首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
为提高YOLOv4目标检测算法对苹果叶片小型病斑的检测性能,提出了一种PSA(金字塔压缩注意力)-YOLO算法。在CSPDarknet53的基础上融合了Focus结构和PSA机制,并采用网络深度减小策略,构建了参数量小、精确度高的PSA-CSPDarknet-1轻量化主干网络。其次在网络颈部,搭建了空间金字塔卷积池化模块,用极小的计算代价增强了对深层特征图的空间信息提取能力,并采用α-CIoU损失函数作为边界框损失函数,提高网络对高IoU阈值下目标的检测精度。根据实验结果,PSA-YOLO网络在苹果叶片病斑识别任务中的AP50达到88.2%。COCO AP@[0.5∶0.05∶0.95]达到49.8%,比YOLOv4提升3.5个百分点。网络对于小型病斑的特征提取能力提升幅度更大,小型病斑检测AP比YOLOv4提升3.9个百分点。在单张NVIDIA GTX TITAN V显卡上的实时检测速度达到69帧/s,相较于YOLOv4网络提升13帧/s。  相似文献   

2.
[目的/意义]实现复杂的自然环境下农作物害虫的识别检测,改变当前农业生产过程中依赖于专家人工感官识别判定的现状,提升害虫检测效率和准确率具有重要意义。针对农作物害虫目标检测具有目标小、与农作物拟态、检测准确率低、算法推理速度慢等问题,本研究提出一种基于改进YOLOv8的复杂场景下农作物害虫目标检测算法。[方法]首先通过引入GSConv提高模型的感受野,部分Conv更换为轻量化的幻影卷积(Ghost Convolution),采用HorBlock捕捉更长期的特征依赖关系,Concat更换为BiFPN (Bi-directional Feature Pyramid Network)更加丰富的特征融合,使用VoVGSCSP模块提升微小目标检测,同时引入CBAM (Convolutional Block Attention Module)注意力机制来强化田间虫害目标特征。然后使用Wise-IoU损失函数更多地关注普通质量样本,提高网络模型的泛化能力和整体性能。之后,对改进后的YOLOv8-Extend模型与YOLOv8原模型、YOLOv5、YOLOv8-GSCONV、YOLOv8-BiFPN、...  相似文献   

3.
针对火焰目标尺寸变化大、YOLOv3算法对小尺寸目标的检测性能有所欠缺、对火焰目标的检测效果不好的问题,提出对YOLOv3的改进策略。充分发挥空洞卷积在不提升训练参数的同时扩大卷积核感受野的优点,构建2层空洞卷积层,对特征金字塔的融合特征进一步提取多尺度特征;在空洞卷积模块后添加通道注意力机制模块,抑制冗余的特征;使用DIOU损失函数降低对目标的漏检率。通过在火焰目标数据集上的对比实验表明,改进后的YOLOv3训练模型在精度上达到了81.2%,相比原YOLOv3模型提升2.9%。与SSD模型相比在精度上有所提高,相比Faster R-CNN模型在检测速度上更具有优势;对小尺寸目标的检测效果相比原YOLOv3模型有所提升。  相似文献   

4.
针对不同光照,遮挡重叠,大视场等复杂环境下,自动采摘机器人无法快速准确地识别果蔬目标的问题,提出一种用于复杂环境下果蔬检测的改进YOLOv5(You Only Look Once v5)算法。首先,在主干网络Backbone中的CBL模块中嵌入卷积注意力机制(Convolutional Block Attention Module, CBAM),提高目标特征的提取能力。其次,引入完全交并比非极大抑制算法(Complete IOU Non-maximum suppression, CIOU-NMS),考虑长宽边长真实差,提高回归精度。最后,用加权双向特征金字塔网络(Bidirectional Feature Pyramid Network, BiFPN)替换原始YOLOv5的路径聚合网络(PANet),融合多尺度特征提高识别精度和准确率。以苹果为例进行试验,结果表明:改进YOLOv5算法精准率为94.7%,召回率为87%,平均精度为92.5%,相比于原始YOLOv5算法AP提高3.5%,在GPU下的检测时间为11 ms,可以实现复杂情况下的果蔬快速准确识别。  相似文献   

