首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine the pharmacokinetic interaction between ivermectin (0.4 mg/kg) and praziquantel (10 mg/kg) administered either alone or co‐administered to dogs after oral treatment. Twelve healthy cross‐bred dogs (weighing 18–21 kg, aged 1–3 years) were allocated randomly into two groups of six dogs (four females, two males) each. In first group, the tablet forms of praziquantel and ivermectin were administered using a crossover design with a 15‐day washout period, respectively. Second group received tablet form of ivermectin plus praziquantel. The plasma concentrations of ivermectin and praziquantel were determined by high‐performance liquid chromatography using a fluorescence and ultraviolet detector, respectively. The pharmacokinetic parameters of ivermectin following oral alone‐administration were as follows: elimination half‐life (t1/2λz) 110 ± 11.06 hr, area under the plasma concentration–time curve (AUC0–∞) 7,805 ± 1,768 hr.ng/ml, maximum concentration (Cmax) 137 ± 48.09 ng/ml, and time to reach Cmax (Tmax) 14.0 ± 4.90 hr. The pharmacokinetic parameters of praziquantel following oral alone‐administration were as follows: t1/2λz 7.39 ± 3.86 hr, AUC0–∞ 4,301 ± 1,253 hr.ng/ml, Cmax 897 ± 245 ng/ml, and Tmax 5.33 ± 0.82 hr. The pharmacokinetics of ivermectin and praziquantel were not changed, except Tmax of praziquantel in the combined group. In conclusion, the combined formulation of ivermectin and praziquantel can be preferred in the treatment and prevention of diseases caused by susceptible parasites in dogs because no pharmacokinetic interaction was determined between them.  相似文献   

2.
The objective of this study was to evaluate the pharmacokinetic properties and physiologic effects of a single oral dose of alprazolam in horses. Seven adult female horses received an oral administration of alprazolam at a dosage of 0.04 mg/kg body weight. Blood samples were collected at various time points and assayed for alprazolam and its metabolite, α‐hydroxyalprazolam, using liquid chromatography/mass spectrometry. Pharmacokinetic disposition of alprazolam was analyzed by a one‐compartmental approach. Mean plasma pharmacokinetic parameters (±SD) following single‐dose administration of alprazolam were as follows: Cmax 14.76 ± 3.72 ng/mL and area under the curve (AUC0–∞) 358.77 ± 76.26 ng·h/mL. Median (range) Tmax was 3 h (1–12 h). Alpha‐hydroxyalprazolam concentrations were detected in each horse, although concentrations were low (Cmax 1.36 ± 0.28 ng/mL). Repeat physical examinations and assessment of the degree of sedation and ataxia were performed every 12 h to evaluate for adverse effects. Oral alprazolam tablets were absorbed in adult horses and no clinically relevant adverse events were observed. Further evaluation of repeated dosing and safety of administration of alprazolam to horses is warranted.  相似文献   

3.
Three asymptomatic koalas serologically positive for cryptococcosis and two symptomatic koalas were treated with 10 mg/kg fluconazole orally, twice daily for at least 2 weeks. The median plasma Cmax and AUC0‐8 h for asymptomatic animals were 0.9 μg/mL and 4.9 μg/mL·h, respectively; and for symptomatic animals 3.2 μg/mL and 17.3 μg/mL·h, respectively. An additional symptomatic koala was treated with fluconazole (10 mg/kg twice daily) and a subcutaneous amphotericin B infusion twice weekly. After 2 weeks the fluconazole Cmax was 3.7 μg/mL and the AUC0‐8 h was 25.8 μg/mL*h. An additional three koalas were treated with fluconazole 15 mg/kg twice daily for at least 2 weeks, with the same subcutaneous amphotericin protocol co‐administered to two of these koalas (Cmax: 5.0 μg/mL; mean AUC0‐8 h: 18.1 μg/mL*h). For all koalas, the fluconazole plasma Cmax failed to reach the MIC90 (16 μg/mL) to inhibit C. gattii. Fluconazole administered orally at either 10 or 15 mg/kg twice daily in conjunction with amphotericin is unlikely to attain therapeutic plasma concentrations. Suggestions to improve treatment of systemic cryptococcosis include testing pathogen susceptibility to fluconazole, monitoring plasma fluconazole concentrations, and administration of 20–25 mg/kg fluconazole orally, twice daily, with an amphotericin subcutaneous infusion twice weekly.  相似文献   

