首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 3 × 2 factorial experiment was conducted to investigate the interaction between carbonate alkalinity and dietary α‐ketoglutarate (AKG) levels on the growth performance, antioxidant capacity and ammonia metabolization of Songpu mirror carp (Cyprinus carpio Songpu). Each diet (0%, 1% AKG) was randomly allotted to 0 mmol/L, 15 mmol/L, 30 mmol/L carbonate alkalinity groups with three replicate aquaria. The weight gain rate (WGR) significantly increased in the 1% AKG group and significantly decreased with increasing carbonate alkalinity (< .05). Crude ash was significantly affected by the interaction between carbonate alkalinity and dietary AKG levels and significantly increased in the 1% AKG group (< .05). A significant interaction between carbonate alkalinity and dietary AKG levels on superoxide dismutase (SOD) activities in hepatopancreas was observed (< .05). The increasing carbonate alkalinities significantly decreased SOD activities in the hepatopancreas and foregut, catalase (CAT) activities in the hepatopancreas, foregut, midgut and hindgut and glutathione (GSH) contents in the hepatopancreas and foregut (< .05). Despite AKG addition, the blood ammonia content still increased with increasing carbonate alkalinities. The gene expressions of AQP3, Rhag, Rhcg2 and Na+/K+‐ATPase (NKA) in the gills and glutamine synthase (GS) in the brain were significantly upregulated with increasing carbonate alkalinities (p < .05). In the 1% AKG group, GS gene expression significantly upregulated in the brains, whereas AQP3, Rhag, Rhcg2 and NKA gene expressions significantly downregulated in the gills (p < .05). In summary, the 1% AKG addition can enhance the gene expression of ammonia metabolization and improve the antioxidant capacity of Songpu mirror carp with chronic carbonate alkalinity stress.  相似文献   

2.
本试验旨在研究不同蛋白源饲料中添加α-酮戊二酸(AKG)对松浦镜鲤肠道形态与功能的影响。在水温23℃下,将初始体质量为(217.93±0.78)g的松浦镜鲤Cyprinus carpio Songpu 400尾,随机分成4组,每组5个重复,每个重复20尾鱼,饲养在控温循环水系统中,投喂4种在不同蛋白源的等氮等脂饲料中添加不同剂量的α-酮戊二酸(AKG)的饲料10周,即饲料1(44%豆粕+0%AKG)、饲料2(44%豆粕+1.5%AKG)、饲料3(30%豆粕+10%鱼粉+0%AKG)、饲料4(30%豆粕+10%鱼粉+1.5%AKG),饲料中蛋白质和脂肪水平分别为28%和5.1%。结果表明:不同蛋白源饲料中添加AKG能显著提高松浦镜鲤后肠皱襞高度、前肠肌层厚度和前肠Na+,K+-ATP酶活性(P0.05);蛋白源和AKG对肠道形态指标和Na+,K+-ATP酶活性无显著交互作用(P0.05);饲料中蛋白源添加AKG能显著提高松浦镜鲤前肠和中肠蛋白酶、脂肪酶活性(P0.05),蛋白源和AKG对后肠蛋白酶活性具有显著交互作用(P0.05)。综上所述,饲料中添加1.5%AKG可以促进松浦镜鲤肠道发育,增强肠道消化酶活性。  相似文献   

3.
An 8‐week feeding trial was conducted to investigate the effects of dietary vitamin E on growth performance and antioxidant status of juvenile snakehead. The snakeheads (20.47 ± 0.06 g) were fed with five isonitrogenous and isoenergetic experimental diets that contained 13 (the basal diet), 52, 79, 168 and 326 mg of vitamin E kg?1, respectively. The maximum specific growth rate (SGR) and feed intake (FI) were achieved in fish fed on a diet with 79 mg kg?1 vitamin E (< .05). No significant differences were found in protein efficiency ratio (PER), feed conversion ratio (FCR) and survival of fish among all groups (> .05). Vitamin E supplementation improved hepatic glutathione peroxidase (GPx) activity significantly. A consistent decline in the hepatic and serum malondialdehyde (MDA) content was observed in fish fed diets with the increased supplementation of vitamin E (< .05). In addition, with the increasing level of vitamin E, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were reduced (< .05). However, serum superoxide dismutase (SOD), catalase (CAT) and alkaline phosphatase (ALP) activities were enhanced in fish fed 79 mg vitamin E kg?1 diet and then decreased significantly as the content of vitamin E in the diet increased (< .05). Meanwhile, serum albumin (ALB) and globulin (GLB) were not affected by the supplemental levels of dietary vitamin E (> .05). The vitamin E concentrations in liver and serum increased significantly with increasing dietary vitamin E (< .05). Based on the broken‐line regression of SGR, vitamin E level in the diet is estimated to be 80.5 mg kg?1 for Channa argus × Channa maculata. In conclusion, this study indicated that the dietary appropriate vitamin E could enhance the growth performance, antioxidant status and non‐specific immune response.  相似文献   