5.
[目的/意义]针对小麦叶片病虫害在自然环境下形态和颜色特征较为复杂、区分度较低等特点,提出一种高质量高效的病虫害检测模型,即YOLOv8-SS (You Only Look Once Version 8-SS),为病虫害的预防与科学化治理提供准确的依据。[方法]基于YOLOv8算法,采用改进的轻量级卷积神经网络ShuffleNet V2作为主干网络提取图像特征即YOLOv8-S,在保持检测精度的同时,减少模型的参数数量和计算负载;在此基础上增加小目标检测层和注意力机制SEnet (Squeeze and Excitation Network),对YOLOv8-S进行改进,在不降低检测速度和不损失模型轻量化程度的情况下提高检测精度,提出YOLOv8-SS小麦叶片病虫害检测模型。[结果与讨论]YOLOv8-SS模型在实验数据集上的平均识别精度和检测准确率分别达89.41%和91.00%,对比原模型分别提高10.11%和7.42%。因此,本研究所提出的方法可显著提高农作物病虫害的检测鲁棒性,并增强模型对小目标图像特征的提取能力,从而高效准确地进行病虫害的检测和识别。[结论]本研究使用的方法具...  相似文献   

6.
针对温室孢子捕捉设备所采集图像中孢子囊分布密集、粘连堆叠和背景复杂的特点,提出一种基于改进YOLOv5s的黄瓜霜霉病孢子囊检测算法。首先,使用带CBAM(Convolutional Block Attention Module)注意力机制的Ghost卷积替代原始网络中的CSP(Cross Stage Partial)模块,抑制背景中的杂质,在保证产生丰富特征图的同时,降低模型的参数量,提升计算速度。其次,修改特征融合网络的连接方式,删除原来负责大物体检测的分支并加入一个更细粒度的分支,以加强对小目标和密集、堆叠目标的检测。最后,对不同预测头产生的损失值赋予不同的权重,并用考虑中心点距离的DIOU_NMS非极大值抑制方法代替原来的NMS方法。改进后的YOLOv5s算法的平均准确率和FPS分别为91.18%和65.4帧/s,比原始的YOLOv5s算法高4.88%和7.1帧/s。该研究可为监测黄瓜霜霉病的发生和发展提供数据支撑,对于保障黄瓜的产量和质量具有重要意义。  相似文献   

7.
柑橘黄龙病严重影响柑橘的产量和品质。在自然背景下,柑橘叶片之间存在相互遮挡以及尺寸变化大的问题,使得遮挡及小尺寸的黄龙病叶片容易漏检,而且由于黄龙病叶片的颜色、纹理特征与柑橘其他病害十分相似,容易存在误检的问题,导致现有的算法对自然背景柑橘黄龙病检测的精度不高。本研究提出了一种结合剪切混合拼接(Shearing mixed splicing,SMS)增广算法和双向特征融合的自然背景柑橘黄龙病检测方法,该方法通过SMS、镜像翻转和旋转方法对训练集和验证集进行了增广,增加了训练集和验证集图像中背景目标的数量和多样性;为了自适应地改变柑橘黄龙病检测中的局部采样点,增大有效感受野,使用可变形卷积替换骨干网络后3个卷积层中所有的标准卷积;为了减小自然背景的影响,使用全局上下文模块对骨干网络后3个卷积层输出的特征图进行特征增强,来建立有效的长距离依赖,以便更好的学习到全局上下文信息;使用双向融合特征金字塔,改善浅层特征和深层特征的信息交流路径,用以降低因柑橘黄龙病叶片尺寸变化大导致的漏检,提高小尺寸的柑橘黄龙病叶片的检测精度。实验结果表明,本研究提出的方法用于自然背景柑橘黄龙病的检测,平均精度可达84.8%,性能优于SSD、RetinaNet、YOLO v3、YOLO v5s、Faster RCNN、Cascade RCNN等目标检测方法。  相似文献   

