首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bayesian population pharmacokinetic models of florfenicol in healthy pigs were developed based on retrospective data in pigs either via intravenous (i.v.) or intramuscular (i.m.) administration. Following i.v. administration, the disposition of florfenicol was best described by a two‐compartment open model with the typical values of half‐life at α phase (t 1/2α), half‐life at β phase (t 1/2β), total body clearance (Cl), and volume of distribution (V d) were 0.132 ± 0.0289, 2.78 ± 0.166 hr, 0.215 ± 0.0102, and 0.841 ± 0.0289 L kg?1, respectively. The disposition of florfenicol after i.m. administration was best described by a one‐compartment open model. The typical values of maximum concentration of drug in serum (C max), elimination half‐life (t 1/2Kel), Cl, and Volume (V ) were 5.52 ± 0.605 μg/ml, 9.96 ± 1.12 hr, 0.228 ± 0.0154 L hr?1 kg?1, and 3.28 ± 0.402 L/kg, respectively. The between‐subject variabilities of all the parameters after i.m. administration were between 25.1%–92.1%. Florfenicol was well absorbed (94.1%) after i.m. administration. According to Monte Carlo simulation, 8.5 and 6 mg/kg were adequate to exert 90% bactericidal effect against Actinobacillus pleuropneumoniae after i.v. and i.m. administration.  相似文献   

2.
The purpose of this study was to evaluate the pharmacokinetics of cefquinome (CFQ ) following single intravenous (IV ) or intramuscular (IM ) injections of 2 mg/kg body weight in red‐eared slider turtles. Plasma concentrations of CFQ were determined by high‐performance liquid chromatography and analyzed using noncompartmental methods. The pharmacokinetic parameters following IV injection were as follows: elimination half‐life (t 1/2λz) 21.73 ± 4.95 hr, volume of distribution at steady‐state (V dss) 0.37 ± 0.11 L/kg, area under the plasma concentration–time curve (AUC 0–∞) 163 ± 32 μg hr?1 ml?1, and total body clearance (ClT) 12.66 ± 2.51 ml hr?1 kg?1. The pharmacokinetic parameters after IM injection were as follows: peak plasma concentration (C max) 3.94 ± 0.84 μg/ml, time to peak concentration (T max) 3 hr, t 1/2λz 26.90 ± 4.33 hr, and AUC 0–∞ 145 ± 48 μg hr?1 ml?1. The bioavailability after IM injection was 88%. Data suggest that CFQ has a favorable pharmacokinetic profile with a long half‐life and a high bioavailability in red‐eared slider turtles. Further studies are needed to establish a multiple dosage regimen and evaluate clinical efficacy.  相似文献   

3.
HistoryA 4‐year old, 500 kg Thoroughbred female horse diagnosed with bilateral forelimb laminitis and cellulitis on the left forelimb became severely painful and refractory to non‐steroidal anti‐inflammatory therapy (flunixin meglumine on days 1, 2, 3 and 4; and phenylbutazone on days 5, 6 and 7) alone or in combination with gabapentin (days 6 and 7).Physical examinationPain scores assessed independently by three individuals with a visual analog scale (VAS; 0 = no pain and 10 = worst possible pain) were 8.5 on day 6, and it increased to 9.5 on day 7. Non‐invasive blood pressure monitoring revealed severe hypertension.ManagementAs euthanasia was being considered for humane reasons, a decision was made to add an experimental new drug, trans‐4‐{4‐[3‐(4‐Trifluoromethoxy‐phenyl)‐ureido]‐cyclohexyloxy}‐benzoic acid (t‐TUCB), which is a soluble epoxide hydrolase (sEH) inhibitor, to the treatment protocol. Dose and frequency of administration were selected based on the drug potency against equine sEH to produce plasma concentrations within the range of 30 nmol L?1 and 2.5 μmol L?1. Pain scores decreased sharply and remarkably following t‐TUCB administration and blood pressure progressively decreased to physiologic normal values. Plasma concentrations of t‐TUCB, measured daily, were within the expected range, whereas phenylbutazone and gabapentin plasma levels were below the suggested efficacious concentrations.Follow upNo adverse effects were detected on clinical and laboratory examinations during and after t‐TUCB administration. No new episodes of laminitis have been noted up to the time of writing (120 days following treatment).ConclusionsInhibition of sEH with t‐TUCB was associated with a significant improvement in pain scores in one horse with laminitis whose pain was refractory to the standard of care therapy. No adverse effects were noticed. Future studies evaluating the analgesic and protective effects of these compounds in painful inflammatory diseases in animals are warranted.  相似文献   