4.
Florfenicol, a structural analog of thiamphenicol, has broad‐spectrum antibacterial activity against gram‐negative and gram‐positive bacteria. This study was conducted to investigate the epidemiological, pharmacokinetic–pharmacodynamic cutoff, and the optimal scheme of florfenicol against Escherichia coli (E. coli) with PK‐PD integrated model in the target infectious tissue. 220 E. coli strains were selected to detect the susceptibility to florfenicol, and a virulent strain P190, whose minimum inhibitory concentration (MIC) was similar to the MIC50 (8 μg/ml), was analyzed for PD study in LB and ileum fluid. The MIC of P190 in the ileum fluid was 0.25 times lower than LB. The ratios of MBC/MIC were four both in the ileum and LB. The characteristics of time‐killing curves also coincided with the MBC determination. The recommended dosages (30 mg/kg·body weight) were orally administrated in healthy pigs, and both plasma and ileum fluid were collected for PK study. The main pharmacokinetics (PK) parameters including AUC24 hr, AUC0–∞, Tmax, T1/2, Cmax, CLb, and Ke were 49.83, 52.33 μg*h/ml, 1.32, 10.58 hr, 9.12 μg/ml, 0.50 L/hr*kg, 0.24 hr?1 and 134.45, 138.71 μg*hr/ml, 2.05, 13.01 hr, 16.57 μg/ml, 0.18 L/hr*kg, 0.14 hr?1 in the serum and ileum fluid, respectively. The optimum doses for bacteriostatic, bactericidal, and elimination activities were 29.81, 34.88, and 36.52 mg/kg for 50% target and 33.95, 39.79, and 42.55 mg/kg for 90% target, respectively. The final sensitive breakpoint was defined as 16 μg/ml. The current data presented provide the optimal regimens (39.79 mg/kg) and susceptible breakpoint (16 μg/ml) for clinical use, but these predicted data should be validated in the clinical practice.  相似文献   

5.
Sellers, G., Lin, H. C., G. Riddell, M. G., Ravis, W. R., Lin, Y. J., Duran, S. H., Givens, M.D. Pharmacokinetics of ketamine in plasma and milk of mature Holstein cows. J. vet. Pharmacol. Therap. 33 , 480–484. The purpose of this study was to evaluate the pharmacokinetics of ketamine in mature Holstein cows following administration of a single intravenous (i.v.) dose. Plasma and milk concentrations were determined using a high‐performance liquid chromatography assay. Pharmacokinetic parameters were estimated using a noncompartmental method. Following i.v. administration, plasma Tmax was 0.083 h and plasma Cmax was 18 135 ± 22 720 ng/mL. Plasma AUC was 4484 ± 1,398 ng·h/mL. Plasma t½β was 1.80 ± 0.50 h and mean residence time was 0.794 ± 0.318 h with total body clearance of 1.29 ± 0.70 L/h/kg. The mean plasma steady‐state volume of distribution was calculated as 0.990 ± 0.530 L/kg and volume of distribution based on area was calculated as 3.23 ± 1.51 L/kg. The last measurable time for ketamine detection in plasma was 8.0 h with a mean concentration of 24.9 ± 11.8 ng/mL. Milk Tmax was detected at 0.67 ± 0.26 h with Cmax of 2495 ± 904 ng/mL. Milk AUC till the last time was 6593 ± 2617 ng·h/mL with mean AUC milk to AUC plasma ratio of 1.99 ± 2.15. The last measurable time that ketamine was detected in milk was 44 ± 10.0 h with a mean concentration of 16.0 ± 9.0 ng/mL.  相似文献   