8.
基于改进YOLO v3网络的夜间环境柑橘识别方法   总被引:9,自引:0,他引:9  
为研究夜间环境下采摘机器人的视觉检测技术,实现采摘机器人的夜间作业,提出了一种多尺度卷积神经网络Des-YOLO v3算法,可实现夜间复杂环境下成熟柑橘的识别与检测。借鉴残差网络和密集连接网络,设计了Des-YOLO v3网络结构,实现了网络多层特征的复用和融合,加强了小目标和重叠遮挡果实识别的鲁棒性,显著提高了果实检测精度。柑橘识别试验结果表明, Des-YOLO v3网络的精确率达97.67%、召回率为97.46%、F1值为0.976,分别比YOLO v3网络高6.26个百分点、6.36个百分点和0.063。同时,经过训练的模型在测试集下的平均精度(mAP)为90.75%、检测速度达53f/s,高于YOLO v3_DarkNet53网络的平均精度88.48%,mAP比YOLO v3_DarkNet53网络提高了2.27个百分点,检测速度比YOLO v3_DarkNet53网络提高了11f/s。研究结果表明,本文提出的Des-YOLO v3网络对野外夜间复杂环境下成熟柑橘的识别具有更强的鲁棒性和更高的检测精度,为柑橘采摘机器人的视觉识别提供了技术支持。  相似文献   

9.
为研究自然环境下柑橘的图像识别技术,实现柑橘的早期产量预测,提出一种改进的D-YOLOV3算法,实现自然环境下未成熟的绿色柑橘的识别与检测。研究构建绿色柑橘图像数据集,并对采集的图像进行预处理;改进算法采用DenseNet的密集连接机制替换YOLOV3网络中的特征提取网络Darknet53中的后三个下采样层,加强特征的传播,实现特征的复用。通过自制的数据集对D-YOLOV3算法进行测试,并分别对改进前后网络的识别性能、不同预处理方法和不同数据量图像对模型的影响进行试验。试验结果表明,改进的D-YOLOV3算法相对于传统YOLOV3算法精确率提高6.57%,召回率提高2.75%,F1分数提高4.41%,交并比提高6.13%,平均单张检测时间为0.28 s。通过不同果实数量图像对比试验验证了算法的可行性和准确性。研究结果表明,本文提出的D-YOLOV3算法对自然环境下未成熟的绿色柑橘识别具有较高的精准度,为柑橘的早期测产提供了技术支持。  相似文献   

10.
刘庆华  杨欣仪  接浩  孙世诚  梁振伟 《农业机械学报》2023,54(12):253-260,299
水稻籽粒检测在粮食储存中凸显重要作用,直接影响粮食销售的价格。针对一般机器视觉检测算法在水稻籽粒小目标的密集场景下存在难以识别且网络模型参数大,检测速度较慢、成本高等问题,提出一种基于YOLO v7优化的水稻籽粒检测算法。首先将部分高效聚合网络模块(Efficient layer aggregation network, ELAN)替换成轻量级网络模块GhostNetV2添加到主干及颈部网络部分,实现网络参数精简化的同时也减少了通道中的特征冗余;其次将卷积和自注意力结合的注意力模块(Convolution and self-attention mixed model, ACmix)添加到MP模块中,平衡全局和局部的特征信息,充分关注特征映射的细节信息;最后使用WIoU(Wise intersection over union)作为损失函数,减少了距离、纵横比之类的惩罚项干扰,单调聚焦机制的设计提高了模型的定位性能。在水稻籽粒图像数据集上验证改进后的模型检测水平,实验结果表明,改进后的YOLO v7模型的mAP@0.5达96.55%,mAP@0.5:0.95达70.10%,训练模型参数量...  相似文献   

