首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven isonitrogenous and isoenergetic experimental diets were formulated to investigate the effect of low molecular weight fish protein hydrolysate (FPH) in diets on growth performance, feed utilization and liver IGF‐I mRNA levels in Japanese flounder (38.80 ± 1.11 g) fed with high plant protein diets. Fish meal protein was, respectively, replaced by 6% (FPH6), 11% (FPH11), 16% (FPH16), 21% (FPH21), 26% (FPH26) FPH of total dietary protein. FPH diets contained a constant high level of plant protein (690 g kg?1) from soybean meal. As a positive control diet, FM2 contained about 590 g kg?1 plant protein and 410 g kg?1 fish meal protein, while negative control diet FM1 contained about 690 g kg?1 plant protein and 310 g kg?1 fish meal protein. The expression levels of liver IGF‐I mRNA were evaluated using real‐time PCR normalized against the 18S rRNA gene. The results showed that moderate low molecular weight FPH (FPH11) improved growth performance and protein retention. Fish fed with FPH11 and control diet FM2 had similar growth and feed utilization, while high‐level low molecular weight FPH did not improve growth performance and protein retention, and depressed liver IGF‐I mRNA expression in Japanese flounder.  相似文献   

2.
A 1H NMR‐based metabolomics approach was to explore the effect of ultrafiltered fish protein hydrolysate (UF) levels on the liver and muscle metabolic profile of juvenile turbot (Scophthalmus maximus L.). Fish protein hydrolysate (FPH) was produced from by‐products by enzymatic treatment, and UF was obtained by diluting FPH followed filtration. Fish were fed diets containing fish meal protein, which was, respectively, replaced by UF protein 0, 50, 100, 150 and 200 g kg?1 of dietary total protein (UF‐0, UF‐5, UF‐10, UF‐15 and UF‐20) for 68 days. OPLS‐DA of liver and muscle showed that high levels of UF in diets may lead to corresponding tissue metabolites changes. In liver tissue, changing metabolites included dimethylamine, N,N‐dimethylglycine, valine, isoleucine, leucine, arginine and alanine and were mainly involved in choline metabolism and amino acid metabolism. For muscle tissue, changing metabolites included lactate, alanine, proline, fumarate, tyrosine, histidine, cystathionine and taurine. And the metabolites were mainly involved in glycolysis and gluconeogenesis, proline metabolism and taurine metabolism. 1H NMR‐based metabolomics is a useful approach to investigate different levels of UF on metabolic profile in liver and muscle tissues combined with the growth.  相似文献   

3.
This study was conducted to investigate the effect of fish protein hydrolysate on growth performance, insulin‐like growth factor I (IGF‐I) levels and the expression levels of liver IGF‐I mRNA in juvenile Japanese flounder (Paralichthys olivaceus). Fish hydrolysate was produced by enzymatic (alcalase and flavourzyme) treatment and size‐fractionated by ultrafiltration. The permeate after ultrafiltration (UF) and the non‐ultrafiltered fish hydrolysate were tested as feed ingredients using high plant protein diets. Fish meal was used in the control diet (FM). The feeding trial lasted for 60 days, and fish fed with 37 g kg?1 UF showed the best growth, feed efficiency, digestibility and protein utilization. Plasma IGF‐I level was examined with radioimmunoassay, and the expression levels of liver IGF‐I mRNA were evaluated using real‐time PCR normalized against the 18S rRNA gene. Plasma IGF‐I levels were significantly increased by inclusion of fish protein hydrolysate. Liver IGF‐I mRNA expression was significantly higher in fish fed with 37 g kg?1 UF diet than fish fed with control diet. The results indicated that small molecular weight compounds from fish protein hydrolysate showed a positive effect on growth and feed utilization in juvenile Japanese flounder. Dietary fish protein hydrolysate could improve plasma IGF‐I levels and liver IGF‐I mRNA expression in Japanese flounder.  相似文献   

