-efficient rice varieties.  相似文献   

10.
Nitrogen (N) and seeding rates are important factors affecting grain yield and N use efficiency (NUE) in direct-seeded rice.  However, these factors have not been adequately investigated on direct-seeded and double-season rice (DDR) in Central China.  The objective of this study was to evaluate the effects of various N and seeding rates on the grain yield and NUE of an ultrashort-duration variety grown under DDR.  Field experiments were conducted in 2018 in Wuxue County and 2019 in Qichun County, Hubei Province, China with four N rates and three seeding rates.  The results showed that the grain yield of the ultrashort-duration variety ranged from 6.32 to 8.23 t ha–1 with a total growth duration of 85 to 97 days across all treatments with N application.  Grain yield was increased significantly by N application in most cases, but seeding rate had an inconsistent effect on grain yield.  Furthermore, the response of grain yield to the N rates was much higher than the response to seeding rates.  The moderate N rates of 100–150 and 70–120 kg N ha–1 in the early and late seasons, respectively, could fully express the yield potential of the ultrashort-duration variety grown under DDR.  Remarkably higher N responses and agronomic NUE levels were achieved in the early-season rice compared with the late-season rice due to the difference in indigenous soil N supply capacity (INS) between the two seasons.  Seasonal differences in INS and N response should be considered when crop management practices are optimized for achieving high grain yield and NUE in ultrashort-duration variety grown under DDR.  相似文献   

11.
Ratoon rice cropping is an important component of the rice cropping system in Texas and south Louisiana, USA, and expanded to Asian countries in 1970. Two field studies were conducted with widely planted rice(Oryza sativa L.) cultivars at Eagle Lake, Texas, USA to determine the effects of nitrogen(N) management in main(first) crop(MC) and ratoon(second) crop(RC) on RC yield. In 2012 and 2013, one cultivar(Presidio) was adopted to determine the effects of RC N management on ratoon yield and head rice yield. In 2016 and 2017, CL153, CL163 and CL272 in addition to Presidio were adopted to examine the effect of MC N management on ratoon yield and head rice yield. N applied at preflood after MC harvest considerably improved RC yield. Application of 99 kg N ha–1 at preflood after MC harvest was practically adequate for RC regrowth, development and approaching the yield potential for Presidio. RC could produce quite high average grain yields of 5.90 to 6.53 t ha–1 in 2012 and 2013, respectively. Main crop N rate only significantly affected MC yield; however, given N applied of 99 kg ha–1 at preflood after MC harvest, ratoon yield was not significantly affected by MC N rate. Neither the main nor ratoon crop N management had a significant effect on RC head rice yield. Considerable RC head rice yields(55–65%) were observed in all of the four cultivars and 4 years except for CL272 in 2016. These results indicat that without very high N fertilizer application, rice ratoon crop could produce a considerable grain yield and an expectative head rice yield. Rice ratooning could be a practical way to increase rice yields with the minimal input in south Texas and regions with a similar climate.  相似文献   

12.
为了明确华北地区冬小麦节水栽培与传统灌溉条件下氮素吸收利用特征,2008-2010年,在灌溉底墒水的基础上,设置4个水分处理:春不灌水(W0)、拔节水(W1)、拔节水+开花水(W2)和起身水+孕穗水+开花水+灌浆水(W4),测定不同生育时期植株氮素吸收量和产量。结果表明,冬小麦最高产量2年均在节水栽培处理(W1和W2)获得,氮积累量则随着灌水量的增加而增加,传统灌溉处理最高。与传统灌溉相比,节水灌溉加快了冬小麦氮素积累进程,促进了花前积累氮素向籽粒的再分配,提高了氮收获指数和生理利用效率。可见,冬小麦节水栽培在实现节水高产的同时,也改善了氮素吸收利用特性。  相似文献   

