首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The present study aimed to evaluate the pharmacokinetic features of tolfenamic acid (TA) in green sea turtles, Chelonia mydas. Green sea turtles were administered single either intravenous (i.v.) or intramuscular (i.m.) injection of TA, at a dose of 4 mg/kg body weight (b.w.). Blood samples were collected at preassigned times up to 168 hr. The plasma concentrations of TA were measured using a validated liquid chromatography tandem mass spectrometry method. Tolfenamic acid plasma concentrations were quantifiable for up to 168 hr after i.v. and i.m. administration. The concentration of TA in the experimental green sea turtles with respect to time was pharmacokinetically analyzed using a noncompartment model. The Cmax values of TA were 55.01 ± 8.34 µg/ml following i.m. administration. The elimination half-life values were 32.76 ± 4.68 hr and 53.69 ± 3.38 hr after i.v. and i.m. administration, respectively. The absolute i.m. bioavailability was 72.02 ± 10.23%, and the average binding percentage of TA to plasma protein was 19.43 ± 6.75%. Based on the pharmacokinetic data, the i.m. administration of TA at a dosage of 4 mg/kg b.w. might be sufficient to produce a long-lasting anti-inflammatory effect (7 days) for green sea turtles. However, further studies are needed to determine the clinical efficacy of TA for treatment of inflammatory disease after single and multiple dosages.  相似文献   

2.
The objective of this study was to describe the pharmacokinetics (PK) of flunixin in 12 nonlactating sows following transdermal (TD) flunixin (3.33 mg/kg) and intravenous (IV; 2.20 mg/kg) flunixin meglumine (FM) administration using a crossover design with a 10‐day washout period. Blood samples were collected postadministration from sows receiving IV FM (3, 6, 10, 20, 40 min and 1, 3, 6, 12, 16, 24, 36, and 48 hr) and from sows receiving TD flunixin (10, 20, 40 min and 1, 2, 3, 4, 6, 8, 12, 16, 24, 36, 48, 60, and 72 hr). Liquid chromatography and mass spectrometry were used to determine plasma flunixin concentrations, and noncompartmental methods were used for PK analysis. The geometric mean ± SD area under the plasma concentration–time curve (AUC) following IV injection was 26,820.59 ± 9,033.88 and 511.83 ± 213.98 hr ng/ml for TD route. Mean initial plasma concentration (C0) was 26,279.70 ± 3,610.00 ng/ml, and peak concentration (Cmax) was 14.61 ± 7.85 ng/ml for IV and TD administration, respectively. The percent mean bioavailability of TD flunixin was 1.55 ± 1.00. Our results demonstrate that topical administration is not an efficient route for delivering flunixin in mature sows.  相似文献   

3.
Tildipirosin is a semi‐synthetic macrolide antibiotic commonly used in cattle and swine to treat bacterial pneumonia. The objective of this study was to investigate the pharmacokinetic profile of tildipirosin after a single intravenous (i.v.) and subcutaneous (s.c.) administration in healthy lambs. Eighteen lambs were randomly divided into three groups (n = 6 each). Lambs received a single s.c. dose of tildipirosin at 4 and 6 mg/kg b.w. in group 1 and 2, respectively. Lambs in group 3 received a single i.v. dose of tildipirosin at 4 mg/kg b.w. Blood samples were collected at 0, 0.5, 0.75, 1.5, 2, 3, 4, 6, 8, 10, 24, 36, 48 hr, and every 24 hr to day 21, and thereafter at day 28 posttildipirosin administration. The plasma concentrations of tildipirosin were determined using high‐performance liquid chromatography with tandem mass spectrometry detection (LC?MS?MS). All lambs appeared to tolerate both the intravenous and subcutaneous injection of tildipirosin. Following i.v. administration, the elimination half‐life (T1/2), mean residence time (MRT), volume of distribution (Vd/F), and total body clearance (Cl/F) were 119.6 ± 9.0 hr, 281.9 ± 25.7 hr, 521.1 ± 107.2 L, and 2.9 ± 0.5 L/hr, respectively. No significant differences in Cmax (657.0 ± 142.8 and 754.6 ± 227.1 ng/ml), Tmax (1.21 ± 0.38 and 1.35 ± 0.44 hr), T1/2 (144 ± 17.5, 156.5 ± 33.4 hr), and MRT (262.0 ± 30.2 and 250.6 ± 54.5 hr) were found in tildipirosin after s.c. dosing at 4 and 6 mg/kg b.w., respectively. The absolute bioavailability (F) of tildipirosin was 71.5% and 75.3% after s.c. administration of 4 and 6 mg/kg b.w., respectively. In conclusion, tildipirosin was rapidly absorbed and slowly eliminated after a single s.c. administration in healthy lambs. Tildipirosin could be used for the treatment and prevention of respiratory bacterial infections in sheep. However, further in vitro and in vivo studies to determine the efficacy and safety are warranted. To our knowledge, this is the first study to determine the tildipirosin pharmacokinetic parameters in sheep plasma.  相似文献   