6.
Mirtazapine is classified as a weight gain drug in cats, and the purpose of this study was to evaluate its efficacy in cats experiencing unintended weight loss. This was a multi‐center, double‐blind, placebo‐controlled, randomized clinical study in client‐owned cats ≥1 year of age, weighing ≥2 kg, with a documented loss (≥5%) in body weight. Cats were treated once daily with either 2 mg/cat mirtazapine transdermal ointment (n = 83) or placebo (n = 94) (Per Protocol population) applied to the inner surface of the pinna for 14 ± 3 days. Physical examination, body weight, complete blood count, serum chemistry, and urinalysis were performed prior to treatment and on Day 14. Changes in body weight between the mirtazapine and placebo groups were evaluated from Day 1 to Day 14 and compared using a two‐sample t test. The mean percent change in body weight was +3.9% (standard deviation ±5.4%) in the mirtazapine group and +0.4% (±3.3%) in the placebo group (p < 0.0001). The most common adverse event was mild erythema at the application site in 17.4% of placebo and 10.4% of mirtazapine‐treated cats. Application of mirtazapine transdermal ointment was well tolerated both topically and systemically and resulted in significant weight gain in cats experiencing unintended weight loss associated with various underlying diseases.  相似文献   

7.
Nanotechnology applications in medicine have seen a tremendous growth in the past decade and are being employed to enhance the stability and bioavailability of lipophilic substances, such as florfenicol. This study aimed to examine the pharmacokinetic properties of the formulated oil‐in‐water florfenicol‐loaded nanoemulsion (FF‐NE). FF‐NE and florfenicol control (Nuflor®) were administered to the pigs at a dose of 20 mg/kg. Nanoemulsion formulation of florfenicol was highly influenced in vivo plasma profile. The in vivo absorption study in pigs indicated that Cmax (14.54 μg/mL) was significantly higher in FF‐NE, 3.42 times higher than the marketed formulation. In comparison with the control group, the relative bioavailability of formulated nanoemulsion was up to 134.5%. Assessment of bioequivalence using log‐transformed data showed that the 90% confidence intervals (90% CI) of Cmax and AUC0–∞ were 2.48–4.60 and 1.21–1.72, respectively.  相似文献   

8.
Comparative pharmacokinetic profiles of diaveridine following single intravenous and oral dose of 10 mg/kg body weight in healthy pigs and chickens were investigated, respectively. Concentrations of diaveridine in plasma samples were determined using a validated high‐performance liquid chromatography–ultraviolet (HPLC‐UV) method. The concentration–time data were subjected to noncompartmental kinetic analysis by WinNonlin program. The corresponding pharmacokinetic parameters in pigs or chickens after single intravenous administration were as follows, respectively: t1/2β (elimination half‐life) 0.74 ± 0.28 and 3.44 ± 1.07 h; Vd (apparent volume of distribution) 2.70 ± 0.99 and 3.86 ± 0.92 L/kg; ClB (body clearance) 2.59 ± 0.62 and 0.80 ± 0.14 L/h/kg; and AUC0‐∞ (area under the blood concentration vs. time curve) 4.11 ± 1.13 and 12.87 ± 2.60 μg?h/mL. The corresponding pharmacokinetic parameters in pigs or chickens after oral administration were as follows, respectively: t1/2β 1.78 ± 0.41 and 2.91 ± 0.57 h; Cmax (maximum concentration) 0.43 ± 0.24 and 1.45 ± 0.57 μg/mL; Tmax (time to reach Cmax) 1.04 ± 0.67 and 3.25 ± 0.71 h; and AUC0‐∞1.33 ± 0.55 and 9.28 ± 2.69 μg?h/mL. The oral bioavailability (F) of diaveridine in pigs or chickens was determined to be 34.6% and 72.2%, respectively. There were significant differences between the pharmacokinetics profiles in these two species.  相似文献   