13.
With increasing water shortage resources and extravagant nitrogen application, there is an urgent need to optimize irrigation regimes and nitrogen management for winter wheat(Triticum aestivum L.) in the North China Plain(NCP). A 4-year field experiment was conducted to evaluate the effect of three irrigation levels(W1, irrigation once at jointing stage; W2, irrigation once at jointing and once at heading stage; W3, irrigation once at jointing, once at heading, and once at filling stage; 60 mm each irrigation) and four N fertilizer rates(N0, 0; N1, 100 kg N ha~(-1); N2, 200 kg N ha~(-1); N3, 300 kg N ha~(-1)) on wheat yield, water use efficiency, fertilizer agronomic efficiency, and economic benefits. The results showed that wheat yield under W2 condition was similar to that under W3, and greater than that under W1 at the same nitrogen level. Yield with the N1 treatment was higher than that with the N0 treatment, but not significantly different from that obtained with the N2 and N3 treatments. The W2 N1 treatment resulted in the highest water use and fertilizer agronomic efficiencies. Compared with local traditional practice(W3 N3), the net income and output-input ratio of W2 N1 were greater by 12.3 and 19.5%, respectively. These findings suggest that two irrigation events of 60 mm each coupled with application of 100 kg N ha~(–1) is sufficient to provide a high wheat yield during drought growing seasons in the NCP.  相似文献   

14.
This study attempted to clarify the carrying-over effect of different nitrogen treatments applied to the main crop on the crop population growth and yield formation of ratoon rice under mechanized cultivation in Southeast China.  Based on the constant total nitrogen application amounts (225.00 kg ha–1) in the main crop, an experiment with different ratios of basal and topdressing nitrogen fertilizer (the ratio of basal fertilizer:primary tillering fertilizer:secondary tillering fertilizer:booting fertilizer at 3:1:2:4 (N1), 3:2:1:4 (N2), 3:3:0:4 (N3), and 4:3:0:3 (N4), respectively, and a control without nitrogen treatment (N0)) was set up across two consecutive years in field using hybrid rice variety Yongyou 1540 as the test materials.  The results showed that the total tiller number and effective tillering percentage increased in the main crop under the N1 treatment, more nitrogen fertilizer applied in late growth stage of the main crop, and its effective tillering percentage of the main crop was the highest at up to 70.18%, which was 9.15% higher than that of conventional fertilization treatment (N4), more nitrogen fertilizer applied in early growth stage of the main crop.  The same tendency was observed in leaf area index (LAI) value of the main crop and its subsequent ratoon rice, which were 16.52 and 29.87% higher, respectively, in the N1 treatment than that in the N4 treatment at the full heading stage.  The same was true in the case of the transport rates of stem and sheath dry mater and the canopy light interception rates in both the main and its ratoon crops.  The transport rate of stem and sheath in main crop rice under N1 treatment increased by 50.57% compared with N4 treatment.  The canopy light interception rate of N1 treatment increased by 5.07% compared with N4 treatment at the full heading stage of the ratoon crop.  Therefore, the total actual yield was the highest in the main and its ratoon crops under N1 treatment, averaging 17 351.23 kg ha–1 in two-year trials, which was 23.00% higher than that in the conventional fertilization treatment (N4).  The results showed that appropriate nitrogen treatment was able to produce a good crop stand in the main crop, which was essential for producing a good ratoon crop population and high yield especially under mechanized cultivation with low stubble height of the main crop.  The study suggested that shifting the proper nitrogen application amounts to the late growth stage of the main crop, such as N1 treatment, not only had a higher productive effect on ensuring the yield of the main crop, but also had a positive effect on the axillary bud sprouts from the stubbles for ratoon rice, resulting in an increased percentage of productive panicles and achieving the goal of one planting with two good harvests under the conditions of our study.  相似文献   