4.
The alleviation of pain and prevention of suffering are key aspects of animal welfare. Unfortunately, analgesic drugs are not available for all species. White rhinoceros (Ceratotherium simum ), representing one of such species, which survive poaching attempts inflicted with severe facial injuries and gunshot wounds, nonetheless require analgesic support. To improve treatment conditions, this study explored the use of carprofen for the treatment of pain and inflammation in white rhinoceros. The pharmacokinetics of 1 mg/kg intramuscular carprofen was evaluated in six healthy white rhinoceros. The half‐life of λz and mean residence time was 105.71 ± 15.67 and 155.01 ± 22.46 hr, respectively. The area under the curve and the maximum carprofen concentration were 904.61 ± 110.78 μg ml?1 hr?1 and 5.77 ± 0.63 μg/ml, respectively. Plasma TXB 2 inhibition demonstrated anti‐inflammatory properties and indicated that carprofen may be effective for a minimum of 48 hr in most animals. With its long half‐life further indicating that a single dose could be effective for several days, we suggest that carprofen may be a useful drug for the treatment of white rhinoceros.  相似文献   

5.
The purpose of this study was to determine the pharmacokinetic profile of intravenous firocoxib in neonatal foals. Six healthy foals were administered 0.09 mg/kg firocoxib intravenously once a day for 7 days. Blood was collected for plasma firocoxib analysis using high‐performance liquid chromatography with fluorescence detection at times 0 (day 1 of study only) and 0.08, 0.25, 1, 2, 4, 6, 8, 16 and 24 hr on dose numbers 1, 5 and 7. Blood was also collected immediately prior to doses 3, 4, 5 and 7. Final samples were collected at 36, 48, 72 and 96 hr following the final dose. Noncompartmental analysis using the trapezoidal method with linear interpolation revealed a moderate half‐life (15.9 ± 9.1 hr) with a large volume of distribution at steady state (1.79 ± 0.57 L/kg) and a clearance (96.0 ± 59.2 ml h?1 kg?1) that was more rapid than that observed in adult horses.  相似文献   

6.
Nine horses received 20 mg/kg of intravenous (LEVIV ); 30 mg/kg of intragastric, crushed immediate release (LEVCIR ); and 30 mg/kg of intragastric, crushed extended release (LEVCER ) levetiracetam, in a three‐way randomized crossover design. Crushed tablets were dissolved in water and administered by nasogastric tube. Serum samples were collected over 48 hr, and levetiracetam concentrations were determined by immunoassay. Mean ± SD peak concentrations for LEVCIR and LEVCER were 50.72 ± 10.60 and 53.58 ± 15.94 μg/ml, respectively. The y ‐intercept for IV administration was 64.54 ± 24.99 μg/ml. The terminal half‐life was 6.38 ± 1.97, 7.07 ± 1.93 and 6.22 ± 1.35 hr for LEVCIR , LEVCER , and LEVIV , respectively. Volume of distribution at steady‐state was 630 ± 73.4 ml/kg. Total body clearance after IV administration was 74.40 ± 19.20 ml kg?1 hr?1. Bioavailability was 96 ± 10, and 98 ± 13% for LEVCIR and LEVCER , respectively. A single dose of Levetiracetam (LEV ) was well tolerated. Based on this study, a recommended dosing regimen of intravenous or oral LEV of 32 mg/kg every 12 hr is likely to achieve and maintain plasma concentrations within the therapeutic range suggested for humans, with optimal kinetics throughout the dosing interval in healthy adult horses. Repeated dosing and pharmacodynamic studies are warranted.  相似文献   