4.
The objective of this study was to determine the pharmacokinetics of tildipirosin in rabbits after a single intravenous (i.v.) and intramuscular (i.m.) injection at a dose of 4 mg/kg. Twelve white New Zealand rabbits were assigned to a randomized, parallel trial design. Blood samples were collected prior to administration and up to 14 days postadministration. Plasma concentrations of tildipirosin were quantified using a validated ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. The pharmacokinetic parameters were calculated using a noncompartmental model in WinNonlin 5.2 software. Following i.v. and i.m. administration, the elimination half-life (T1/2λ) was 81.17 ± 9.28 and 96.68 ± 15.37 hr, respectively, and the mean residence time (MRTlast) was 65.44 ± 10.89 and 67.06 ± 10.49 hr, respectively. After i.v. injection, the plasma clearance rate (Cl) and volume of distribution at steady state (Vdss) were 0.28 ± 0.10 L kg-1 h−1 and 17.78 ± 5.15 L/kg, respectively. The maximum plasma concentration (Cmax) and time to reach maximum plasma concentration (Tmax) after i.m. administration were 836.2 ± 117.9 ng/ml and 0.33 ± 0.17 hr, respectively. The absolute bioavailability of i.m. administration was 105.4%. Tildipirosin shows favorable pharmacokinetic characteristics in rabbits, with fast absorption, extensive distribution, and high bioavailability. These findings suggest that tildipirosin might be a potential drug for the prevention and treatment of respiratory diseases in rabbits.  相似文献   

5.
Green sea turtles are widely distributed in tropical and subtropical waters. Adult green sea turtles face many threats, primarily from humans, including injuries from boat propellers, being caught in fishing nets, pollution, poaching, and infectious diseases. To the best of our knowledge, limited pharmacokinetic information to establish suitable therapeutic plans is available for green sea turtles. Therefore, the present study aimed to describe the pharmacokinetic characteristics of ceftriaxone (CEF) in green sea turtles, Chelonia mydas, following single intravenous and intramuscular administrations at two dosages of 10 and 25 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 96 hr. The plasma concentrations of CEF were measured by liquid chromatography tandem mass spectrometry. The concentrations of CEF in the plasma were quantified up to 24 and 48 hr after i.v. and i.m. administrations at dosages of 10 and 25 mg/kg b.w., respectively. The Cmax values of CEF were 15.43 ± 3.71 μg/ml and 43.48 ± 4.29 μg/ml at dosages of 10 and 25 mg/kg, respectively. The AUClast values increased in a dose‐dependent fashion. The half‐life values were 2.89 ± 0.41 hr and 5.96 ± 0.26 hr at dosages of 10 and 25 mg/kg b.w, respectively. The absolute i.m. bioavailability was 67% and 108%, and the binding percentage of CEF to plasma protein was ranged from 20% to 29% with an average of 24.6%. Based on the pharmacokinetic data, susceptibility break‐point and PK‐PD index (T > MIC, 0.2 μg/ml), i.m. administration of CEF at a dosage of 10 mg/kg b.w. might be appropriate for initiating treatment of susceptible bacterial infections in green sea turtles.  相似文献   