15.
Planting under plastic-film mulches is widely used in spring maize production in arid-cold regions for water conservation and warming the soil.  To ameliorate the associated issues such as plastic-film residues and additional labor during the “seedling release” in spring maize production, we have developed a plastic-film-side seeding (PSS) technology with the supporting machinery.  In the semi-arid regions of Northwest China, a 7-year trial demonstrated that PSS increased plant number per hectare by 6 547 and maize yield by 1 686 kg ha–1 compared with the traditional method of seeding under plastic-film mulch (PM).  Two-year experiments were conducted in two semi-arid regions to further understand the effects of PSS on three important aspects of production: (i) the moisture and temperature of soil, (ii) maize development, yield output, and water use efficiency (WUE), and (iii) the revenue and plastic-film residuals in comparison with that of flat planting (CK) and PM.  Continuous monitoring of the soil status demonstrated that, compared with CK, the PSS treatment significantly increased the temperature and moisture of the 0–20 cm soil in the seeding row at the early stage of maize development, and it also promoted grain yield (at 884–1 089 kg ha–1) and WUE, achieving a similar effect as the PM treatment.  Economically, the labor inputs of PSS were equal to CK, whereas the PM cost an additional 960 CNY ha–1 in labor for releasing the seedlings from below the film.  Overall, the PSS system increased profits by 5.83% (547 CNY ha–1 yr–1) and 8.16% (748 CNY ha–1 yr–1) compared with CK and PM, respectively.  Environmentally, PSS achieved a residual film recovery rate of nearly 100% and eliminated 96 to 130 kg ha–1 of residual plastic-film in PM in 3–5 years of maize production.  Collectively, these results show that PSS is an eco-friendly technique for improving yield stability and incomes for the sustainable production of maize in semi-arid regions.  相似文献   

16.
研究一次深松耕作后土壤水分对冬小麦籽粒产量和水分利用率的影响,为小麦节水高产栽培提供理论依据.于2008-2009和2009-2010两个小麦生长季,选用高产小麦品种济麦22,采取测墒补灌的方法,研究了深松+旋耕和旋耕2种耕作方式下土壤水分对小麦0-200 cm土层土壤含水量、干物质积累与分配、籽粒产量及水分利用率的影响.结果表明,(1)深松+旋耕40-180 cm土层土壤含水量低于旋耕处理;旗叶光合速率和水分利用率,开花后干物质积累量及其对籽粒的贡献率显著高于旋耕处理.(2)W3(补灌至0-140 cm土层土壤相对含水量播种期为85%,越冬期80%,拔节和开花期75%)成熟期0-200cm土层土壤含水量与W1(播种期80%,越冬期80%,拔节和开花期75%)和W2处理(播种期80%,越冬期85%,拔节和开花期75%)无显著差异;W3和W''3(播种期85%,越冬期85%,拔节和开花期75%)60-140 cm土层土壤含水量分别低于W4(播种期85%,越冬期85%,拔节和开花期75%)和W''4(播种期90%,越冬期85%,拔节和开花期75%)处理;W3和W''3灌浆中后期旗叶光合速率较高,开花后干物质积累量及其对籽粒的贡献率显著高于其他处理,获得高的籽粒产量和水分利用率.综合考虑籽粒产量、水分利用率和灌溉效益,在深松+旋耕条件下,两年度分别以W3和W''3为节水高产的最佳处理.  相似文献   

17.
播期和施氮量组合对水稻南粳9108产量和氮素利用的影响   总被引:1,自引:0,他引:1  
为探明播期和施氮量组合对优质水稻品种南粳9108产量构成因素和氮素利用的影响,设3个播期[5月23日(B1)、6月2日(B2)、6月12日(B3)]和4个施氮量[折纯,以N计,0(N0)、180 kg·hm-2(N1)、270 kg·hm-2(N2)、360 kg·hm-2(N3)]进行大田试验。结果表明:水稻的千粒重和产量随着播期推迟逐渐增加,穗数随着施氮量增加而上升。不同播期下,籽粒的氮素分配比率均在N1处理下最大。随着播期推迟,水稻的氮素偏生产力、氮素籽粒生产效率相应增加,氮素农学效率、氮素生理效率先降后升。在同一播期下,水稻的氮素偏生产力、氮素农学效率、氮素吸收效率和氮素籽粒生产效率均随着施氮量增加总体呈下降趋势。总的来看,在本试验条件下,播期推迟、适量氮肥更利于获得高产。综合考虑水稻产量和氮素利用,B2N2或B3N2处理较为适宜。  相似文献   