7.
The study objective was to evaluate the effects of age on aminoglycoside pharmacokinetics in eight young‐adult (<4 years) and eight aged (≥14 years) healthy alpacas, receiving a single 6.6 mg/kg intravenous gentamicin injection. Heparinized plasma samples were obtained at designated time points following drug administration and frozen at ?80°C until assayed by a validated immunoassay (QMS ®). Compartmental and noncompartmental analyses of gentamicin plasma concentrations versus time were performed using WinNonlin (v6.4) software. Baseline physical and hematological parameters were not significantly different between young and old animals with the exception of sex. Data were best fitted to a two‐compartment pharmacokinetic model. The peak drug concentration at 30 min after dosing (23.8 ± 2.1 vs. 26.1 ± 2 μg/ml, p = .043 ) and area under the curve (70.4 ± 10.5 vs. 90.4 ± 17.6 μg hr/ml, p = .015 ) were significantly lower in young‐adult compared to aged alpacas. Accordingly, young alpacas had a significantly greater systemic clearance than older animals (95.5 ± 14.4 and 75.6 ± 16.1 ml hr?1 kg?1; p = .018 ), respectively). In conclusion, a single 6.6 mg/kg intravenous gentamicin injection achieves target blood concentrations of >10 times the MIC of gentamicin‐susceptible pathogens with MIC levels ≤2 μg/ml, in both young‐adult and geriatric alpacas. However, the observed reduction in gentamicin clearance in aged alpacas may increase their risk for gentamicin‐related adverse drug reactions.  相似文献   

8.
ObjectiveTo describe the pharmacokinetics of intra-articularly (IA) administered morphine.Study designExperimental randomized, cross-over study.AnimalsEight adult healthy mixed breed horses aged 6.5 ± 2.3 (mean ± SD) years and weighing 535 ± 86 kg.MethodsUnilateral radiocarpal synovitis was induced by IA injection of 3 μg lipopolysaccharide (LPS) on two occasions (right and left radiocarpal joint, respectively) separated by a 3-week wash-out period. Treatments were administered 4 hours post-LPS-injection: Treatment IA; preservative free morphine IA (0.05 mg kg?1) plus saline intravenous (IV) and treatment IV; saline IA plus preservative free morphine IV (0.05 mg kg?1). Concentrations of morphine, morphine-3-glucuronide and morphine-6-glucuronide (M6G) were determined repeatedly in serum and synovial fluid (SF) by high-performance liquid chromatography mass spectrometry, at 2 and 4 hours and then at 4 hours intervals until 28 hours post-treatment.ResultsInjection of LPS elicited a marked and comparable synovitis in all LPS-injected radiocarpal joints. IA administered morphine was detectable in SF of all eight joints 24 hours post-treatment and in 6/8 joints 28 hours post-treatment. The terminal half-life of morphine in SF was estimated to be 2.6 hours. IA administration of morphine resulted in mean serum concentrations of morphine below 5 ng mL?1 from 2 to 28 hours after treatment.Conclusions and clinical relevanceIntra-articularly administered morphine remained within the joint for at least 24 hours. At the same time only very low serum concentrations of morphine and M6G were detected. The present results suggest that IA morphine at 0.05 mg kg?1 may be used for IA analgesia lasting at least 24 hours and give strong support to the theory that previously observed analgesic and anti-inflammatory effects of IA morphine in horses are most likely to be mediated peripherally.  相似文献   

9.
The comparative pharmacokinetics of ivermectin (IVM), between healthy and in Escherichia coli lipopolysaccharides (LPS) injected sheep, was investigated after an intravenous (IV) administration of a single dose of 0.2 mg/kg. Ten Suffolk Down sheep, 55 ± 3.3 kg, were distributed in two experimental groups: Group 1 (LPS): treated with three doses of 1 μg LPS/kg bw at ?24, ?16, and ?0.75 hr before IVM; group 2 (Control): treated with saline solution (SS). An IV dose of 0.2 mg IVM/kg was administered 45 min after the last injection of LPS or SS. Plasma concentrations of IVM were determined by liquid chromatography. Pharmacokinetic parameters were calculated based on non‐compartmental modeling. In healthy sheep, the values of the pharmacokinetic parameters were as follows: elimination half‐life (2.85 days), mean residence time (MRT) (2.27 days), area under the plasma concentration curve over time (AUC, 117.4 ng day?1 ml?1), volume of distribution (875.6 ml/kg), and clearance (187.1 ml/day). No statistically significant differences were observed when compared with the results obtained from the group of sheep treated with LPS. It is concluded that the acute inflammatory response (AIR) induced by the intravenous administration of E. coli LPS in adult sheep produced no changes in plasma concentrations or in the pharmacokinetic behavior of IVM, when it is administered intravenously at therapeutic doses.  相似文献   