9.
The aim of this study was to determine the pharmacokinetics/pharmacodynamics of enrofloxacin (ENR) and danofloxacin (DNX) following intravenous (IV) and intramuscular (IM) administrations in premature calves. The study was performed on twenty‐four calves that were determined to be premature by anamnesis and general clinical examination. Premature calves were randomly divided into four groups (six premature calves/group) according to a parallel pharmacokinetic (PK) design as follows: ENR‐IV (10 mg/kg, IV), ENR‐IM (10 mg/kg, IM), DNX‐IV (8 mg/kg, IV), and DNX‐IM (8 mg/kg, IM). Plasma samples were collected for the determination of tested drugs by high‐pressure liquid chromatography with UV detector and analyzed by noncompartmental methods. Mean PK parameters of ENR and DNX following IV administration were as follows: elimination half‐life (t1/2λz) 11.16 and 17.47 hr, area under the plasma concentration–time curve (AUC0‐48) 139.75 and 38.90 hr*µg/ml, and volume of distribution at steady‐state 1.06 and 4.45 L/kg, respectively. Total body clearance of ENR and DNX was 0.07 and 0.18 L hr?1 kg?1, respectively. The PK parameters of ENR and DNX following IM injection were t1/2λz 21.10 and 28.41 hr, AUC0‐48 164.34 and 48.32 hr*µg/ml, respectively. The bioavailability (F) of ENR and DNX was determined to be 118% and 124%, respectively. The mean AUC0‐48CPR/AUC0‐48ENR ratio was 0.20 and 0.16 after IV and IM administration, respectively, in premature calves. The results showed that ENR (10 mg/kg) and DNX (8 mg/kg) following IV and IM administration produced sufficient plasma concentration for AUC0‐24/minimum inhibitory concentration (MIC) and maximum concentration (Cmax)/MIC ratios for susceptible bacteria, with the MIC90 of 0.5 and 0.03 μg/ml, respectively. These findings may be helpful in planning the dosage regimen for ENR and DNX, but there is a need for further study in naturally infected premature calves.  相似文献   

10.
The pharmacokinetics of cefquinome (2 mg/kg every 24 hr for 5 days) was determined following intramuscular administration alone and co-administration with ketoprofen (3 mg/kg every 24 hr for 5 days) in goats. Six goats were used for the study. In the study, the crossover pharmacokinetics design with 20-day washout period was performed in two periods. Plasma concentrations of cefquinome were assayed using high-performance liquid chromatography by ultraviolet detection. The mean terminal elimination half-life (t1/2ʎz), area under the concentration–time curve (AUC0–24), peak concentration (Cmax), apparent volume of distribution (Vdarea/F), and total body clearance (CL/F) of cefquinome after the administration alone were 4.85 hr, 11.06 hr*µg/ml, 2.37 µg/mL, 1.23 L/kg, and 0.17 L/h/kg after the first dose, and 5.88 hr, 17.01 hr*µg/mL, 3.04 µg/mL, 0.95 L/kg, and 0.11 L/h/kg after the last dose. Ketoprofen significantly prolonged t1/2ʎz of cefquinome, increased AUC0–24 and Cmax, and decreased Vdarea/F and CL/F. Cefquinome exhibited low accumulation after the administration alone and in combination with ketoprofen. These results indicated that ketoprofen prolonged the elimination of cefquinome in goats. The 24-hr dosing intervals at 2 mg/kg dose of cefquinome, which co-administered with ketoprofen, may maintain T> minimum inhibitory concentration (MIC) values above 40% in the treatment of infections caused by susceptible pathogens with the MIC value of ≤0.75 μg/ml in goats with an inflammatory condition.  相似文献   