4.
Four experimental diets were fed to turbot to examine the effect of fish hydrolysate and ultra‐filtered fish hydrolysate on growth performance, feed utilization and non‐specific immune response. Fish hydrolysate was produced by enzymatic treatment and size fractionated using ultra‐filtration (UF). The permeate (molecular weight <1000 Da) after UF and the non‐ultra‐filtered fish hydrolysate (NUF) were tested as feed ingredients. Diets UF1, UF2 contained 3.7%, 1.2% ultra‐filtered fish hydrolysate to replace fish meal protein respectively. The diets UF1, NUF were identical in composition except that the molecular weight of fish hydrolysate in the diet. Fish meal was used in the control diet. All diets were made equal in protein, lipid and energy. Each experimental diet was fed to juvenile turbot (27.87 ± 0.04 g) in triplicate for 8 weeks. Results of this study indicate that the best overall growth and feed utilization of turbot juveniles were obtained with a diet containing higher dose of the small molecular weight compounds in fish hydrolysate. Acid phosphatase, alkaline phosphatase, lysozyme and superoxide dismutase activity in serum were not affected by diet. Total antioxidant capacity was improved with increasing level of low molecule weight fish hydrolysate (UF1).  相似文献   

5.
A 9‐week feeding trial was performed to evaluate the effects of fishmeal (FM) replacement by a mixture of plant proteins (PP), consisted of wheat gluten, soybean meal and soy protein concentrate, on the growth performance and welfare of turbot juveniles (initial weight 9.7 ± 0.2 g). Four isonitrogenous and isolipidic diets contained FM at 500 g kg?1 (FM50), 350 g kg?1 (FM35), 200 g kg?1 (FM20) and 50 g kg?1 (FM5). A decreased feed intake and an increased feed conversion rate was observed in FM5 group. Specific growth rate was significantly reduced in FM20 and FM5 groups, whereas protein and lipid utilization and proximate whole body composition were significantly different in FM5 group. Serum cortisol significantly increased in FM20 and FM5 groups whereas cholesterol, triglycerides, NEFA, total protein and urea concentrations significantly decreased. Serum lysozyme and blood phagocytes increased in FM20 and FM5 groups. FM35 ensured growth close to FM50, without significant effects on health and welfare of animals. FM20 and FM5 groups displayed reduced growth, metabolic stress and an immune response with effects on health and welfare. Results highlighted the consistency between growth performance and welfare status, suggesting the usefulness of their combined assessment for evaluating the suitability of PP and to improve dietary formulation for turbot.  相似文献   

6.
A 76‐day feeding trial was carried out to evaluate the effects of Lysine and Methionine supplementation on growth and digestive capacity of grass carp (Ctenopharyngodon idella) fed plant protein diets using high‐level canola meal (CM). Fish with initial average weight 103.9 ± 0.6 g were fed three extruded diets. Fish meal (FM) diet was formulated as the normal control with 40 g kg?1 FM and 300 g kg?1 CM; CM diet was prepared by replacing all FM with CM (total 340 g kg?1) without Lys or Met supplementation; CM supplement (CMS) diet was similar to CM diet but was supplemented with essential amino acids (EAA) to ensure the levels of Lys and Met similar to those in the FM diet. Feed intake, feed efficiency and specific growth rate of the grass carp fed CMS and FM diets were similar (> 0.05), but higher than those of the grass carp fed CM diet (< 0.05). The hepatosomatic index, relative gut length, intestosomatic index and intestinal folds height were significantly improved in fish fed FM and CMS diets as compared to CM diet (< 0.05). Lower activities of trypsin, lipase and amylase in hepatopancreas were observed in fish fed CM diet (< 0.05). Three hundred and forty gram per kilogram CM without Lys or Met supplementation significantly decreased trypsin, lipase and amylase mRNA levels in hepatopancreas (< 0.05). These results indicated that the high supply of CM (340 g kg?1) in plant protein (200 g kg?1 soybean meal and 100 g kg?1 cottonseed meal) diets decreased digestive ability through decreasing digestive enzyme activities and enzyme gene's expressions of grass carp, and these side effects can be reversed by supplementing Lys and Met. Therefore, CM could be high level used in a plant protein blend‐based extruded diet for grass carp as long as EAA were supplemented.  相似文献   