10.
The pharmacokinetics of orbifloxacin was studied after a single dose (7.5 mg/kg) of intravenous or intramuscular administration to crucian carp (Carassius auratus ) reared in freshwater at 25°C. Plasma samples were collected from six fish per sampling point. Orbifloxacin concentrations were determined by high‐performance liquid chromatography with a 0.02 μg/ml limit of detection, then were subjected to noncompartmental analysis. After intravenous injection, initial concentration of 5.83 μg/ml, apparent elimination rate constant (λz) of 0.039 hr?1, apparent elimination half‐life (T1/2λz) of 17.90 hr, systemic total body clearance (Cl) of 75.47 ml hr?1 kg?1, volume of distribution (Vz) of 1,948.76 ml/kg, and volume of distribution at steady‐state (Vss) of 1,863.97 ml/kg were determined, respectively. While after intramuscular administration, the λz, T 1/2λz, mean absorption time (MAT ), absorption half‐life (T 1/2ka), and bioavailability were determined as 0.027 hr?1, 25.69, 10.26, 7.11 hr, and 96.46%, respectively, while the peak concentration was observed as 3.11 ± 0.06 μg/ml at 2.0 hr. It was shown that orbifloxacin was completely but relatively slowly absorbed, extensively distributed, and slowly eliminated in crucian carp, and an orbifloxacin dosage of 10 mg/kg administered intravenously or intramuscularly would be expected to successfully treat crucian carp infected by strains with MIC values ≤0.5 μg/ml.  相似文献   

11.
The purpose of the study was to determine pharmacokinetics of fentanyl after intravenous (i.v.) and transdermal (t.d.) administration to six adult alpacas. Fentanyl was administered i.v. (2 μg/kg) or t.d. (nominal dose: 2 μg kg?1 hr?1). Plasma concentrations were determined using liquid chromatography–mass spectrometry. Heart rate and respiratory rate were assessed. Extrapolated, zero‐time plasma fentanyl concentrations were 6.0 ng/ml (1.7–14.6 ng/ml) after i.v. administration, total plasma clearance was 1.10 L hr?1 kg?1 (0.75–1.40 L hr?1 kg?1), volumes of distribution were 0.30 L/kg (0.10–0.99 L/kg), 1.10 L/kg (0.70–2.96 L/kg) and 1.5 L/kg (0.8–3.5 L/kg) for V1, V2, and Vss, respectively. Elimination half‐life was 1.2 hr (0.5–4.3 hr). Mean residence time (range) after i.v. dosing was 1.30 hr (0.65–4.00 hr). After t.d. fentanyl administration, maximum plasma fentanyl concentration was 1.20 ng/ml (0.72–3.00 ng/ml), which occurred at 25 hr (8–48 hr) after patch placement. The area under the plasma fentanyl concentration‐vs‐time curve (extrapolated to infinity) after t.d. fentanyl was 61 ng*hr/ml (49–93 ng*hr/ml). The dose‐normalized bioavailability of fentanyl from t.d. fentanyl in alpacas was 35.5% (27–64%). Fentanyl absorption from the t.d. fentanyl patch into the central compartment occurred at a rate of approximately 50 μg/hr (29–81 μg/hr) between 8 and 72 hr after patch placement.  相似文献   

12.
Gaining a detailed knowledge on the impact of a feedstuff on pig growth and physiological responses is critical for its effective utilization. Thus, the purpose of this study was to investigate the effect of distillers dried grains with solubles derived from co‐fermentation of wheat and corn (wcDDGS) on performance, carcass and visceral organ weights, whole‐body O2 consumption and heat production (HP) in growing barrows. The experimental diets were as follows: corn–soybean meal diet (Control), Control + 15% wcDDGS and Control + 30% wcDDGS. In Exp. 1, 48 pair‐housed pigs of average BW 18.6 ± 1.5 kg (mean ± SD) were allotted to the 3 diets (n = 8). Pigs had free access to water and feed for a 28‐day period during which ADG and ADFI were calculated weekly. Thereafter, 1 pig/pen was killed to measure carcass and visceral organ weights. Overall, wcDDGS linearly decreased (p < 0.05) ADFI and ADG but had no effect on G:F (p > 0.10). The ADFI was 1.55, 1.45 and 1.36 kg/day for diets containing 0, 15 and 30% wcDDGS respectively; corresponding values for ADG were 0.79, 0.75 and 0.67 kg/day respectively. A linear decline (p = 0.01) in eviscerated hot carcass weight was observed as dietary wcDDGS increased. In Exp. 2, 18 pigs of average BW 20.4 ± 2.4 kg (mean ± SD) were individually housed in metabolism crates and fed the 3 diets (n = 6) at 550 kcal ME kg BW?0.60day for a 16‐day period followed by measurement of O2 consumption using an indirect calorimeter. Diet had no effect (p > 0.10) on whole‐body O2 consumption and HP. In conclusion, increasing wcDDGS content in growing pig diets linearly reduced ADFI, ADG and eviscerated hot carcass weight but had no effect on G:F, visceral organ weights or HP.  相似文献   