11.
Devil's claw is used for the treatment of inflammatory symptoms and degenerative disorders in horses since many years, but without the substantive pharmacokinetic data. The pharmacokinetic parameters of harpagoside, the main active constituent of Harpagophytum procumbens DC ex Meisn., were evaluated in equine plasma after administration of Harpagophytum extract FB 8858 in an open, single‐dose, two‐treatment, two‐period, randomized cross‐over design. Six horses received a single dose of Harpagophytum extract, corresponding to 5 mg/kg BM harpagoside, and after 7 days washout period, 10 mg/kg BM harpagoside via nasogastric tube. Plasma samples at certain time points (before and 0–24 hr after administration) were collected, cleaned up by solid‐phase extraction, and harpagoside concentrations were determined by LC‐MS/MS using apigenin‐7‐glucoside as internal standard. Plasma concentration‐time data and relevant parameters were described by noncompartmental model through PKSolver software. Harpagoside could be detected up to 9 hr after administration. Cmax was found at 25.59 and 55.46 ng/ml, t1/2 at 2.53 and 2.32 hr, respectively, and tmax at 1 hr in both trials. AUC0–inf was 70.46 and 117.85 ng hr ml?1, respectively. A proportional relationship between dose, Cmax and AUC was observed. Distribution (Vz/F) was 259.04 and 283.83 L/kg and clearance (CL/F) 70.96 and 84.86 L hr?1 kg?1, respectively. Treatment of horses with Harpagophytum extract did not cause any clinically detectable side effects.  相似文献   

12.
Clark, M. H., Hoenig, M., Ferguson, D. C., Dirikolu, L. Pharmacokinetics of pioglitazone in lean and obese cats. J. vet. Pharmacol. Therap.  35 , 428–436. Pioglitazone is a thiazolidinedione insulin sensitizer that has shown efficacy in Type 2 diabetes and nonalcoholic fatty liver disease in humans. It may be useful for treatment of similar conditions in cats. The purpose of this study was to investigate the pharmacokinetics of pioglitazone in lean and obese cats, to provide a foundation for assessment of its effects on insulin sensitivity and lipid metabolism. Pioglitazone was administered intravenously (median 0.2 mg/kg) or orally (3 mg/kg) to 6 healthy lean (3.96 ± 0.56 kg) and 6 obese (6.43 ± 0.48 kg) cats, in a two by two Latin Square design with a 4‐week washout period. Blood samples were collected over 24 h, and pioglitazone concentrations were measured via a validated high‐performance liquid chromatography assay. Pharmacokinetic parameters were determined using two‐compartmental analysis for IV data and noncompartmental analysis for oral data. After oral administration, mean bioavailability was 55%, t1/2 was 3.5 h, Tmax was 3.6 h, Cmax was 2131 ng/mL, and AUC0–∞ was 15 556 ng/mL·h. There were no statistically significant differences in pharmacokinetic parameters between lean and obese cats following either oral or intravenous administration. Systemic exposure to pioglitazone in cats after a 3 mg/kg oral dose approximates that observed in humans with therapeutic doses.  相似文献   

13.
Eight adult female dairy goats received one subcutaneous administration of tulathromycin at a dosage of 2.5 mg/kg body weight. Blood and milk samples were assayed for tulathromycin and the common fragment of tulathromycin, respectively, using liquid chromatography/mass spectrometry. Pharmacokinetic disposition of tulathromycin was analyzed by a noncompartmental approach. Mean plasma pharmacokinetic parameters (±SD) following single‐dose administration of tulathromycin were as follows: Cmax (121.54 ± 19.01 ng/mL); Tmax (12 ± 12–24 h); area under the curve AUC0→∞ (8324.54 ± 1706.56 ng·h/mL); terminal‐phase rate constant λz (0.01 ± 0.002 h−1); and terminal‐phase rate constant half‐life t1/2λz (67.20 h; harmonic). Mean milk pharmacokinetic parameters (±SD) following 45 days of sampling were as follows: Cmax (1594 ± 379.23 ng/mL); Tmax (12 ± 12–36 h); AUC0→∞ (72,250.51 ± 18,909.57 ng·h/mL); λz (0.005 ± 0.001 h−1); and t1/2λz (155.28 h; harmonic). All goats had injection‐site reactions that diminished in size over time. The conclusions from this study were that tulathromycin residues are detectable in milk samples from adult goats for at least 45 days following subcutaneous administration, this therapeutic option should be reserved for cases where other treatment options have failed, and goat milk should be withheld from the human food chain for at least 45 days following tulathromycin administration.  相似文献   