7.
The intention of the study was to investigate the effect of ultrafiltered fish protein hydrolysate (UF) level on growth, feed utilization, apparent digestibility coefficients and proximal intestine peptide transporter 1 (PepT1) mRNA level for juvenile turbot (Scophthalmus maximus L.). Experimental diets (UF‐0, UF‐5, UF‐10, UF‐15 and UF‐20) were prepared containing about 68% plant protein, and fish meal protein was, respectively, replaced by 0%, 5%, 10%, 15% and 20% UF of dietary protein. Diet PP contained about 78% plant protein, and diet CAA contained about 10% crystalline amino acid mixture. All diets were fed to seven triplicate groups of turbot (initial weight 16.05 ± 0.03 g) for 68 days. Fish fed diet UF‐10 had an increasing tendency in growth compared with diets contained UF, while dietary UF level was not significantly correlated with specific growth rate and feed intake. Feed efficiency, protein efficiency ratio and protein productive value significantly correlated with dietary UF level, and fish fed diets contained low‐level UF had higher digestibility than that diets UF‐0, PP and CAA. There was a decreasing tendency in PepT1 expression level with dietary UF level. The results indicated that low‐level UF showed a positive effect on growth and feed utilization in juvenile turbot.  相似文献   

8.
An 8‐week feeding trial was conducted to determine the effectiveness of replacing fish meal (FM) with blends of alternative proteins in diets for white seabass (WSB, Atractoscion nobilis) at a starting weight of 5.6 g. Five diets were formulated with 400–440g kg?1 crude protein (380g kg?1 digestible). These included a high 520g kg?1 FM control diet, a series of three diets with a sequential replacement of FM containing 410g kg?1, 510g kg?1 and 630g kg?1 of a soy‐based protein blend (SPC) and 200g kg?1, 100g kg?1 and 0g kg?1 FM, respectively and a fifth diet containing 550g kg?1 of a corn‐based protein blend (CGM) and 100g kg?1 FM. Survival was highest in the FM control group at 99% but all other performance measures (weight gain, feed conversion ratio, specific growth rate and protein retention efficiency) were worse than the other treatment groups. Weight gain reached a maximum of 595% in the SPC 200g kg?1 FM treatment group. Performance decreased as inclusion of the soy‐based protein blend increased. The CGM treatment performed comparably to the SPC 100g kg?1 FM treatment among all measures, except for survival, which was higher in the CGM 100g kg?1 FM treatment. With nutrient levels and alternative protein blends used in this study, FM can be reduced to 100g kg?1 of the diet for WSB without reductions in performance.  相似文献   

9.
A ten‐week feeding trail was conducted to investigate the effects of increasing DL‐methionine (Met) supplementation on the success of fish meal (FM) replacement with plant proteins in practical diets for juvenile gibel carp, Carassius auratus gibelio. Twelve isoenergetic diets were formulated including two 150 g kg?1 FM diets (Diet 1—positive control 1 reflecting a commercial diet and Diet 2—positive control 2 reflecting a commercial diet but with balanced essential amino acid (EAA) profile) and ten 50 g kg?1 FM diets (negative controls) supplemented with graded levels (0–3.0 g kg?1) of DL‐Met (Diets 3–12). Each diet was fed to triplicate groups of gibel carp, near satiation four times daily for 10 weeks. Diet 2 with balanced EAA profile produced better final weight, specific growth rate (SGR) and feed conversion ratio (FCR) than the negative control diet containing no supplemental Met (Diet 3), but did not significantly differ from Diet 1. However, DL‐Met supplementation (0.5–3.0 g kg?1) in the negative control diets (Diets 4–12) produced growth performances similar to those fed the positive control diets (Diets 1 and 2). Based on quadratic regression analysis, the optimal dietary Met level with 5.2 g kg?1 of dietary cysteine (Cys) was found to be 7.1 g kg?1 dry diet for SGR and FCR. The corresponding total sulphur amino acid requirements (Met + Cys) of this species were calculated to be 12.3 g kg?1 dry diet for SGR and FCR. DL‐Met supplementation in 50 g kg?1 FM diets showed a decreasing trend in plasma cholesterol contents (< .05). No significant differences were observed in whole‐body composition, plasma protein, triglyceride and free EAA contents among dietary treatments, while plasma aspartate transaminase, albumin and ammonia contents were significantly influenced by dietary Met levels. Juvenile gibel carp grew equally well on 150 g kg?1 FM diet or 50 g kg?1 FM diets balanced for EAA profile with supplemental amino acids. The results of this study overall indicate that balancing dietary amino acid levels with DL‐Met supplementation is a key strategy in successfully reducing FM levels in the diets of gibel carp.  相似文献   