6.
This study describes the pharmacokinetics of vitacoxib in healthy rabbits following administration of 10 mg/kg intravenous (i.v.) and 10 mg/kg oral. Twelve New Zealand white rabbits were randomly allocated to two equally sized treatment groups. Blood samples were collected at predetermined times from 0 to 36 hr after treatment. Plasma drug concentrations were determined using UPLC‐MS/MS. Pharmacokinetic analysis was completed using noncompartmental methods via WinNonlin? 6.4 software. The mean concentration area under curve (AUClast) for vitacoxib was determined to be 11.0 ± 4.37 μg hr/ml for i.v. administration and 2.82 ± 0.98 μg hr/ml for oral administration. The elimination half‐life (T1/2λz) was 6.30 ± 2.44 and 6.30 ± 1.19 hr for the i.v. and oral route, respectively. The Cmax (maximum plasma concentration) and Tmax (time to reach the observed maximum (peak) concentration at steady‐state) following oral application were 189 ± 83.1 ng/ml and 6.58 ± 3.41 hr, respectively. Mean residence time (MRTlast) following i.v. injection was 6.91 ± 3.22 and 11.7 ± 2.12 hr after oral administration. The mean bioavailability of oral administration was calculated to be 25.6%. No adverse effects were observed in any rabbit. Further studies characterizing the pharmacodynamics of vitacoxib are required to develop a formulation of vitacoxib for rabbits.  相似文献   

7.
The objective of this study was to investigate the pharmacokinetics of cefquinome following single intramuscular (IM) administration in six healthy male buffalo calves. Cefquinome was administered intramuscularly (2 mg/kg bodyweight) and blood samples were collected prior to drug administration and up to 24 hr after injection. No adverse effects or changes were observed after the IM injection of cefquinome. Plasma concentrations of cefquinome were determined by high‐performance liquid chromatography. The disposition of plasma cefquinome is characterized by a mono‐compartmental open model. The pharmacokinetic parameters after IM administration (mean ± SE) were Cmax 6.93 ± 0.58 μg/ml, Tmax 0.5 hr, t½kα 0.16 ± 0.05 hr, t½β 3.73 ± 0.10 hr, and AUC 28.40 ± 1.30 μg hr/ml after IM administration. A dosage regimen of 2 mg/kg bodyweight at 24‐hr interval following IM injection of cefquinome would maintain the plasma levels required to be effective against the bacterial pathogens with MIC values ≤0.39 μg/ml. The suggested dosage regimen of cefquinome has to be validated in the disease models before recommending for clinical use in buffalo calves.  相似文献   

8.
One of the major obstacles to the successful treatment of infectious disease in freshwater crocodile species is incorrect dosing of antibiotics. There are few reports on pharmacokinetics and dosage regimens of antimicrobial drugs in crocodiles. The purpose of the present study was to clarify the pharmacokinetic characteristics of ceftriaxone (CEF) in Siamese freshwater crocodiles (Crocodylus siamensis). Freshwater crocodiles, Crocodylus siamensis, in breeding farms were treated with a single intramuscular administration of CEF at two dosages, 12.5 and 25 mg/kg body weight (b.w.). Blood samples were collected at preassigned times up to 168 hr. The plasma concentrations of CEF were measured by a validated method through liquid chromatography tandem-mass spectrometry. CEF plasma concentrations were quantified up to 72 and 96 hr after low- and high-dose administration, respectively. The Cmax values of CEF were 24.61 ± 5.15 µg/ml and 26.39 ± 2.81 µg/ml at dosages of 12.5 and 25 mg/kg b.w., respectively. The AUClast values increased in a dose-dependent fashion. The half-life values were not statistically different between the groups (around 20 hr). The average binding percentage of CEF to plasma protein was 53.78 ± 2.11%. Based on the pharmacokinetic data, susceptibility break-point and the surrogate PK-PD index (T > MIC, 0.2 μg/ml), i.m. administration of CEF at a dose of 12.5 mg/kg b.w. might be appropriate for initiating treatment of susceptible bacterial infections in freshwater crocodiles.  相似文献   