13.
The penetration of oxytetracycline (OTC) into the oral fluid and plasma of pigs and correlation between oral fluid and plasma were evaluated after a single intramuscular (i.m.) dose of 20 mg/kg body weight of long‐acting formulation. The OTC was detectable both in oral fluid and plasma from 1 hr up to 21 day after drug administration. The maximum concentrations (Cmax) of drug with values of 4021 ± 836 ng/ml in oral fluid and 4447 ± 735 ng/ml in plasma were reached (Tmax) at 2 and 1 hr after drug administration respectively. The area under concentration–time curve (AUC), mean residence time (MRT) and the elimination half‐life (t1/2β) were, respectively, 75613 ng × hr/ml, 62.8 hr and 117 hr in oral fluid and 115314 ng × hr/ml, 31.4 hr and 59.2 hr in plasma. The OTC concentrations were remained higher in plasma for 48 hr. After this time, OTC reached greater level in oral fluid. The strong correlation (= .92) between oral fluid and plasma OTC concentrations was observed. Concentrations of OTC were within the therapeutic levels for most sensitive micro‐organism in pigs (above MIC values) for 48 hr after drug administration, both in the plasma and in oral fluid.  相似文献   

14.
The aim of this study was to determine the effect of Escherichia coli lipopolysaccharide (LPS)‐induced acute phase response (APR) on the pharmaco‐kinetics and biotransformation of florfenicol (FFC) in rabbits. Six rabbits (3.0 ± 0.08 kg body weight (bw)) were distributed through a crossover design with 4 weeks of washout period. Pairs of rabbits similar in bw and sex were assigned to experimental groups: Group 1 (LPS) was treated with three intravenous doses of 1 μg/kg bw of E. coli LPS at intervals of 6 h, and Group 2 (control) was treated with an equivalent volume of saline solution (SS) at the same intervals and frequency of Group 1. At 24 h after the first injection of LPS or SS, an intravenous bolus of 20 mg/kg bw of FFC was administered. Blood samples were collected from the auricular vein before drug administration and at different times between 0.05 and 24.0 h after treatment. FFC and florfenicol‐amine (FFC‐a) were extracted from the plasma, and their concentrations were determined by high‐performance liquid chromatography. A noncompartmental pharmacokinetic model was used for data analysis, and data were compared using the paired Student t‐test. The mean values of AUC0–∞ in the endotoxaemic rabbits (26.3 ± 2.7 μg·h/mL) were significantly higher (< 0.05) than values observed in healthy rabbits (17.2 ± 0.97 μg·h/mL). The total mean plasma clearance (CLT) decreased from 1228 ± 107.5 mL·h/kg in the control group to 806.4 ± 91.4 mL·h/kg in the LPS‐treated rabbits. A significant increase (< 0.05) in the half‐life of elimination was observed in the endotoxaemic rabbits (5.59 ± 1.14 h) compared to the values observed in healthy animals (3.44 ± 0.57 h). In conclusion, the administration of repeated doses of 1 μg/kg E. coli LPS induced an APR in rabbits, producing significant modifications in plasma concentrations of FFC leading to increases in the AUC, terminal half‐life and mean residence time (MRT), but a significant decrease in CLT of the drug. As a consequence of the APR induced by LPS, there was a reduction in the metabolic conversion of FFC to their metabolite FFC‐a in the liver, suggesting that the mediators released during the APR induced significant inhibitory effects on the hepatic drug‐metabolizing enzymes.  相似文献   