10.
A growth trial was conducted to evaluate the effects and safety of nucleotides in low fish meal diets on the growth performance, antioxidative capacity and intestinal morphology of turbot (Scophthalmus maximus). High fish meal control diet was formulated with 500 g kg?1 fish meal. Seven levels (0.075, 0.15, 0.225, 0.300, 1.5 and 3.0 g kg?1, respectively) of nucleotides were added to a low fish meal basal diet, which was formulated with 400 g kg?1 fish meal. The eight experimental diets were fed to groups of juvenile turbot (initial weight: 6.0 ± 0.03 g) for 60 days. Results showed that compared with high fish meal control diet, low fish meal basal diet treatment had lower total antioxidative capacity (T‐AOC), glutathione peroxidase activity, fold height of proximal and distal intestine, enterocyte height of all evaluated enteric section and microvillus height of mid‐intestine and distal intestine (< 0.05). However, supplemented nucleotides in diets could significantly improve growth (specific growth rate, SGR), feed utilization, antioxidative capacity and intestinal morphology of turbot (< 0.05). Broken‐line regression analysis of SGR and T‐AOC showed that the optimal supplemental levels of dietary nucleotide for juvenile turbot were 0.366 and 0.188 g kg?1, respectively. In summary, 0.300 g kg?1 of dietary nucleotides was helpful in improving growth, feed utilization, antioxidative capacity and intestinal morphology of turbot fed with low fish meal diet. Excessive dietary nucleotides (3.0 g kg?1) might cause oxidative stress and morphological damage in intestine and then reduce the growth of turbot.  相似文献   

11.
The effect of short‐chain fructooligosaccharides (scFOS) incorporation on growth, feed utilization, body composition, plasmatic metabolites and selected liver enzyme activities of turbot juveniles reared at winter (15 °C) and summer (20 °C) temperatures was studied. Four comparable diets were formulated to contain circa 50 : 50 fish meal and plant ingredients as protein sources. Experimental diets included increasing levels of scFOS (0, 5, 10 and 20 g kg?1). Final weight was higher at 20 °C, but thermal growth unit, feed efficiency, nitrogen and energy retention were better at 15 °C. scFOS supplementation did not affect fish growth performance. Fish reared at 15 °C had higher liver glycogen, visceral and hepatosomatic indices. Liver lipids, plasma triglycerides, total lipids, cholesterol HDL and LDL were higher in turbot reared at 20 °C. Malic enzyme, fatty acid synthetase, alanine aminotransferase and glutamate dehydrogenase activities were higher in fish reared at 15 °C. Malic enzyme was lower in turbot fed with 20 g kg?1 scFOS compared to control diet; however, fatty acid synthetase presented an increasing trend as dietary scFOS increased up to 10 g kg?1. Glutamate dehydrogenase activity was higher in fish fed the control diet. Results seem to indicate no benefits of scFOS incorporation to diets on growth performance of turbot.  相似文献   