9.
The pharmacokinetic properties of three formulations of vitacoxib were investigated in horses. To describe plasma concentrations and characterize the pharmacokinetics, 6 healthy adult Chinese Mongolian horses were administered a single dose of 0.1 mg/kg bodyweight intravenous (i.v.), oral paste, or oral tablet vitacoxib in a 3-way, randomized, parallel design. Blood samples were collected prior to and at various times up to 72 hr postadministration. Plasma vitacoxib concentrations were quantified using UPLC-MS/MS, and pharmacokinetic parameters were calculated using noncompartmental analysis. No complications resulting from the vitacoxib administration were noted on subsequent administrations, and all procedures were tolerated well by the horses throughout the study. The elimination half-life (T1/2λz) was 4.24 ± 1.98 hr (i.v.), 8.77 ± 0.91 hr (oral paste), and 8.12 ± 4.24 hr (oral tablet), respectively. Maximum plasma concentration (Cmax) was 28.61 ± 9.29 ng/ml (oral paste) and 19.64 ± 9.26 ng/ml (oral tablet), respectively. Area under the concentration-versus-time curve (AUClast) was 336 ± 229 ng hr/ml (i.v.), 221 ± 94 ng hr/ml (oral paste), and 203 ± 139 ng hr/ml, respectively. The results showed statistically significant differences between the 2 oral vitacoxib groups in Tmax value. T1/2λz (hr), AUClast (ng hr/ml), and MRT (hr) were significantly different between i.v. and oral groups. The longer half-life observed following oral administration was consistent with the flip-flop phenomenon.  相似文献   

10.
Ceftiofur (CEF), a broad‐spectrum third‐generation cephalosporin, exhibits a good activity against a broad range of gram‐negative and gram‐positive bacteria, including many that produce β‐lactamase. To design a rational dosage regimen for the drug in lactating Holstein dairy cows, the pharmacokinetic properties of ceftiofur hydrochloride injection were investigated in six cows after intravenous, intramuscular, and subcutaneous administration of single dose of 2.2 mg/kg BW (body weight). Plasma concentration–time curves and relevant parameters were best described by noncompartmental analysis through WinNonlin 6.3 software. After subcutaneous administration, the absolute bioavailability was 61.12% and the T1/2λz (elimination half‐life) was 8.67 ± 0.72 hr. The Cmax (maximum plasma concentration) was 0.88 ± 0.21 μg/ml and Tmax (the time after initial injection to when Cmax occurs) was 1.50 ± 0.55 hr. The MRT (mean residence time) was 11.00 ± 0.30 hr. Following intramuscular administration, the Cmax (1.09 ± 0.21 μg/ml) was achieved at Tmax (1.20 ± 0.26 hr) with an absolute availability of 70.52%. In this study, the detailed pharmacokinetic profiles of free and total CEF showed that this drug is widely distributed and rapidly eliminated and may contribute to a better understanding of the usage of ceftiofur hydrochloride injection in Holstein dairy cows.  相似文献   