4.
This study was conducted to determine the effects of dietary α‐ketoglutarate (AKG) supplementation on the antioxidant defense system and gene expression of heat shock protein (HSP) 70 and HSP 90 in hybrid sturgeons Acipenser schrenckii ♀ × A. baerii ♂ exposed to ammonia‐N stress. A 2 × 3 factorial experiment was arranged, in which each diet (0%, 1% AKG) was randomly assigned to 0.25 (control) 5 and 10 mg L?1 ammonia‐N groups with three replicate aquaria for each 72 h. The 10 mg L?1 ammonia‐N significantly increased serum ammonia concentrations and intestinal Gln concentrations and GS activity compared with the 0.25 or 5 mg L?1 ammonia‐N groups. The intestinal Gln concentration and GS activity increased, and the serum ammonia concentration decreased, in fish given dietary supplementation of 1.0% AKG compared with fish given diets without AKG. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in serum, gills and intestines decreased when fish were exposed to 5 or 10 mg L?1 ammonia‐N, and their activity increased in fish given diets with 1% AKG. Catalase in the serum and gills decreased when fish were exposed to 5 or 10 mg L?1 ammonia‐N and increased in fish given diets with 1% AKG. The 10 mg L?1 ammonia‐N or 1% AKG supplementation increased HSP 70 and HSP 90 gene expression in the liver. The increased activity of antioxidant enzymes, and increased HSP 70 and HSP 90 gene expression in fish fed diets containing 1% AKG suggested higher tolerance to ammonia‐N stress.  相似文献   

5.
Three retinol acetate (vitamin A)‐supplemented diets containing 0, 5,000, 10,000 IU kg?1 diet (in dry weight) were fed twice daily to triplicate groups (50 fish/group) of Caspian roach (Rutilus caspicus) (1.91 ± 0.07 g) for 40 days. At the end of feeding trial, skin mucus antimicrobial activity against Streptococcus faecium, Serratia marcescens, Staphylococcus aureus and Escherichia coli as well as soluble protein level, growth performance and haematological parameters was evaluated. Growth performance including final weight, weight gain, specific growth rate and food conservation ratio as well as the survival rate showed no significant differences between vitamin A‐supplemented diets and control groups (> .05). The results revealed that the administration of 10,000 IU vitamin A kg?1 significantly increased skin mucus antibacterial activity (< .05). Furthermore, the soluble protein level of skin mucus was found to be significantly elevated in roach fed diet containing 10,000 IU vitamin A kg?1 (< .05). Evaluation of haematological parameters revealed no significant difference (> .05), except white blood cell counts that were significantly higher in vitamin A‐fed roach (< .05). The results of the present study indicate that dietary vitamin A can modulate mucosal immune response of Caspian roach.  相似文献   