12.
A feeding trial was conducted to study the effect of dietary lipid on growth performance and heat‐shock protein (HSP70 and HSP60) response of white seabass (WSB), Atractoscion nobilis. Five diets were formulated to contain 440 g kg?1 protein from 300 g kg?1 fish meal, 240 g kg?1 soybean meal and 100 g kg?1 soy protein concentrate with different levels of lipid: 100, 120, 140, 160 or 180 g kg?1. At the end of the trial, heat shock response based on HSP70 and HSP60 was measured in liver and white muscle from fish at ambient temperature and temperature shock conditions. Final weight and percent gain were significantly higher for fish fed the 100 g kg?1 lipid diet than for fish fed the rest of the diets (P ≤ 0.05). Feed conversion ratio was lowest for fish fed the 100 g kg?1 lipid diet. The HSP70 and HSP60 responses were positively correlated to dietary lipid levels following temperature shock. At ambient temperature, HSP60 and HSP70 responses in muscle and HSP60 response in liver increased with dietary lipid level. Temperature shock significantly increased the HSP response of fish in all treatments. Results of this study demonstrated that a moderate (110–120 g kg?1) level of dietary lipids would be recommended for production diets but a higher dietary lipid level may be required for optimal stress tolerance.  相似文献   

13.
The study was conducted to investigate the effects of taurine (Tau) alone or in combination with fish protein hydrolysate (FPH) on growth performance, the expression of Tau transporter (TauT) and metabolic profile in juvenile turbot. FM, FPH0, FPH0+T, FPH10 and FPH10+T diets, respectively, contained 300, 150, 150, 80, and 80 g/kg fishmeal. FPH10 and FPH10+T diets contained 62 g/kg FPH. FPH0+T and FPH10+T diets were, respectively, prepared by supplementing the FPH0 and FPH10 diet formulations with 8 g/kg Tau. Specific growth rate was the highest in FM group and the lowest in FPH10 group. TauT mRNA levels in fish fed Tau supplemented diets were significantly lower than that in Tau unsupplemented diets. NMR‐based metabolomics analysis showed that Tau contents in liver of FPH0+T and FPH10+T were significantly higher than that of FM, FPH0 and FPH10. In muscle, Tau contents were significantly decreased in the FPH10+T versus FPH0 and the FPH10+T versus FPH10 comparisons. In conclusion, 62 g/kg FPH to replace fishmeal may not affect Tau synthesis, transport and metabolism. However, Tau supplemented alone or in combination with a certain level of FPH could reduce the requirement for Tau synthesis and transport and increased Tau levels in muscle and liver.  相似文献   

14.
This study was designed to evaluate the effects of using soybean meal supplemented with or without methionine (M) and graded levels of phytase (P) to replace high‐level (60%) fish meal in the diets for juvenile Chinese sucker. Seven experimental diets (about 430 g kg?1 crude protein on dry matter basis) were formulated from practical ingredients. The control diet (FM) was formulated to contain 400 g kg?1 white fish meal (FM), whereas in the other six diets (diets 2–7), soybean meal (SBM) was used to replace 60% fish meal with or without methionine (3 g kg ?1) and 0,500, 1000, 1500 and 2000 U kg?1 phytase (designated as SBM, SM, SMP500, SMP1000, SMP1500 and SMP2000, respectively). Results from the feeding trial indicated that SBM without any methionine or phytase supplement replacing about 60% FM significantly affected the growth of fish (< 0.05). Weight gain of fish fed diet SM was significantly higher than the fish fed diet SBM, but still much lower than fish fed the control diet (< 0.05). SBM with methionine and phytase supplement significantly improved the growth of fish and apparent digestibility coefficients of phosphorus compared with the groups which fed diet SBM and diet SM (< 0.05). Weight gain of fish fed SMP1000, SMP1500 and SMP2000 had no significant difference than fish fed control diet. Furthermore, fish fed SMP1500 showed optimum weight gain and ADC of phosphorus between these three groups. This suggested that soybean meal with 3 g kg?1 methionine and 1500 U kg?1 phytase supplement could successfully replace 60% fish meal in the diet for juvenile Chinese sucker without affecting growth and enhanced the apparent digestibility coefficient of phosphorus.  相似文献   