11.
The aim of this study was to determine the pharmacokinetics and prostaglandin E2 (PGE2) synthesis inhibiting effects of intravenous (IV) and transdermal (TD) flunixin meglumine in eight, adult, female, Huacaya alpacas. A dose of 2.2 mg/kg administered IV and 3.3 mg/kg administered TD using a cross‐over design. Plasma flunixin concentrations were measured by LC‐MS/MS. Prostaglandin E2 concentrations were determined using a commercially available ELISA. Pharmacokinetic (PK) analysis was performed using noncompartmental methods. Plasma PGE2 concentrations decreased after IV flunixin meglumine administration but there was minimal change after TD application. Mean t1/2λz after IV administration was 4.531 hr (range 3.355 to 5.571 hr) resulting from a mean Vz of 570.6 ml/kg (range, 387.3 to 1,142 ml/kg) and plasma clearance of 87.26 ml kg?1 hr?1 (range, 55.45–179.3 ml kg?1 hr?1). The mean Cmax, Tmax and t1/2λz for flunixin following TD administration were 106.4 ng/ml (range, 56.98 to 168.6 ng/ml), 13.57 hr (range, 6.000–34.00 hr) and 24.06 hr (18.63 to 39.5 hr), respectively. The mean bioavailability for TD flunixin was calculated as 25.05%. The mean 80% inhibitory concentration (IC80) of PGE2 by flunixin meglumine was 0.23 µg/ml (range, 0.01 to 1.38 µg/ml). Poor bioavailability and poor suppression of PGE2 identified in this study indicate that TD flunixin meglumine administered at 3.3 mg/kg is not recommended for use in alpacas.  相似文献   

12.
The penetration of oxytetracycline (OTC) into the oral fluid and plasma of pigs and correlation between oral fluid and plasma were evaluated after a single intramuscular (i.m.) dose of 20 mg/kg body weight of long‐acting formulation. The OTC was detectable both in oral fluid and plasma from 1 hr up to 21 day after drug administration. The maximum concentrations (Cmax) of drug with values of 4021 ± 836 ng/ml in oral fluid and 4447 ± 735 ng/ml in plasma were reached (Tmax) at 2 and 1 hr after drug administration respectively. The area under concentration–time curve (AUC), mean residence time (MRT) and the elimination half‐life (t1/2β) were, respectively, 75613 ng × hr/ml, 62.8 hr and 117 hr in oral fluid and 115314 ng × hr/ml, 31.4 hr and 59.2 hr in plasma. The OTC concentrations were remained higher in plasma for 48 hr. After this time, OTC reached greater level in oral fluid. The strong correlation (= .92) between oral fluid and plasma OTC concentrations was observed. Concentrations of OTC were within the therapeutic levels for most sensitive micro‐organism in pigs (above MIC values) for 48 hr after drug administration, both in the plasma and in oral fluid.  相似文献   

13.
To the best of our knowledge, limited pharmacokinetic information to establish suitable therapeutic plans is available for Hawksbill turtles. Therefore, the present study aimed to assess the pharmacokinetic features of tolfenamic acid (TA) in Hawksbill turtles, Eretmochelys imbricata, after single intravenous (i.v.) and intramuscular (i.m.) administration at dosage 4 mg/kg body weight (b.w.). The study (parallel design) used 10 Hawksbill turtles randomly divided into equal groups. Blood samples were collected at assigned times up to 144 hr. The concentrations of TA in plasma were quantified by a validated liquid chromatography tandem mass spectrometry (LC-ESI-MS/MS). The concentration of TA in the experimental turtles with respect to time was pharmacokinetically analyzed using a noncompartment model. The Cmax values of TA were 89.33 ± 6.99 µg/ml following i.m. administration. The elimination half-life values were 38.92 ± 6.31 hr and 41.09 ± 9.32 hr after i.v. and i.m. administration, respectively. The absolute i.m. bioavailability was 94.46%, and the average binding percentage of TA to plasma protein was 31.39%. TA demonstrated a long half-life and high bioavailability following i.m. administration. Therefore, the i.m. administration is recommended for use in clinical practice because it is both easier to perform and provides similar plasma concentrations to the i.v. administration. However, further studies are needed to determine the clinical efficacy of TA for treatment of inflammatory disease after single and multiple dosages.  相似文献   