18.
The source–sink ratio during grain filling is a critical factor that affects crop yield in wheat, and the main objective of this study was to determine the source–sink relations at both the canopy scale and the individual culm level under two nitrogen (N) levels at the post-jointing stage.  Nine widely-used cultivars were chosen for analyzing source–sink relations in southwestern China; and three typical cultivars of different plant types were subjected to artificial manipulation of the grain-filling source–sink ratio to supplement crop growth measurements.  A field experiment was conducted over two consecutive seasons under two N rates (N+, 150 kg ha–1; N–, 60 kg ha–1), and three manipulations were imposed after anthesis: control (Ct), removal of flag and penultimate leaves (Lr) and removal of spikelets on one side of each spike (Sr).  The results showed that the single grain weights in the three cultivars were significantly decreased by Lr and increased by Sr, which demonstrated that wheat grain yield potential seems more source-limited than sink-limited during grain filling, but the source–sink balance was obviously changed by climatic variations and N deficient environments.  Grain yield was highly associated with sink capacity (SICA), grain number, biomass, SPAD values, and leaf area index during grain filling, indicating a higher degree of source limitation with an increase in sink capacity.  Therefore, source limitation should be taken into account by breeders when SICA is increased, especially under non-limiting conditions.  Chuanmai 104, a half-compact type with a mid-sized spike and a long narrow upper leaf, showed relatively better performance in source–sink relations.  Since this cultivar showed the characteristics of a lower reduction in grain weight after Lr, a larger increase after Sr, and a lower reduction in post-anthesis dry matter accumulation, then the greater current photosynthesis during grain filling contributed to the grain after source and sink manipulation.   相似文献   

19.
为明确施用生物炭条件下氮高效品种玉米的氮效率和适宜减氮量,以氮高效品种郑单958(ZD)和氮低效品种先玉508(XY)为试验材料,以氮肥用量为主区、品种为副区开展裂区试验设计.试验主区共设置5个处理:C0,不施生物炭,施纯N 300 kg·hm-2;C1,施生物炭3000 kg·hm-2和纯N 300 kg·hm-2;...  相似文献   

20.
为了研究麦/油-稻轮作体系麦/油减量施氮与水稻氮肥运筹对作物产量、氮素吸收和氮肥偏生产力的影响,于2017—2018年开展麦-稻轮作和油-稻轮作的田间试验,在麦/油季设置常规施氮(小麦,N 150 kg·hm-2;油菜,N 180 kg·hm-2)、减量施氮(小麦,N 120 kg·hm-2;油菜,N 150 kg·hm-2)2个处理,在水稻季N 150 kg·hm-2用量基础上设置3个运筹M1~M3,基肥、分蘖肥、穗肥的用量比分别为2∶2∶6、3∶3∶4和4∶4∶2。结果表明:在麦-稻轮作体系下,小麦季减量施氮小麦产量、地上部生物量和地上部氮素吸收量分别显著(P<0.05)降低15.36%、14.21%和17.14%,小麦氮肥偏生产力显著(P<0.05)增加5.79%。小麦季常规施肥处理下,M3运筹的水稻产量最高,而减量施氮处理下,M2运筹的水稻产量、地上部氮素吸收量和氮肥偏生产力最高。在油-稻轮作体系下,油菜季减量施氮显著(P<0.05)降低了油菜的产量和地上部氮素吸收量,降幅分别为14.28%和16.76%。无论油菜季减氮与否,M3运筹的水稻产量、地上部生物量和氮肥偏生产力均最高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号