14.
The pharmacokinetics (PK) and pharmacodynamics (PD) of marbofloxacin (MBF) were determined in six healthy female goats of age 1.00–1.25 years after repeated administration of MBF. The MBF was administered intramuscularly (IM) at 2 mg kg?1 day?1 for 5 days. Plasma concentrations of MBF were determined by high‐performance liquid chromatography, and PK parameters were obtained using noncompartmental analysis. The MBF concentrations peaked at 1 hr, and peak concentration (Cmax) was 1.760 µg/ml on day 1 and 1.817 µg/ml on day 5. Repeated dosing of MBF caused no significant change in PK parameters except area under curve (AUC) between day 1 (AUC0–∞D1 = 7.67 ± 0.719 µg × hr/ml) and day 5 (AUC0‐∞D5 = 8.70 ± 0.857 µg × hr/ml). A slight difference in mean residence time between 1st and 5th day of administration and accumulation index (AI = 1.13 ± 0.017) suggested lack of drug accumulation following repeated IM administration up to 5 days. Minimum inhibitory concentration (MIC) demonstrated that Escherichia coli (MIC = 0.04 µg/ml) and Pasturella multocida (MIC = 0.05 µg/ml) were highly sensitive to MBF. Time‐kill kinetics demonstrated rapid and concentration‐dependent activity of MBF against these pathogens. PK/PD integration of data for E. coli and P. multocida, using efficacy indices: Cmax/MIC and AUC0–24hr/MIC, suggested that IM administration of MBF at a dose of 2 mg kg?1 day?1 is appropriate to treat infections caused by E. coli. However, a dose of 5 mg kg?1 day?1 is recommended to treat pneumonia caused by P. multocida in goats. The study indicated that MBF can be used repeatedly at dosage of 2 mg/kg in goats without risk of drug accumulation up to 5 days.  相似文献   

15.
Bimazubute, M., Cambier, C., Baert, K., Vanbelle, S., Chiap, P., Albert, A., Delporte, J. P., Gustin, P. Penetration of enrofloxacin into the nasal secretions and relationship between nasal secretions and plasma enrofloxacin concentrations after intramuscular administration in healthy pigs. J. vet. Pharmacol. Therap. 33 , 183–188. The pharmacokinetic behaviour of enrofloxacin (ENRO) in plasma and nasal secretions of healthy pigs was investigated, after a single‐dose intramuscular administration of 2.5 mg/kg body weight of the drug. Blood samples and nasal secretions were collected at predetermined times after drug administration. Concentrations of ENRO and its active metabolite ciprofloxacin (CIPRO) were determined in plasma and nasal secretions by high‐performance liquid chromatography (HPLC). CIPRO was not detected probably because we investigated young weaned pigs. The data collected in 12 pigs for ENRO were subjected to noncompartmental analysis. In plasma, the maximum concentration of drug (Cmax), the time at which this maximum concentration of drug (Tmax) was reached, the elimination half‐life (t½) and the area under the concentration vs. time curve (AUC) were, respectively, 694.7 ng/mL, 1.0 h, 9.3 h and 8903.2 ng·h/mL. In nasal secretions, Cmax, Tmax, t½ and AUC were, respectively, 871.4 ng/mL, 2.0 h, 12.5 h and 11 198.5 ng·h/mL. In a second experiment conducted in 10 piglets, the relationship between concentrations of ENRO measured in the plasma and the nasal secretions has been determined following single‐dose intramuscular administration of 2.5, 10 or 20 mg/kg body weight of the drug. It has been demonstrated that, among several variables, i.e., (1) the dose administered, (2) the time between intramuscular injection and blood sampling, (3) the age, (4) the sex, (5) the animal body weight and (6) the plasma concentration of the drug, only the latter influenced significantly the ENRO concentration in nasal secretions. Practically, using a generalized linear mixed model, ENRO concentrations in the nasal secretions (μg/mL) can be predicted taking into account the ENRO concentrations in plasma (μg/mL), according to the following equation:   相似文献   