14.
The pharmacokinetic properties of the fluoroquinolone levofloxacin (LFX) were investigated in six dogs after single intravenous, oral and subcutaneous administration at a dose of 2.5, 5 and 5 mg/kg, respectively. After intravenous administration, distribution was rapid (T½dist 0.127 ± 0.055 hr) and wide as reflected by the volume of distribution of 1.20 ± 0.13 L/kg. Drug elimination was relatively slow with a total body clearance of 0.11 ± 0.03 L kg?1 hr?1 and a T½ for this process of 7.85 ± 2.30 hr. After oral and subcutaneous administration, absorption half‐life and Tmax were 0.35 and 0.80 hr and 1.82 and 2.82 hr, respectively. The bioavailability was significantly higher (p ? 0.05) after subcutaneous than oral administration (79.90 vs. 60.94%). No statistically significant differences were observed between other pharmacokinetic parameters. Considering the AUC24 hr/MIC and Cmax/MIC ratios obtained, it can be concluded that LFX administered intravenously (2.5 mg/kg), subcutaneously (5 mg/kg) or orally (5 mg/kg) is efficacious against Gram‐negative bacteria with MIC values of 0.1 μg/ml. For Gram‐positive bacteria with MIC values of 0.5 μg/kg, only SC and PO administration at a dosage of 5 mg/kg showed to be efficacious. MIC‐based PK/PD analysis by Monte Carlo simulation indicates that the proposed dose regimens of LFX, 5 and 7.5 mg/kg/24 hr by SC route and 10 mg/kg/24 hr by oral route, in dogs may be adequate to recommend as an empirical therapy against S. aureus strains with MIC ≤ 0.5 μg/ml and E. coli strains with MIC values ≤0.125 μg/ml.  相似文献   

15.
The aim of this research had been to determine the pharmacokinetics of tigecycline (TIG) in turkey after intravenous (i.v.), intramuscular (i.m.), subcutaneous (s.c.), and oral (p.o.) administration at a dose of 10 mg/kg. TIG concentrations in plasma were determined using high‐performance liquid chromatography with tandem mass spectrometry. Mean concentrations of TIG in turkey plasma in the i.v. group were significantly higher than concentrations of this drug obtained after using the other administration routes. No significant differences were demonstrated in respect to the concentrations achieved after i.m. and s.c. administration. The bioavailability of TIG after i.m., s.c., and p.o. administration was 32.59 ± 5.99%, 34.91 ± 9.62%, and 0.97 ± 0.57%, respectively. Values of half‐life in the elimination phase were 23.49 ± 6.51 hr, 25.42 ± 4.42 hr, and 26.62 ± 5.19 hr in i.v., i.m., and s.c. groups, respectively, values of mean residence time were 7.92 ± 1.41 hr, 19.62 ± 2.82 hr, and 17.55 ± 2.59 hr in i.v., i.m., and s.c. groups, respectively, whereas the volume of distribution was 14.85 ± 5.71 L/kg, 14.68 ± 2.56 L/kg, and 15.37 ± 3.00 L/kg in i.v., i.m., and s.c. groups, respectively. Because TIG is not absorbed from the gastrointestinal tract in turkeys to a clinically significant degree, this drug given p.o. could find application in commercial turkey farms only to treat gastrointestinal tract infections.  相似文献   