6.
A ten‐week feeding trail was conducted to investigate the effects of increasing DL‐methionine (Met) supplementation on the success of fish meal (FM) replacement with plant proteins in practical diets for juvenile gibel carp, Carassius auratus gibelio. Twelve isoenergetic diets were formulated including two 150 g kg?1 FM diets (Diet 1—positive control 1 reflecting a commercial diet and Diet 2—positive control 2 reflecting a commercial diet but with balanced essential amino acid (EAA) profile) and ten 50 g kg?1 FM diets (negative controls) supplemented with graded levels (0–3.0 g kg?1) of DL‐Met (Diets 3–12). Each diet was fed to triplicate groups of gibel carp, near satiation four times daily for 10 weeks. Diet 2 with balanced EAA profile produced better final weight, specific growth rate (SGR) and feed conversion ratio (FCR) than the negative control diet containing no supplemental Met (Diet 3), but did not significantly differ from Diet 1. However, DL‐Met supplementation (0.5–3.0 g kg?1) in the negative control diets (Diets 4–12) produced growth performances similar to those fed the positive control diets (Diets 1 and 2). Based on quadratic regression analysis, the optimal dietary Met level with 5.2 g kg?1 of dietary cysteine (Cys) was found to be 7.1 g kg?1 dry diet for SGR and FCR. The corresponding total sulphur amino acid requirements (Met + Cys) of this species were calculated to be 12.3 g kg?1 dry diet for SGR and FCR. DL‐Met supplementation in 50 g kg?1 FM diets showed a decreasing trend in plasma cholesterol contents (< .05). No significant differences were observed in whole‐body composition, plasma protein, triglyceride and free EAA contents among dietary treatments, while plasma aspartate transaminase, albumin and ammonia contents were significantly influenced by dietary Met levels. Juvenile gibel carp grew equally well on 150 g kg?1 FM diet or 50 g kg?1 FM diets balanced for EAA profile with supplemental amino acids. The results of this study overall indicate that balancing dietary amino acid levels with DL‐Met supplementation is a key strategy in successfully reducing FM levels in the diets of gibel carp.  相似文献   

7.
Five semi‐purified diets were formulated to contain graded levels of dietary protein (340, 390, 440, 490 and 540 g/kg diet), and each diet was assigned to triplicate groups of eight juvenile Dabry's sturgeon for 50 days. Results showed that specific growth rate increased linearly with increasing dietary protein levels from 340 to 440 g/kg diet, then levelled off at higher protein levels. Higher dietary protein (440 and 540 g/kg) significantly increased the feed intake and feed efficiency ratio of fish compared to lower protein diets (340 to 490 g/kg diet) (< .05). Fish fed a 440 g protein kg?1 diet had higher protein efficiency ratio and serum lysozyme activity than other treatments. Serum ammonia content and activities of liver aminotransferase were positively correlated with dietary protein levels. No significant difference (> .05) among groups was observed in glycogen content. As dietary protein level increased, protein and ash content of fish dorsal muscle were greatly enhanced, whereas lipid content was significantly reduced (< .05). Based on broken‐line regression analysis of SGR against dietary protein levels, the optimum dietary protein level for maximal growth of juvenile Dabry's sturgeon is 446.68 g/kg diet.  相似文献   

8.
This work evaluated the performance of Litopenaeus vannamei to low fish meal diets supplemented with 2‐hydroxy‐4‐(methylthio)butanoic acid (HMTBa). A basal diet with 150.0 g kg?1 of anchovy fish meal was designed. Two positive control diets were formulated to reduce fish meal at 50% and 100% with 1.0 and 2.0 g kg?1 of MERA? MetCa (calcium salt with 84% HMTBa activity), respectively. Two nearly equivalent diets acted as negative controls, without HMTBa supplementation. A total of 50 clear‐water tanks of 500 L were stocked with 2.22 ± 0.19 g shrimp under 70 animals m?2. Shrimp survival (92.3 ± 5.1% and 81.4 ± 8.0%), yield (808 ± 12 and 946 ± 17 g m?2) and FCR (2.17 ± 0.19 and 3.12 ± 0.37) showed no differences among diets after 72 or 96 days, respectively. A significantly higher shrimp body weight and weekly growth were observed for those fed with the basal diet or diets supplemented with HMTBa compared with non‐supplemented ones. This study has shown that L. vannamei growth, body weight, survival, yield and FCR were supported by HMTBa supplementation when 150.0 g kg?1 of fish meal was replaced by soybean meal and other ingredients, at 50% and 100%.  相似文献   

9.
An 8‐week feeding trial was conducted to assess dietary protein and lipid levels on growth performance, feed utilization and body composition of juvenile red‐spotted grouper (7.85 ± 0.03 g fish?1). Nine semi‐purified diets were formulated containing varying protein levels (440–520 g kg?1, dry matter) and lipid levels (60–120 g kg?1, dry matter). The weight gain of juvenile Epinephelus akaara was affected by dietary protein (= .005) and its interaction with dietary lipid (= .020). Viscerosomatic index, intraperitoneal fat ratio and whole‐body lipid level increased with increasing dietary lipid level (p < .001). Nitrogen retention was not affected by dietary protein and lipid, while lipid retention decreased with increasing dietary lipid level (p < .001). The plasma blood urea nitrogen increased with increasing dietary protein level (= .003). This study showed that diet with 520 g kg?1 protein and 60 g kg?1 lipid with 30.58 mg kJ?1 P:E provided a maximal growth for this species. Moreover, an increase in dietary lipid levels (from 60 to 90 g kg?1) could reduce the protein requirement (from 520 to 480 g kg?1) without affecting the growth performance, while higher fat deposition was observed in fish fed high‐lipid diets.  相似文献   