16.
This study aimed to examine the bioavailability (BA) and pharmacokinetic (PK) characteristics of sulfadiazine (SDZ) in grass carp (Ctenopharyngodon idellus) after oral and intravenous administrations. Blood samples were collected at predetermined time points of 0.083, 0.17, 0.5, 1, 2, 4, 8, 16, 24, 48, 72, and 96 hr (n = 6). The samples were extracted and purified by organic reagents and determined by the ultra‐performance liquid chromatography. The software named 3P97 was used to calculate relevant PK parameters. The results demonstrated that the concentration–time profile of SDZ was best described by a one‐compartmental open model with first‐order absorption after a single oral dose. The main PK parameters of the absorption rate constant (Kα), the absorption half‐life (t1/2 Kα), the elimination rate constant (Ke), the elimination half‐life (t1/2Ke), and the area under concentration–time profile (AUC0‐∞) were 0.3 1/h, 2.29 hr, 0.039 1/h, 17.64 hr, and 855.78 mg.h/L, respectively. Following intravenous administration, the concentration–time curve fitted to a two‐compartmental open model without absorption. The primary PK parameters of the distribution rate constant (α), the elimination rate constant (β), the distribution half‐life (t1/2α), the elimination half‐life (t1/2β), the apparent distribution volume (VSS), the total clearance (CL), and AUC0‐∞ were 9.62 1/hr, 0.039 1/hr, 0.072 hr, 17.71 hr, 0.33 L/kg, 0.013 L h?1 kg?1, and 386.23 mg.h/L, respectively. Finally, the BA was calculated to be 22.16%. Overall, this study will provide some fundamental information on PK properties in the development of a new formulation SDZ in the future and is partially beneficial for the appropriate usage of SDZ in aquaculture.  相似文献   

17.
Tulathromycin is approved for the treatment of respiratory disease in cattle and swine. It is intended for long‐acting, single‐dose injection therapy (Draxxin), making it particularly desirable for use in bison due to the difficulty in handling and ease of creating stress in these animals. The pharmacokinetic properties of tulathromycin in bison were investigated. Ten wood bison received a single 2.5 mg/kg subcutaneous injection of Draxxin. Serum concentrations were measured by liquid chromatography–mass spectrometry (LC‐MS) detection. Tulathromycin demonstrated early maximal serum concentrations, extensive distribution, and slow elimination characteristics. The mean maximum serum concentration (Cmax) was 195 ng/mL at 1.04 h (tmax) postinjection. The mean area under the serum concentration–time curve, extrapolated to infinity (AUC0–inf), was 9341 ng·h/mL. The mean apparent volume of distribution (Vd/F) and clearance (Cls/F) was 111 L/kg and 0.4 L/h/kg, respectively, and the mean half‐life (t1/2) was 214 h (8.9 days). Compared to values for cattle, Cmax and AUC0–inf were lower in bison, while the Vd/F was larger and the t1/2 longer. Tissue distribution and clinical efficacy studies in bison are needed to confirm the purported extensive distribution of tulathromycin into lung tissue and to determine whether a 2.5 mg/kg subcutaneous dosage is adequate for bison.  相似文献   

18.
A calf tissue cage model was used to study the pharmacokinetics (PK) and pharmacodynamics (PD) of oxytetracycline in serum, inflamed (exudate) and noninflamed (transudate) tissue cage fluids. After intramuscular administration, the PK was characterized by a long mean residence time of 28.3 hr. Based on minimum inhibitory concentrations (MICs) for six isolates each of Mannheimia haemolytica and Pasteurella multocida, measured in serum, integration of in vivo PK and in vitro PD data established area under serum concentration–time curve (AUC0–∞)/MIC ratios of 30.0 and 24.3 hr for M. haemolytica and P. multocida, respectively. Corresponding AUC0–∞/MIC ratios based on MICs in broth were 656 and 745 hr, respectively. PK‐PD modelling of in vitro bacterial time–kill curves for oxytetracycline in serum established mean AUC0–24 hr/MIC ratios for 3log10 decrease in bacterial count of 27.5 hr (M. haemolytica) and 60.9 hr (P. multocida). Monte Carlo simulations predicted target attainment rate (TAR) dosages. Based on the potency of oxytetracycline in serum, the predicted 50% TAR single doses required to achieve a bacteriostatic action covering 48‐hr periods were 197 mg/kg (M. haemolytica) and 314 mg/kg (P. multocida), respectively, against susceptible populations. Dosages based on the potency of oxytetracycline in broth were 25‐ and 27‐fold lower (7.8 and 11.5 mg/kg) for M. haemolytica and P. multocida, respectively.  相似文献   