16.
The present study aimed to determine the pharmacokinetic profiles of ceftiofur (as measured by ceftiofur and its active metabolites concentrations) in a small-size dog breed, Peekapoo, following a single intravenous or subcutaneous injection of ceftiofur sodium. The study population comprised of five clinically healthy Peekapoo dogs with an average body weight (BW) of 3.4 kg. Each dog received either intravenous or subcutaneous injection, both at 5 mg/kg BW (calculated as pure ceftiofur). Plasma samples were collected at different time points after the administration. Ceftiofur and its active metabolites were extracted from plasma samples, derivatized, and further quantified by high-performance liquid chromatography. The concentrations versus time data were subjected to noncompartmental analysis to obtain the pharmacokinetic parameters. The terminal half-life (t1/2λz) was calculated as 7.40 ± 0.79 and 7.91 ± 1.53 hr following intravenous and subcutaneous injections, respectively. After intravenous treatment, the total body clearance (Cl) and volume of distribution at steady-state (VSS) were determined as 39.91 ± 4.04 ml hr−1 kg−1 and 345.71 ± 28.66 ml/kg, respectively. After subcutaneous injection, the peak concentration (Cmax; 10.50 ± 0.22 μg/ml) was observed at 3.2 ± 1.1 hr, and the absorption half-life (t1/2ka) and absolute bioavailability (F) were calculated as 0.74 ± 0.23 hr and 91.70%±7.34%, respectively. The pharmacokinetic profiles of ceftiofur and its related metabolites demonstrated their quick and excellent absorption after subcutaneous administration, in addition to poor distribution and slow elimination in Peekapoo dogs. Based on the time of concentration above minimum inhibitory concentration (T > MIC) values calculated here, an intravenous or subcutaneous dose at 5 mg/kg of ceftiofur sodium once every 12 hr is predicted to be effective for treating canine bacteria with a MIC value of ≤4.0 μg/ml.  相似文献   

17.
The pharmacokinetics (PK) of cefquinome (CEQ) was studied in crucian carp (Carassius auratus gibelio) after single oral, intramuscular (i.m.), and intraperitoneal (i.p.) administration at a dose of 10 mg/kg body weight and following incubation in a 5 mg/L bath for 5 hr at 25°C. The plasma concentration of CEQ was determined using high‐performance liquid chromatography (HPLC). PK parameters were calculated based on mean CEQ concentration using WinNonlin 6.1 software. The disposition of CEQ following oral, i.m., or i.p. administration was best described by a two‐compartment open model with first‐order absorption. After oral, i.m., and i.p. administration, the maximum plasma concentration (Cmax) values were 1.52, 40.53, and 67.87 μg/ml obtained at 0.25, 0.23, and 0.35 hr, respectively, while the elimination half‐life (T1/2β) values were 4.68, 7.39, and 6.88 hr, respectively; the area under the concentration–time curve (AUC) values were 8.61, 339.11, and 495.06 μg hr/ml, respectively. No CEQ was detected in the plasma after bath incubation. Therapeutic blood concentrations of CEQ can be achieved in the crucian carp following i.m. and i.p. administration at a dosage of 10 mg/kg once every 2 days.  相似文献   

18.
We compared the pharmacokinetics of ivermectin premix and ivermectin microspheres in pigs after single and multiple administration regimes. In the single-dose experiments, 24 piglets were randomly divided into three groups and given ivermectin at 0.3 mg/kg using (a) 1.0% ivermectin administered subcutaneously, (b) 0.25% ivermectin premix orally, and (c) 0.25% ivermectin microspheres orally. In the multiple-dose experiment, 6 pigs in two equal groups received ivermectin premix and microspheres orally at 0.3 mg/kg for 7 consecutive days to monitor the valley plasma levels. The plasma samples were detected by fluorescence high-performance liquid chromatography, and concentration–time data were fitted to a noncompartmental model. After oral administration of ivermectin microspheres at a single dose, the elimination rate constant (Kel), the half-life (t1/2), the peak time (Tmax), the mean residence time (MRT), and the peak concentration (Cmax) were 0.012 ± 0.0031/hr, 59.94 ± 20.18 hr, 9.50 ± 0.93 hr, 55.96 ± 11.40 hr, and 37.75 ± 3.45 ng/ml, respectively. The Cmax of microspheres was not statistically different (p > .05) compared with that of premix groups (39.81 ± 5.83 ng/ml). Moreover, the AUC of the microcapsule groups was increased from 1,129.76 ± 245.62 to 1,607.33 ± 343.35 hr ng/ml compared with the premix groups, and the relative bioavailability increased by an average of 17.53% after oral administration with ivermectin microspheres. Multiple-dose administration also indicated pigs fed with ivermectin microspheres can get a higher minimum steady-state concentration and a longer maintenance time than ivermectin premix.  相似文献   