15.
This study evaluated the potential of using poultry by‐product meal (PBM) to replace fish meal in diets for Japanese sea bass, Lateolabrax japonicus. Fish (initial body weight 8.5 g fish?1) were fed six isoproteic and isoenergetic diets in which fish meal level was reduced from 400 g kg?1 (diet C) to 320 (diet PM1), 240 (diet PM2), 160 (diet PM3), 80 (diet PM4) or 0 g kg?1 (diet PM5), using PBM as the fish meal substitute. The weight gain (WG), specific growth rate, nitrogen retention efficiency, energy retention efficiency and retention efficiency of indispensable amino acids were higher in fish fed PM1, PM2, PM3 and PM4 diets than in fish fed diets C or PM5. The phosphorus retention efficiency was lower in fish fed PM3, PM4 and PM5 diets than in fish fed C, PM1 or PM2 diets. Fish fed diet PM5 had the highest feed conversion ratio, total nitrogen waste output (TNW) and total phosphorus waste output (TPW) among the treatments. No significant differences were found in the hepatosomatic index or body contents of moisture, lipid and ash among the treatments. Fish fed diet C had lower condition factor and viscerosomatic index than those of fish fed PM1, PM3, PM4 and PM5 diets. The results of this study indicate that using fish meal and PBM in combination as the dietary protein source produced more benefits in the growth and feed utilization of Japanese sea bass than did using fish meal or PBM alone as the dietary protein source. The dietary fish meal level for Japanese sea bass can be reduced to 80 g kg?1 if PBM is used as a fish meal substitute.  相似文献   

16.
This work aimed to determine whether a minimum provision of marine oil in practical diets for Litopenaeus vannamei is required when replacing fish meal (FM) by soy protein concentrate (SPC). The study consisted of three growth experiments conducted in 500‐L tanks with 70 shrimp m?2. In experiment #1, FM was progressively replaced by SPC as fish oil (FO) levels increased with a consistent input of whole squid meal (WSM). In experiment #2, FM was replaced by SPC under two levels of FO (10 or 20 g kg?1) without the presence of a feeding effector. In experiment #3, three dietary levels of krill meal (KRL) and WSM (5, 10 and 20 g kg?1) were included in a basal diet containing SPC and low levels of FM. Results showed that under a clear‐water condition, the dietary levels of FO in practical diets for L. vannamei have a significant impact on the amount of FM that can be replaced by SPC. As much as 31% replacement of FM/SPC was possible with 20 g kg?1FO. Whenever dietary fat was adjusted by using FO as a lipid source, complete replacement of FM by SPC was achieved with no negative effect on shrimp growth.  相似文献   

17.
The aim of this study was to evaluate different replacement levels of fish meal (FM) by poultry by‐product meal (PBM) on survival, growth performance and body composition of juvenile tench (Tinca tinca). A 90‐day experiment was conducted with 5 month‐old juveniles (31.95 mm total length, 0.396 g weight). Eight practical diets (50% crude protein) differing in the level of replacement of FM protein by PMB protein were tested: 0% (control), 25%, 31%, 37%, 43%, 49%, 55% and 61% corresponding to 0, 184.8, 229.2, 273.5, 317.8, 362.1, 406.5 or 450.8 g PBM kg?1 diet respectively. Significant differences were not found (> 0.05) between 25% replacement of FM protein by PBM protein (184.8 g kg?1 PBM in diet) and control diet. At higher replacement levels, fish had significantly lower growth, higher feed conversion ratio and lower protein productive value (< 0.05). Fish with externally visible deformities ranged from 1.1% to 3.3%. The relation among amino acid profiles of the diets, body composition, growth performance of juveniles and amino acid requirements of other fish species is discussed. Up to 184.8 g PBM kg?1 diet can be included in diets for juvenile tench without impairing growth performance.  相似文献   