15.
Amoxicillin is used in the treatment and prevention of a wide range of diseases in poultry breeding. However, its short half‐life and low bioavailability restrict its clinical application in these species. Entrapment of drugs into polymeric nanoparticles (nps) presents a means to improve gastrointestinal absorption and oral bioavailability of drugs. This study was aimed to overcome limitation of amoxicillin use in poultry breeding. Amoxicillin was loaded into sodium alginate‐polyvinyl alcohol (NaAlg‐PVA ) blend nps, and characterization of the prepared nps was performed. For pharmacokinetic study, commercial male broilers were used and comparative pharmacokinetics of free and nanoparticle form of amoxicillin were investigated. Twenty‐one broilers were divided into three groups. All groups received 10 mg/kg drug. Blood samples were collected, and drug plasma concentrations were determined by HPLC . The results demonstrated that the particle size, zeta potential, encapsulation efficiency, and loading capacity of the nps were 513.96 ± 19.46 nm, ?45.36 ± 1.35 mV , 43.66 ± 3.30, and 12.06 ± 0.83%, respectively. In vitro drug release exhibited a biphasic pattern with an initial burst release of 18% within 2 hr followed by a sustained release over 22 hr. The pharmacokinetic results showed that amoxicillin nps have higher bioavailability and longer plasma half‐life (<  .01) than free amoxicillin. These results indicate that amoxicillin nano formulation is suitable for oral administration in broilers.  相似文献   

16.
Experiments in different animal species have shown that febrile conditions, induced by Escherichia coli lipopolysaccharide (LPS), may alter the pharmacokinetic properties of drugs. The objective was to study the effects of a LPS‐induced acute‐phase response (APR) model on plasma pharmacokinetics of florfenicol (FFC) after its intravenous administration in sheep. Six adult clinically healthy Suffolk Down sheep, 8 months old and 35.5 ± 2.2 kg in body weight (bw), were distributed through a crossover factorial 2 × 2 design, with 4 weeks of washout. Pairs of sheep similar in body weight were assigned to experimental groups: Group 1 (LPS) was treated with three intravenous doses of 1 μg/kg bw of E. coli LPS before FFC treatment. Group 2 (control) was treated with an equivalent volume of saline solution (SS) at similar intervals as LPS. At 24 h after the first injection of LPS or SS, an intravenous bolus of 20 mg/kg bw of FFC was administered. Blood samples (5 mL) were collected before drug administration and at different times between 0.05 and 48.0 h after treatment. FFC plasma concentrations were determined by liquid chromatography. A noncompartmental pharmacokinetic model was used for data analysis, and data were compared using a Mann–Whitney U‐test. The mean values of AUC0–∞ in the endotoxaemic sheep (105.9 ± 14.3 μg·h/mL) were significantly higher (< 0.05) than values observed in healthy sheep (78.4 ± 5.2 μg·h/mL). The total mean plasma clearance (CLT) decreased from 257.7 ± 16.9 mL·h/kg in the control group to 198.2 ± 24.1 mL·h/kg in LPS‐treated sheep. A significant increase (< 0.05) in the terminal half‐life was observed in the endotoxaemic sheep (16.9 ± 3.8 h) compared to the values observed in healthy sheep (10.4 ± 3.2 h). In conclusion, the APR induced by the intravenous administration of E. coli LPS in sheep produces higher plasma concentrations of FFC due to a decrease in the total body clearance of the drug.  相似文献   

17.
Midazolam is a benzodiazepine with sedative, muscle relaxant, anxiolytic, and anticonvulsant effects. Twelve ball pythons (Python regius) were used in a parallel study evaluating the pharmacokinetics of 1 mg/kg midazolam following a single intracardiac (IC) or intramuscular (IM) administration. Blood was collected from a central venous catheter placed 7 days prior, or by cardiocentesis, at 15 time points starting just prior to and up to 72 hr after drug administration. Plasma concentrations of midazolam and 1‐hydroxymidazolam were determined by the use of high‐performance liquid chromatography tandem‐mass spectrometry and pharmacokinetic parameters were estimated using noncompartmental analysis. The mean ± SD terminal half‐lives of IC and IM midazolam were 12.04 ± 3.25 hr and 16.54 ± 7.10 hr, respectively. The area under the concentration‐time curve extrapolated to infinity, clearance, and apparent volume of distribution in steady‐state of IC midazolam were 19,112.3 ± 3,095.9 ng*hr/ml, 0.053 ± 0.008 L hr?1 kg?1, and 0.865 ± 0.289 L/kg, respectively. The bioavailability of IM midazolam was estimated at 89%. Maximum plasma concentrations following an IM administration were reached 2.33 ± 0.98 hr and 24.00 ± 14.12 hr postinjection for midazolam and 1‐hydroxymidazolam, respectively, and 22.33 ± 20.26 hr postinjection for 1‐hydroxymidazolam following IC administration.  相似文献   