19.
The aim of the present study was to elucidate the pharmacokinetic profiles of amoxicillin trihydrate (AMX) in Siamese freshwater crocodiles (Crocodylus siamensis). Crocodiles were administered a single intramuscular injection of AMX, at a dose of either 5 or 10 mg/kg body weight (b.w.). Blood samples were collected at preassigned times up to 120 hr. The plasma concentrations of AMX were measured using a validated liquid chromatography tandem-mass spectrometry method. AMX plasma concentrations were quantifiable for up to 72 hr (5 mg/kg b.w.) and 96 hr (10 mg/kg b.w.). The elimination half-life (t1/2λz) of AMX following dosing at 5 mg/kg b.w. (8.72 ± 0.61 hr) was almost identical to that following administration at 10 mg/kg b.w (8.98 ± 1.13 hr). The maximum concentration and area under the curve from zero to the last values of AMX increased in a dose-dependent fashion. The average binding percentage of AMX to plasma protein was 21.24%. Based on the pharmacokinetic data, susceptibility break point, and the surrogate PK-PD index (T > MIC, 0.25 μg/ml), intramuscular administration of AMX at dose of 5 mg/kg b.w. every 4 days might be appropriate for the treatment of susceptible bacterial infections in freshwater crocodiles.  相似文献   

20.
The pharmacokinetics and bioavailability of gentamicin sulphate (5 mg/kg body weight) were studied in 50 female broiler chickens after single intravenous (i.v.), intramuscular (i.m.), subcutaneous (s.c.) and oral administration. Blood samples were collected at time 0 (pretreatment), and at 5, 15 and 30 min and 1, 2, 4, 6, 8, 12, 24 and 48 h after drug administration. Gentamicin concentrations were determined using a microbiological assay and Bacillus subtillis ATCC 6633 as a test organism. The limit of quantification was 0.2 μg/ml. The plasma concentration–time curves were analysed using non-compartmental methods based on statistical moment theory. Following i.v. administration, the elimination half-life (t 1/2β), the mean residence time (MRT), the volume of distribution at steady state (V ss), the volume of distribution (V d,area) and the total body clearance (ClB) were 2.93 ± 0.15 h, 2.08 ± 0.12 h, 0.77 ± 0.05 L/kg, 1.68 ± 0.39 L/kg and 5.06 ± 0.21 ml/min per kg, respectively. After i.m. and s.c. dosing, the mean peak plasma concentrations (C max) were 11.37 ± 0.73 and 16.65 ± 1.36 μg/ml, achieved at a post-injection times (t max) of 0.55 ± 0.05 and 0.75 ± 0.08 h, respectively. The t 1/2β was 2.87 ± 0.44 and 3.48 ± 0.37 h, respectively after i.m. and s.c. administration. The V d,area and ClB were 1.49 ± 0.21 L/kg and 6.18 ± 0.31 ml/min per kg, respectively, after i.m. administration and were 1.43 ± 0.19 L/kg and 4.7 ± 0.33 ml/min per kg, respectively, after s.c. administration. The absolute bioavailability (F) of gentamicin after i.m. administration was lower (79%) than that after s.c. administration (100%). Substantial differences in the resultant kinetics data were obtained between i.m. and s.c. administration. The in vitro protein binding of gentamicin in chicken plasma was 6.46%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号