10.
This study aimed to develop a synbiotic combination with probiotic, Lactobacillus plantarum 7–40 and one of three prebiotics, fructooligosaccharide (FOS), galactooligosaccharide (GOS) and mannan oligosaccharide (MOS). The best in vitro growth was observed when probiotic was cultured in the medium containing either FOS or GOS as the sole of carbon source. The analysis of enzyme activity revealed that GOS induced the highest activities of protease and β‐galactosidase of probiotic. Based on the findings, probiotic + GOS were selected as synbiotic to evaluate if it could promote the growth of white shrimp, Litopenaeus vannamei. For this, four diets, including a basal diet with no GOS or probiotic (control), 0.4% GOS (PRE), 108 CFU probiotic kg?1 (PRO) and 0.4% GOS in combination with 108 CFU probiotic kg?1 (SYN), were fed to shrimp for 60 days, and then the growth performance, intestinal microbiota (including total Vibrio counts, VBCs; and lactic acid bacteria, LAB) and digestive enzyme (including protease, leu‐aminopeptidase and β‐galactosidase) were evaluated. The weight gain (WG) of shrimp fed the PRO did not significantly differ from those of control (> .05). Shrimp fed the SYN had significantly higher WG compared with the other treatments (< .05). In addition, the SYN‐fed shrimp had significantly higher LAB and protease, leu‐aminopeptidase and β‐galactosidase activity (< .05). The lowest presumptive Vibrio count (VBC) was also observed in intestines of SYN‐fed shrimp. Therefore, we suggested that Lac. plantarum 7–40+ GOS can be used as a synergistic synbiotic for shrimp culture.  相似文献   

11.
Effects of temperature and processing on the stability of a commercial protease were assessed in an in vitro trial followed by growth trials with white shrimp and tilapia. Results showed that the protease has a high heat stability against pelleting, and it could hydrolyse dietary proteins during feed processing. In Exp. 2, white shrimp (3.3 g) fed low fish meal (FM) diet (LFD) with protease addition had similar growth to that fed high fish meal diet, and both had higher weight gain (WG) and lower feed conversion ratio (FCR) than that fed LFD without protease addition (< 0.05). In Exp. 3, compressed (CD) or extruded (ED) diets containing 30 g kg?1 or 90 g kg?1 FM were supplemented with or without protease and then fed to tilapia (1.7 g) for 8 weeks. WG was improved and FCR decreased (< 0.05) by the supplementation of protease in 30 g kg?1 FMCD, but not in 90 g kg?1 FMCD and ED diets when compared to those diets without protease supplementation. The digestibility trial with CD indicated the improved apparent digestibilities of dry matter and crude protein by dietary protease in 30 g kg?1 FMCD, but not in 90 g kg?1 FMCD. Results above showed that the protease has a high heat stability and the supplementation of protease in CD with low FM level can improve the growth of shrimp and tilapia.  相似文献   

12.
An 8‐week growth trial was conducted to investigate the effects of dietary fish meal replacement with a vegetable mixture of soybean meal and rapeseed meal (1:1) on growth of juvenile red swamp crayfish. Nine isonitrogenous diets were designed: V0, V34, V50, V65, V73 and V81 with six levels of vegetable proteins, and VA48, VA63 and VA78 by further adding crystalline lysine and methionine into V50, V65 and V81. Compared with V0, V34 significantly improved the specific growth rate (SGR), while V65, V73, V81 and VA78 depressed the SGR (< .05). Feeding rate showed a decreasing trend as dietary vegetable protein level increased (< .05), except that in VA48 group. Significantly lower FCR and higher PER were observed in V34 group, whereas all vegetable protein diets depressed the feed utilization of crayfish (< .05). Crayfish fed with diets containing vegetable proteins showed significantly lower hepatosomatic indices and higher condition factors than the control (< .05). Muscle lipid content was significantly (< .05) lowered in V81 group, but not in VA78 group. The results suggested that 338 g/kg vegetable protein improved growth performance of crayfish. Excessive vegetable protein depressed the growth of crayfish, which could be prevented by lysine and methionine supplementation except for the all vegetable protein diets.  相似文献   

