首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Processes governing the mobilization of Al and Cd in podzols and cambisols of S. Sweden having different tree layer vegetation (Picea abies, Fagus sylvatica, or Betula pendula) were investigated. Speciation of Al and Cd in soil solutions were performed by a column cation exchange procedure (cf. Driscoll, 1984) in combination with thermodynamic calculations. Podzols in spruce and beech stands were characterized by a high release of organic compounds from the O/Ah horizons, resulting in a high organic complexation of Al (c. 93%) in the soil solution from the E horizon (15 cm lysimeters). Organic complexes were mainly adsorbed/precipitated in the upper Bh horizon and the overall transport of Al at 50 cm depth was governed by a pH dependent dissolution of a solid-phase Al pool. In the cambisols, inorganic Al forms were predominant at both 15 and 50 cm depth, and Al solubility was closely related to solution pH. Secondary minerals like synthetic gibbsite, jurbanite, kaolinite or imogolite could generally not explain measured solution Al3+ activities. Results instead indicated that the relatively large organically bound solid-phase Al pools present in both soil types could do so. The column fractionation procedure could be used only qualitatively for Cd, but results strongly indicated that Cd-organo complexes contributed significantly to the overall mobilization of Cd in the podzol E horizons. In all other soil solutions, Cd2+ was the predominant species. Both solid-phase and solution chemistry suggests that ion exchange processes controlled the Cd2+ activities in these solutions. All reactive solidphase Cd was extractable by NH4Cl and Cd2+ activities could in most cases effectively be modeled by the use of ion exchange equations. Solubilized Al3+ efficiently competed for exchange sites and played an important role for the Cd mobilization in these soils.  相似文献   

2.
A plot with a high aluminum (Al) concentration in soil solution was found in Kumagaya, central Japan; the maximum was 4.0 mg L−1 as total dissolved Al (TD-Al) at a depth of 10 cm in August 2000. The soil type was Dystric Andosols with three horizons, A/Bw1/Bw2, which contained a considerable quantity of Al extracted by dithionite-citrate and acid-oxalate extractants. The upper two horizons were acidic with soil pH (H2O) of 4.4 and 4.6. The fundamental cause of the high TD-Al concentration was the low pH with a very low base saturation of less than 2%. The seasonal change in TD-Al concentrations in soil solution at a depth of 10 cm was significantly and positively correlated with the nitrate concentrations but weakly and rather negatively correlated with the sulfate concentrations. Nitrification functioned as the direct acid source to cause the TD-Al concentrations to fluctuate strongly, whereas sulfate adsorption onto the soil at the research plot functioned as a sink of proton.  相似文献   

3.
Soil- and stream water elemental concentrations from a subcatchment in the Lake Gårdsjön area have been used to evaluate the importance of ion exchange processes on the transport of cations to aquatic ecosystems. The importance of cation exchange processes in the upper organic and upper B soil horizons was demonstrated using lysimeter water data from a recharge area and soil water flow simulated with SOIL model during winter rain events with high sea-salt concentration. The importance of the hydrological conditions, such as water flow and water pathway, silicate weathering and the ion exchange of Al with H+ on the streambed materials in controlling cation concentrations in soil and stream waters are also discussed. With the SAFE model, the contribution of cations from ion exchange by depletion of base cations from the exchange matrixes compared to from weathering was also assessed. SAFE calculations indicate that the release rate of base cation by ion exchange to runoff water has decreased since 1945 and is very low, approx. 0.1 keq/ha per year, at present time as a result of soil acidification due to S and N inputs.  相似文献   