11.
针对果园目标检测时相机抖动以及物体相对运动导致检测图像模糊的问题,本文提出一种将DeblurGAN-v2去模糊网络和YOLOv5s目标检测网络相融合的D2-YOLO一阶段去模糊识别深度网络,用于检测识别果园模糊场景图像中的障碍物。为了减少融合网络的参数量并提升检测速度,首先将YOLOv5s骨干网络中的标准卷积替换成深度可分离卷积,并且在输出预测端使用CIoU_Loss进行边界框回归预测。融合网络使用改进的CSPDarknet作为骨干网络进行特征提取,将模糊图像恢复原始自然信息后,结合多尺度特征进行模型预测。为了验证本文方法的有效性,选取果园中7种常见的障碍物作为目标检测对象,在Pytorch深度学习框架上进行模型训练和测试。试验结果表明,本文提出的D2-YOLO去模糊识别网络准确率和召回率分别为91.33%和89.12%,与分步式DeblurGAN-v2+YOLOv5s相比提升1.36、2.7个百分点,与YOLOv5s相比分别提升9.54、9.99个百分点,能够满足果园机器人障碍物去模糊识别的准确性和实时性要求。  相似文献   

12.
疏花是梨生产中的重要农艺措施,机械化智能疏花是当今高速发展的疏花方式,花朵与花苞的分类与检测是保证疏花机器正常工作的基本要求。本研究针对目前梨园智能化生产中出现的梨树花序检测与分类问题,提出了一种基于改进YOLOv5s的水平棚架梨园花序识别算法Ghost-YOLOv5s-BiFPN。通过对田间采集的梨树花苞与花朵图像进行标注与数据扩充后送入算法进行训练得到检测模型。Ghost-YOLOv5s-BiFPN运用加权双向特征金字塔网络(Bi-directional Feature Pyramid Network,BiFPN)替换原始的路径聚合网络(Path Aggregation Network,PAN)结构,对网络提取的不同尺寸目标特征进行有效的融合。同时运用Ghost模块替换传统卷积,在不降低准确度的同时减少模型参数量和提升设备运行效率。田间试验结果表明,改进的Ghost-YOLOv5s-BiFPN算法对梨树花序中花苞与花朵的检测精度分别为93.2%和89.4%,两种目标平均精度为91.3%,检测单张图像时间为29 ms,模型大小为7.62 M。相比于原始YOLOv5s算法,检测精度与召回度分别提升了4.2%和2.7%,检测时间和模型参数量分别降低了9 ms和46.6%。本研究提出的算法可对梨树花苞与花朵进行精确的识别和分类,为后续梨园智能化疏花的实现提供技术支持。  相似文献   

13.
蛋鸭行为模式是判断笼养鸭养殖过程中健康状况及福利状态的重要指标,为了通过机器视觉实现识别蛋鸭多行为模式,提出了一种基于改进YOLO v4 (You only look once)的目标检测算法,不同的行为模式为蛋鸭的养殖管理方案提供依据。本文算法通过更换主干特征提取网络MobileNetV2,利用深度可分离卷积模块,在提升检测精度的同时降低模型参数量,有效提升检测速度。在预测输出部分引入无参数的注意力机制SimAM模块,进一步提升模型检测精度。通过使用本文算法对笼养蛋鸭行为验证集进行了检测,优化后模型平均精度均值达到96.97%,图像处理帧率为49.28 f/s,相比于原始网络模型,平均精度均值及处理速度分别提升5.03%和88.24%。与常用目标检测网络进行效果对比,改进YOLO v4网络相较于Faster R-CNN、YOLO v5、YOLOX的检测平均精度均值分别提升12.07%、30.6%及2.43%。将本文提出的改进YOLO v4网络进行试验研究,试验结果表明本文算法可以准确地对不同时段的笼养蛋鸭行为进行记录,根据蛋鸭表现出的不同行为模式来帮助识别蛋鸭的异常情况,如部分行为发...  相似文献   