13.
A feeding trial was conducted in a recycling water system during 10 weeks to determine the optimal protein to lipid ratio in Asian red‐tailed catfish (Hemibagrus wyckioides). Six diets of two protein levels (390 and 440 g kg?1) with three lipid levels (60, 90 and 120 g kg?1) were formulated. Fish (1.96 g) were fed six diets with four replicates to apparent satiation at a stocking density of 50 fish per tank (500 L). Faeces were collected in cultured tanks at the end of the feeding trial for digestibility measurement. Significantly, improved growth performances (P < 0.01) and higher feed utilization (P < 0.001) were observed in fish fed with higher lipid diets. However, higher protein diets did not significantly improve fish growth but they reduced FCR (P < 0.001) and protein efficiency ratio (P < 0.01). Higher lipid diets also resulted in significantly increased adipose‐somatic index, carcass fat and reduced moisture of the fish. The study revealed the protein sparing effect of dietary lipid in the catfish and highest growth performance was found by fish fed 390 g kg?1 protein and 120 g kg?1 lipid diet with P/E ratio of 20.48 mg protein kJ?1. DP/DE ratio for maximal growth rate in diets was 21.48 mg protein kJ?1.  相似文献   

14.
This study aimed to investigate the effects of Gln and its precursors on Gln anabolism and ammonia excretion to determine the role of Gln in protein synthesis in Cyprinus carpio. The growth performance, glutamine synthetase (GS) activity, blood ammonia level, and gene expression of GS, rhesus glycoprotein (Rhag, Rhbg and Rhcg), TOR and 4E-BP1 of fish were measured. Seven diet treatments including glucose (control), glutamine (Gln), glusate (Glu), α-ketoglutarate (AKG), l-ornithine-α-ketoglutarate (OKG), l-arginine-α-ketoglutarate (AAKG), and α-ketoglutarate sodium (2Na-AKG) were conducted. All were substituted for glucose at 1.5% of the dry diet. The results showed the feed conversion ratios (FCRs) of the AKG group and AAKG group were significantly lower (P < 0.05) than that of the control group. The expression levels of the Rhbg gene in the gills of the AKG, AAKG and 2Na-AKG groups were significantly higher than that in the control group (P < 0.05). The expression levels of the TOR gene in the gut of the fish in the AKG group and the Glu group were significantly higher than that in the control group (P < 0.05). Therefore, the addition of AAKG in feed can significantly reduce the FCR of Cyprinus carpio and significantly improve the weight gain rate (WGR) and protein efficiency of the fish. Gln can reduce ammonia release in gills, and AKG can effectively promote the excretion of ammonia. The addition of Gln, Glu, AKG and AAKG in diets can effectively promote protein synthesis. The Gln, Glu, AKG and AAKG can significantly up-regulate GS gene expression in the gut; however, the expression level of the GS gene is not significantly correlated with GS activity.  相似文献   

15.
Two groups of isonitrogenous diets formulated by replacing 15%, 25%, 35% and 45% of fish meal protein by amaranth meal and quinoa meal were used to evaluate the performance of Litopenaeus vannamei. Growth showed significant reduction (P < 0.05) in the group of shrimp fed with amaranth diets, with diet A15 showing the best specific growth rate (SGR = 2.81% day?1), but after the control diet AQ0 (3.07% day?1). Diet A15 had significantly (P < 0.05) the best digestibility of dry matter (79.7%) and protein (88.4%) without differences compared to control diet AQ0 (75.1% and 85.2%). Replacement with quinoa meal at any level tested did not significantly affect (P > 0.05) the shrimp growth performance. Shrimp fed with quinoa diets showed better SGR (3.05% day?1) than those shrimp fed with amaranth (2.56% day?1). No differences in feed conversion ratio appeared in either of the protein sources, but quinoa diets presented a better average (3.13) than amaranth diets (4.01). The apparent digestibility of dry matter and protein for quinoa diets was similar for all diets, but they were statistically different (P < 0.05) from the control diet. We conclude that quinoa meal can replace fishmeal up to 45%, whereas it can be replaced with amaranth meal up to 15%, without adverse effects on growth and survival.  相似文献   