19.
Dechant, J. E., Rowe, J. D., Byrne, B. A., Wetzlich, S. E., Kieu, H. T., Tell, L. A. Pharmacokinetics of ceftiofur crystalline free acid after single and multiple subcutaneous administrations in healthy alpacas (Vicugna pacos). J. vet. Pharmacol. Therap.  36 , 122–129. Six adult male alpacas received one subcutaneous administration of ceftiofur crystalline free acid (CCFA) at a dosage of 6.6 mg/kg. After a washout period, the same alpacas received three subcutaneous doses of 6.6 mg/kg CCFA at 5‐day intervals. Blood samples collected from the jugular vein before and at multiple time points after each CCFA administration were assayed for ceftiofur‐ and desfuroylceftiofur‐related metabolite concentrations using high‐performance liquid chromatography. Pharmacokinetic disposition of CCFA was analyzed by a noncompartmental approach. Mean pharmacokinetic parameters (±SD) following single‐dose administration of CCFA were Cmax (2.7 ± 0.9 μg/mL); Tmax (36 ± 0 h); area under the curve AUC0→∞ (199.2 ± 42.1 μg·h/mL); terminal phase rate constant λz (0.02 ± 0.003/h); and terminal phase rate constant half‐life t1/2λz (44.7 h; harmonic). Mean terminal pharmacokinetic parameters (±SD) following three administrations of CCFA were Cmax (2.0 ± 0.4 μg/mL); Tmax (17.3 ± 16.3 h); AUC0→∞ (216.8 ± 84.5 μg·h/mL); λz (0.01 ± 0.003/h); and t1/2λz (65.9 h; harmonic). The terminal phase rate constant and the Tmax were significantly different between single and multiple administrations. Local reactions were noted in two alpacas following multiple CCFA administrations.  相似文献   

20.
The purpose of the study was to determine pharmacokinetics of fentanyl after intravenous (i.v.) and transdermal (t.d.) administration to six adult alpacas. Fentanyl was administered i.v. (2 μg/kg) or t.d. (nominal dose: 2 μg kg?1 hr?1). Plasma concentrations were determined using liquid chromatography–mass spectrometry. Heart rate and respiratory rate were assessed. Extrapolated, zero‐time plasma fentanyl concentrations were 6.0 ng/ml (1.7–14.6 ng/ml) after i.v. administration, total plasma clearance was 1.10 L hr?1 kg?1 (0.75–1.40 L hr?1 kg?1), volumes of distribution were 0.30 L/kg (0.10–0.99 L/kg), 1.10 L/kg (0.70–2.96 L/kg) and 1.5 L/kg (0.8–3.5 L/kg) for V1, V2, and Vss, respectively. Elimination half‐life was 1.2 hr (0.5–4.3 hr). Mean residence time (range) after i.v. dosing was 1.30 hr (0.65–4.00 hr). After t.d. fentanyl administration, maximum plasma fentanyl concentration was 1.20 ng/ml (0.72–3.00 ng/ml), which occurred at 25 hr (8–48 hr) after patch placement. The area under the plasma fentanyl concentration‐vs‐time curve (extrapolated to infinity) after t.d. fentanyl was 61 ng*hr/ml (49–93 ng*hr/ml). The dose‐normalized bioavailability of fentanyl from t.d. fentanyl in alpacas was 35.5% (27–64%). Fentanyl absorption from the t.d. fentanyl patch into the central compartment occurred at a rate of approximately 50 μg/hr (29–81 μg/hr) between 8 and 72 hr after patch placement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号