14.
基于改进YOLOX的自然环境中火龙果检测方法   总被引:1,自引:0,他引:1  
自然环境下果实的精准检测是火龙果采摘机器人执行采摘作业的先决条件。为提高自然环境下果实识别的精确性、鲁棒性和检测效率,本研究对YOLOX(You Only Look Once X)网络进行改进,提出了一种含有注意力模块的目标检测方法。为便于在嵌入式设备上部署,本方法以YOLOX-Nano网络为基准,将卷积注意力模块(Convolutional Block Attention Module,CBAM)添加到YOLOX-Nano的主干特征提取网络中,通过为主干网络提取到不同尺度的特征层分配权重系数来学习不同通道间特征的相关性,加强网络深层信息的传递,降低自然环境背景下对火龙果识别的干扰。对该方法进行性能评估和对比试验,经过训练后,该火龙果目标检测网络在测试集的AP0.5值为98.9%,AP0.5:0.95的值为72.4%。在相同试验条件下对比其它YOLO网络模型,该方法平均检测精度分别超越YOLOv3、YOLOv4-Tiny和YOLOv5-S模型26.2%、9.8%和7.9%。最后对不同分辨率的火龙果果园自然环境下采集的视频进行实时测试。试验结果表明,本研究提出的改进YOLOX-Nano目标检测方法,每帧平均检测时间为21.72 ms,F1值为0.99,模型大小仅3.76 MB,检测速度、检测精度和模型大小满足自然环境下火龙果采摘的技术要求。  相似文献   

15.
毛桃等果实的准确检测是实现机械化、智能化农艺管理的必要前提。然而,由于光照不均和严重遮挡,在果园中实现毛桃,尤其是套袋毛桃的检测一直面临着挑战。本研究基于改进YOLOv5s和多模态视觉数据提出了面向机械化采摘的毛桃多分类准确检测。具体地,构建了一个多类标签的裸桃和套袋毛桃的RGB-D数据集,包括4127组由消费级RGB-D相机获取的像素对齐的彩色、深度和红外图像。随后,通过引入方向感知和位置敏感的注意力机制,提出了改进的轻量级YOLOv5s(小深度)模型,该模型可以沿一个空间方向捕捉长距离依赖,并沿另一个空间方向保留准确的位置信息,提高毛桃检测精度。同时,通过将卷积操作分解为深度方向的卷积与宽度、高度方向的卷积,使用深度可分离卷积在保持模型检测准确性的同时减少模型的计算量、训练和推理时间。实验结果表明,使用多模态视觉数据的改进YOLOv5s模型在复杂光照和严重遮挡环境下,对裸桃和套袋毛桃的平均精度(Mean Average Precision,mAP)分别为98.6%和88.9%,比仅使用RGB图像提高了5.3%和16.5%,比YOLOv5s提高了2.8%和6.2%。在套袋毛桃检测方面,改进YOLOv5s的mAP比YOLOX-Nano、PP-YOLO-Tiny和EfficientDet-D0分别提升了16.3%、8.1%和4.5%。此外,多模态图像、改进YOLOv5s对提升自然果园中的裸桃和套袋毛桃的准确检测均有贡献,所提出的改进YOLOv5s模型在检测公开数据集中的富士苹果和猕猴桃时,也获得了优于传统方法的结果,验证了所提出的模型具有良好的泛化能力。最后,在主流移动式硬件平台上,改进后的YOLOv5s模型使用五通道多模态图像时检测速度可达每秒19幅,能够实现毛桃的实时检测。上述结果证明了改进的YOLOv5s网络和含多类标签的多模态视觉数据在实现果实自动采摘系统视觉智能方面的应用潜力。  相似文献   