16.
The study was designed to investigate the influence of fermented soybean meal (FSBM) on the growth and feed utilization of juvenile Chinese sucker, Myxocyprinus asiaticus. Seven isonitrogenous and isolipidic diets were formulated with 0%, 15%, 25%, 35%, 45%, 55% or 65% replacement of fish meal with FSBM on a protein basis. Each diet was fed to three replicate groups of fish with an initial weight 4.59 ± 0.2 g for 8 weeks. Weight gain (WG) and specific growth rate (SGR) was significantly lower when FSBM inclusion was 391 g kg?1 or greater, replacing more than 45% fish meal protein. A significant negative relationship was observed between growth response and the level of fish meal protein replacement with FSBM. Methionine and Lysine content decreased as FSBM inclusion levels increased, consequently compromising growth performance. Feed intake (FI) were unaffected by dietary FSBM levels. The feed conversion ratio (FCR) of fish fed D‐0, D‐15, D‐25 and D‐35 diets was significantly lower than those fed other diets. The protein efficiency ratio (PER) was highest at the lowest FSBM inclusion level. Experimental diets D‐0, D‐15, D‐25 and D‐35 had apparent dry matter digestibility ranging from 71.2% to 72.6% and apparent protein digestibility (ADPs) from 89.1% to 90.1%, while the diets with higher FSBM inclusion (D‐45 to D‐65) had a significantly lower apparent dry matter digestibility range (69.7–70.3%) and ADPs range (88.5–88.9%). It is concluded that FSBM is an acceptable alternative plant protein source that can replace up to 35% of fish meal protein in diets without significant adverse effects on growth, survival, FCR, PER and body composition.  相似文献   

17.
This study was conducted to evaluate the effects of extruded diets and pelleted diets with varying dietary lipid levels on growth performance and nutrient utilization of tilapia. Six diets, containing three levels of lipid at 40, 60 or 80 g kg?1 (with the supplemental lipid of 0, 20 or 40 g kg?1, respectively), were prepared by extruding or pelleting and then fed to tilapia juveniles (8.0 ± 0.1 g) in cages (in indoor pools) for 8 weeks. The results indicated that the fish that were fed the diet with 60 g kg?1 of lipid had a higher weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), lipid retention (LRE), energy retention (ERE), apparent protein digestibility, apparent dry matter digestibility and a lower feed conversion ratio (FCR) than those fed the diet with 40 g kg?1 lipid in both the extruded diet and pelleted diet (P < 0.05). As the dietary lipid level increased from 60 to 80 g kg?1, these parameters were not further improved, even digestibilities of the crude protein and dry matter decreased (P < 0.05). With the dietary lipid level increased, whole‐body lipid content significantly increased (P < 0.05), serum aspartate aminotransferase, alkaline phosphatase, total cholesterol and low‐density lipoprotein cholesterol (LDL‐C) tended to increase (P > 0.05), whereas whole‐body protein content, serum triglyceride (TG), high‐density lipoprotein cholesterol (HDL‐C) and HDL‐C/LDL‐C tended to decrease (P > 0.05). Fish fed with the extruded diets had a higher WG, SGR, hepatosomatic index (HSI), PER, protein retention (PRE), LRE, ERE, TG, apparent digestibility of protein and dry matter, as well as a lower FCR, than those fed with the pelleted diets at the same dietary lipid level (P < 0.05). These results suggested that tilapia fed with the extruded diets had a better growth and higher nutrient utilization than fish fed with the pelleted diets, when dietary lipid level ranged from 40 to 80 g kg?1 and at dietary crude protein level was 280 g kg?1. The optimum dietary lipid level was 60 g kg?1 in both the pelleted and extruded diets, and extrusion did not affect dietary lipid requirement of the tilapia.  相似文献   