18.
Antagonistic relationship between milk yield and reproduction is reported in several livestock species. This study aimed to investigate whether genetic merit for milk production in dairy sheep affects responses to superovulation, embryo yield and quality. A total of 21 cross‐bred Sarda x Lacaune ewes homogeneous for age, parity and stage of lactation were included. The ewes were stratified as high‐producing or low‐producing based on their genetic merit for milk production estimated by a pentatrait repeatability animal model. Oestrus was synchronized using an intravaginal progesterone pessary inserted on Day 0 and removed on Day 14. Superovulatory treatment consisted of 350 I.U. of porcine FSH administered in eight decreasing intramuscular doses every 12 hr with a total dose of 10 ml of solution starting 12 days after insertion of sponges. Laparoscopic artificial insemination (AI) was performed 48 hr after pessary removal. Surgical embryo recovery was performed at Day 8 after pessary removal. Correlation between breeding value for milk production and the number of corpora lutea (CL) was significantly different from zero (?0.49). High‐producing ewes had a lower number of CL than low‐producing counterparts (7.6 ± 2.50 vs 12.1 ± 5.16 respectively; p < .02). Furthermore, there was a tendency for high‐producing ewes to yield fewer embryos than low‐producing females (5.3 ± 3.46 vs 9.18 ± 5.11; p = .09). No differences were observed between ewes in both genetic groups with regard to the number of embryos of grades 1, 2 and 3. To our knowledge, this is the first report highlighting an antagonism between genetic merit for milk production and the ability to produce embryos in sheep. These results deserve to be considered in sheep breeding programmes.  相似文献   

19.
The disposition kinetics of norfloxacin, after intravenous, intramuscular and subcutaneous administration was determined in rabbits at a single dose of 10 mg/kg. Six New Zealand white rabbits of both sexes were treated with aqueous solution of norfloxacin (2%). A cross‐over design was used in three phases (2 × 2 × 2), with two washout periods of 15 days. Plasma samples were collected up to 72 hr after treatment, snap‐frozen at ?45°C and analysed for norfloxacin concentrations using high‐performance liquid chromatography. The terminal half‐life for i.v., i.m. and s.c. routes was 3.18, 4.90 and 4.16 hr, respectively. Clearance value after i.v. dosing was 0.80 L/h·kg. After i.m. administration, the absolute bioavailability was (mean ± SD ) 108.25 ± 12.98% and the Cmax was 3.68 mg/L. After s.c. administration, the absolute bioavailability was (mean ± SD ) 84.08 ± 10.36% and the Cmax was 4.28 mg/L. As general adverse reactions were not observed in any rabbit and favourable pharmacokinetics were found, norfloxacin at 10 mg/kg after i.m. and s.c. dose could be effective in rabbits against micro‐organisms with MIC ≤0.14 or 0.11 μg/mL , respectively.  相似文献   

20.
The aim of this study was to evaluate the effects of ram introduction after the second prostaglandin F2α (PG F2α) injection on day 11 on the secretion characteristics of pre‐ovulatory LH surge of fat‐tailed ewes. Multiparous Morkaraman ewes (n=12) were divided into three groups by balancing the groups for liveweight (BW) and body condition score (BCS). On the day of second PGF2α injection (0 h), performance tested rams (n=2) were either introduced to the ewes at 0 h (ram 0 group, n=4) or at 18 h (ram 18 group, n=4) or were not introduced (control group, n=4). Blood samples were collected at 6, 18, 42, 48, 56, 62, 66, 70, 74, 78 and 90 h for the determination of pre‐ovulatory LH surge. BCS and BW during the experimental period were 2.2 ± 0.2 units and 50.9 ± 2.3 kg, 2.4 ± 0.4 units and 49.2 ± 6.2 kg, 2.1 ± 0.3 units and 45.9 ± 4.4 kg, respectively for the ram 0, ram 18 and control groups (p > 0.05). No significant difference was observed in LH surge characteristics for the experimental groups. Peak LH concentrations were also not different between groups (p > 0.05) and they were 12.2 ± 8.3, 29.1 ± 9.9 and 15.8 ± 9.5 μg/l for the ram 0, ram 18 and control groups, respectively. There was, however, a significant correlation between peak LH concentrations and BCS (p < 0.05, R2=0.373). In conclusion, it appears that, compared with ram introduction, variability in body condition of the ewe has much pronounced effect on the amount of LH secreted after the usage of two PGF2α injections (11 days apart) as a tool for oestrus synchronization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号