18.
The study was to evaluate the effects of dietary fish meal (FM) partially replaced by housefly maggot meal (HMM) on growth, fillet composition and physiological responses of juvenile barramundi, Lates calcarifera. HMM at 100, 150, 200 and 300 g kg?1 was supplemented in the basal diet to replace dietary FM protein. Basal diet without HMM supplementation was used as control. Total of five experimental diets were fed to triplicate groups of juvenile barramundi (initial weight: 9.66 ± 0.22 g) in a flow‐through rearing system for 8 weeks. Fish fed all experimental diets showed no effects (> 0.05) on weight gain and whole body protein, lipid and moisture content. Fish fed control diet and 100 g kg?1 HMM diet had the highest (< 0.05) hepatic superoxide dismutase (SOD) activity, followed by 150 g kg?1 HMM group, the lowest in 200 and 200 g kg?1 HMM groups. Hepatic thiobarbituric acid reactive substance (TBARS) value was the highest in fish fed 150–300 g kg?1 HMM diets, followed by 100 g kg?1 HMM group and the lowest in fish fed the control diet. Fish fed the 300 g kg?1 HMM diet had lower plasma lysozyme activity than fish fed other diets. The results indicated that up to 300 g kg?1 HMM can be used to substitute dietary FM protein without negative effect on growth. Although physiological responses were also considered, up to 100 g kg?1 HMM in barramundi diet was recommended.  相似文献   

19.
Two 8‐week feeding trials were conducted to evaluate soybean meal (SBM) as a fish meal substitute in diets for Japanese seabass, Lateolabrax japonicas. In trial I, a control diet (C) contained 400 g kg?1 fish meal, and 20%, 40%, 60% and 80% of the fish meal were replaced with SBM, supplied with 3 g kg?1 DL‐methionine and 2 g kg?1 L‐lysine (S20, S40, S60 and S80). In trial II, 60% and 80% of the fish meal in diet C were replaced with SBM, supplied with DL‐methionine at 3 g kg?1 (S60, S80) or 6 to 7 g kg?1 (RS60, RS80). The feed intake was lower in fish fed diet C than in fish fed diets S20, S40, S60 and S80 (trial I). No significant differences were found in the weight gain, nitrogen retention efficiency and body composition between fish fed diets C, S20, S40 and S60 (trial I), between fish fed diets S60 and RS60 or between fish fed diets S80 and RS80 (trial II). This study indicates that dietary fish meal level for Japanese seabass can be reduced to 160 g kg?1 by using SBM as a fish meal substitute.  相似文献   

20.
This study evaluated the effects of increasing levels of methionine (Met) supplementation on the success of almost total replacement of fish meal (FM) with soybean meal (SBM) in diets for hybrid tilapia (Oreochromis niloticus × Oreochromis mossambicus). Fish were fed for 70 days a FM‐based diet (Diet1‐positive control) or SBM‐based diets supplemented with graded levels of DL‐methionine (Diet2 to Diet7). Contrast in dietary Met, concentration was created by supplementing Diet2‐negative control with 1.2 (Diet3), 2.4 (Diet4), 3.6 (Diet5), 4.8 (Diet6) or 6.0 g kg?1 (Diet7) of DL‐Met. Specific growth rate (SGR), feed conversion ratio (FCR), and protein gain and retention efficiency (PER) improved significantly with increasing levels of dietary DL‐Met supplementation. Moreover, nonlinear regression analysis of the effects of supplementing SBM‐based diet with graded levels of DL‐Met indicated that a dietary Met + Cys level of 15.7 and 12.5 g kg?1 diet (as fed) was required to reach 95% of maximum weight and protein gain, respectively. Supplementation of SBM‐based diet with graded levels of DL‐Met proved an effective strategy in reducing FM content in practical diets for hybrid tilapia. Data also indicate that adjustment of dietary formulas according to currently recommended Met or Met + Cys dietary concentrations is probably limiting maximum growth potential of hybrid tilapia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号