18.
The experiment was conducted to determine the effect of dietary DL‐methionine addition in fish meal reduction diet for juvenile golden pompano (Trachinotus ovatus). The trial comprises the following of 11 diet treatments. (i) D1 diet as the standard was formulated with fish meal as the main protein source. (ii) D2–D5 diets were formulated to replace fish meal with soybean meal at 60, 120, 180 and 300 g kg?1, respectively, and the amino acid profiles (including methionine and lysine) of D2–D5 were referred to the amino acid profile of D1. (iii) D6‐D9 diets were the same as D2–D5, respectively, but without methionine supplementation. (iv) D10 and D11 diets were the same as D3 and D5 diets, respectively, but without lysine supplementation. Each diet was randomly fed to groups of 20 fish (initial average weight about 18 g) per net cage (1.0 × 1.0 × 1.5 m) in triplicate and the feeding experiment lasted for 56 days. Weight gain (WG, %) and final body weight (FBW, g) of fish fed D3 diet were significantly higher than those of fish fed D8 and D9 diets (< 0.05), but without significant differences with fish fed other diets (> 0.05). Feed conversion ratio (FCR) of D3, D4 and D5 diet treatments were significantly lower than that of D11 diet treatment (< 0.05), but without significant difference with other diet treatments (> 0.05). Whole‐body protein contents of fish fed D3–D5 were significantly higher than those of fish fed D7–D9 (< 0.05), but without significant differences with fish fed other diets (> 0.05). In conclusion, the replacement of fish meal by soybean meal could reach 300 g kg?1 without detrimental but profitable effect on growth and survival when enough methionine and lysine were supplemented in the diet; moreover, lysine is not the first‐limiting amino acid relative to methionine for juvenile T. ovatus from the present growth and proximate composition results.  相似文献   

19.
This study evaluated the effects of increasing levels of methionine (Met) supplementation on the success of almost total replacement of fish meal (FM) with soybean meal (SBM) in diets for hybrid tilapia (Oreochromis niloticus × Oreochromis mossambicus). Fish were fed for 70 days a FM‐based diet (Diet1‐positive control) or SBM‐based diets supplemented with graded levels of DL‐methionine (Diet2 to Diet7). Contrast in dietary Met, concentration was created by supplementing Diet2‐negative control with 1.2 (Diet3), 2.4 (Diet4), 3.6 (Diet5), 4.8 (Diet6) or 6.0 g kg?1 (Diet7) of DL‐Met. Specific growth rate (SGR), feed conversion ratio (FCR), and protein gain and retention efficiency (PER) improved significantly with increasing levels of dietary DL‐Met supplementation. Moreover, nonlinear regression analysis of the effects of supplementing SBM‐based diet with graded levels of DL‐Met indicated that a dietary Met + Cys level of 15.7 and 12.5 g kg?1 diet (as fed) was required to reach 95% of maximum weight and protein gain, respectively. Supplementation of SBM‐based diet with graded levels of DL‐Met proved an effective strategy in reducing FM content in practical diets for hybrid tilapia. Data also indicate that adjustment of dietary formulas according to currently recommended Met or Met + Cys dietary concentrations is probably limiting maximum growth potential of hybrid tilapia.  相似文献   

20.
Two 7‐week feeding trials were conducted to evaluate the capacity of golden pompano (Trachinotus ovatus) to use soy protein concentrate (SPC) as a dietary fish meal substitute. In trial I, fish were fed with a control diet (C) containing 400 g kg?1 fish meal and other four diets in which the fish meal in diet C was replaced by SPC at 20 (R20), 40 (R40), 60 (R60) and 80% (R80). In trial II, a 3 × 2 design was used, and 40 and 80% of the fish meal in diet C were replaced by SPC, with or without 5 g kg?1 taurine supplementation (six diets, C + T, R40 + T, R80 + T, C, R40 and R80, were formulated). In trial I, no significant difference was found in the feed intake between feeding treatments. The weight gain and nitrogen retention efficiency (NRE) decreased, whereas the feed conversion ratio (FCR) and phosphorus retention efficiency (PRE) increased, with decreasing dietary levels of fish meal. No significant differences were found in the weight gain, FCR and NRE between fish fed diets C and R20, whereas fish fed diets C and R20 had higher weight gain than those fed diets R40, R60 and R80. In trial II, no significant differences were found in the feed intake, weight gain, FCR, NRE and PRE between fish fed diets C + T and C. No significant differences were found in the feed intake, weight gain and NRE between fish fed diets R40 and R40 + T or between fish fed diets R80 and R80 + T. At the end of trial II, no significant differences were found in the condition factor, hepatosomatic index and body composition between fish fed diets C and C + T, or between fish diets R40 and R40 + T, or between fish fed diets R80 and R80 + T, except that fish fed diet R40 had lower body protein content than that of fish fed diet R40 + T. The present study reveals that taurine supplementation can elevate fish meal replacement level by SPC in the golden pompano diets. Fish meal can be reduced from 400 to 320 g kg?1, if fish meal is substituted by SPC without taurine supplementation, and can be further reduced to 240 g kg?1, if fish meal is substituted by SPC with 5 g kg?1 taurine supplementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号