16.
基于改进YOLOv5m的采摘机器人苹果采摘方式实时识别   总被引:1,自引:0,他引:1  
为准确识别果树上的不同苹果目标,并区分不同枝干遮挡情形下的果实,从而为机械手主动调整位姿以避开枝干对苹果的遮挡进行果实采摘提供视觉引导,提出了一种基于改进YOLOv5m面向采摘机器人的苹果采摘方式实时识别方法。首先,改进设计了BottleneckCSP-B特征提取模块并替换原YOLOv5m骨干网络中的BottleneckCSP模块,实现了原模块对图像深层特征提取能力的增强与骨干网络的轻量化改进;然后,将SE模块嵌入到所改进设计的骨干网络中,以更好地提取不同苹果目标的特征;进而改进了原YOLOv5m架构中输入中等尺寸目标检测层的特征图的跨接融合方式,提升了果实的识别精度;最后,改进了网络的初始锚框尺寸,避免了对图像里较远种植行苹果的识别。结果表明,所提出的改进模型可实现对图像中可直接采摘、迂回采摘(苹果上、下、左、右侧采摘)和不可采摘果实的识别,识别召回率、准确率、mAP和F1值分别为85.9%、81.0%、80.7%和83.4%。单幅图像的平均识别时间为0.025s。对比了所提出的改进算法与原YOLOv5m、YOLOv3和EfficientDet-D0算法在测试集上对6类苹果采摘方式的识别效果,结果表明,所提出的算法比其他3种算法识别的mAP分别高出了5.4、22、20.6个百分点。改进模型的体积为原始YOLOv5m模型体积的89.59%。该方法可为机器人的采摘手主动避开枝干对果实的遮挡,以不同位姿采摘苹果提供技术支撑,可降低苹果的采摘损失。  相似文献   

17.
针对车载式绿篱修剪机自动化修剪需要快速、准确识别绿篱的问题,提出一种DA2-YOLOv4绿篱识别算法。提出一种针对性Mosaic数据增强以获得更合理的数据扩充,使训练结果更具鲁棒性;在CSPDarknet53中引入空洞卷积得到D-CSPDarknet53,获得更大感受野,提升准确率和速度;在SPP中引入平均池化得到A-SPP,充分利用信息,使网络更具鲁棒性;删减小目标检测,获得巨大的速度提升;使用Soft-DIOU-NMS算法,提升目标重叠时的识别效果。最后制作绿篱数据集,对改进效果进行测试,并与其他算法进行对比。试验结果表明,DA2-YOLOv4算法mAP达到985%,检测速度达到83.1 FPS,较原始YOLOv4算法分别提高了8.1%和14.9 FPS,而且算法各方面性能均显著优于其他目标检测算法。DA2-YOLOv4完全满足绿篱识别要求,为绿篱修剪行业自动化提供了有力保障。  相似文献   

18.
为实现割草机器人在计算资源有限的情况下快速、准确地定位并识别工作环境中的障碍物,提出一种基于滤波器剪枝的改进YOLOv5s深度学习模型的割草机器人工作环境下障碍物的检测方法。首先,将YOLOv5模型中的Bottleneck残差块改为分层残差结构,以更细粒度地表示多尺度特征,同时增加网络感受野;另外,在残差块尾部加入SE模块,用来对特征图重新标定;其次,对改进后的算法进行滤波器剪枝;最后,针对割草机器人工作环境中的常见障碍物建立相关数据集,并使用剪枝后改进YOLOv5s作为深度学习模型进行检测。试验结果表明:改进后的YOLOv5模型大小减少188%,mAP增加0.1%。对改进YOLOv5模型进行剪枝后,比原YOLOv5模型计算量降低36.6%,模型大小降低333%,推理速度减少1.9 ms。剪枝后本文模型的mAP值分别比YOLOv4,YOLOv4-tiny,YOLOv3,YOLOv3-tiny高1.3%,9.5%,5.8%,22.1%。  相似文献   

19.
针对现有花椒簇检测算法模型参数量多、计算量大、检测速度低、很难部署到嵌入式设备的问题,提出一种基于轻量化YOLOv5s的花椒簇检测算法模型。首先将ShuffleNet v2主干网络替代原YOLOv5s中的主干网络进行重构;同时将SPPF嵌入至ShuffleNet v2骨干中;其次引入轻量级注意力机制CBAM;最后使用SIoU_Loss代替CIoU_Loss作为回归损失函数。试验结果表明:改进后的轻量化YOLOv5s网络参数降低85.6%,计算量降低87.7%,对花椒簇的检测精度mAP@0.5达到92.6%,较原YOLOv5s模型提高3.4%,mAP@0.5:0.95达到61.4%,检测时间为11 ms,相比原模型16 ms缩短31.3%,可以满足在现场环境下对花椒簇的检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号