4.
This paper presents data on the chemical composition of soil pore fluids that have been obtained by a high-pressure squeezing technique and lysimeter sampling. Cation-exchange capacity has been calculated from cations extracted by a simple percolation method. All pore water concentrations are greatly influenced by the pH in solution. Most pore water concentrations do not simply parallel the corresponding mineralogical and chemical composition of the solids. The depth of the acidification front, as determined by analysis of samples obtained by percolation, is much better reflected in the chemical composition of the squeezed soil pore fluids than in the lysimeter samples. Distinct gradients are seen in Al concentration. In the B-horizons, concentrations of Al are close to the solubility of gibbsite. The pore water concentration profiles of Si and K apparently indicate dissolution of K-silicates, in particular K-feldspar. Contrary to the squeezed pore solutions the sulphate maximum concentration in the soil profile is not recorded by lysimeter samples. Mineral saturation indices show that pore solutions by squeezing are close to the saturation concentrations for K-jarosite and K-alunite. Sulphur-rich phases from the soil are compatible with mixtures of alunite jarosite, zaherite, basaluminite, and hydrobasaluminite. In the upper soil horizons the liquid/solid ratios [calculated as: concentration in solution (µg/ml) * solution fraction in solids (ml/g)/concentration in solids (µg/g)] increase in the order Ph < OC ≈ Zn < Cd and range from 10?6 to 10?3, indicating that Ph is most strongly held and still accumulates in the organic top soil. In the underlying deeper mineral horizons the ratios for Pb, Zn, and Cd decrease by one order of magnitude.  相似文献   

5.
Abstract. The aluminium (Al), iron (Fe) and Dissolved Organic Carbon (DOC) contents of the soil solution were monitored in two upland grassland and afforested podzol soils in Mid-Wales. Al organo-metallic complexes predominated in the O horizon leachates of the grassland soil, whereas inorganic monomeric Al forms dominated in the lower mineral horizons. Dissolved organic matter determines the chemistry, solubility, and transport of Al and Fe in the O horizon, and these are under strong biological control. The distributions of organic-Al, Fe and DOC within the soil profile were consistent with traditional podzolization theory. Observed increases in the molar ratios of Al:DOC in solution in the lower soil horizons may be responsible for the small solubility of Al organo-metallic complexes in those horizons. Afforestation increased the concentrations of organic-Al and Fe in the soil solution as compared with the concentrations observed for the grassland soil. Clearcutting further significantly mobilized Al and Fe from the upper soil horizon, primarily by increasing the DOC concentration in the soil water.  相似文献   

6.
The processes governing the (im)mobilization of Al, Fe and dissolved organic matter (DOM) in podzols are still subject to debate. In this study we investigated the mechanisms of (im)mobilization of Al, Fe and organic matter in the upper and lower B horizons of two podzols from the Netherlands that are in different stages of development. We equilibrated batches of soil material from each horizon with DOM solutions obtained from the Oh horizon of the corresponding soil profiles. We determined the amount of (im)mobilized Al, Fe and DOM after addition of Al and Fe at pH 4.0 and 4.5 and initial dissolved organic carbon (DOC) concentrations of 10 mg C litre?1 or 30 mg C litre?1, respectively. At the combination of pH and DOC concentrations most realistic for the field situation, organic matter was retained in all horizons, the most being retained in the lower B horizon of the well‐developed soil and the least in the upper B horizon of the younger profile. Organic matter solubility seemed to be controlled mainly by precipitation as organo‐metal complexes and/or by adsorption on freshly precipitated solid Al‐ and Fe‐phases. In the lower B horizons, at pH 4.5, solubility of Al and Fe appeared to be controlled mainly by the equilibrium with secondary solid Al‐ and Fe‐phases. In the upper B horizons, the solubility of Al was controlled by adsorption processes, while Fe still precipitated as inorganic complexes as well as organic complexes in spite of the prevailing more acidic pH. Combined with a previous study of eluvial horizons from the same profiles, the results confirm the important role of organic matter in the transport of Al and Fe to create illuvial B horizons initially and subsequently deepening and differentiating them into Bh and Bs horizons.  相似文献   

7.
The fractional composition of aluminum compounds was studied in soil solutions obtained using vacuum lysimeters from loamy podzolic soils on two-layered deposits. The concentration of aluminum was estimated in brooks and a river draining the area with a predominance of these soils. In soil solutions, the concentration of aluminum was experimentally determined in the following compounds: (1) organic and inorganic monomers, (2) stable complexes with HAs and FAs together with polymers, and (3) the most stable complexes with HAs and FAs together with fine-crystalline and colloidal compounds. The total Al concentration in soil solutions from forest litter was 0.111–0.175 mmol/l and decreased with depth to 0.05 mmol/l and lower in solutions from the IIBD horizons. More than 90% of the Al in the solutions was bound into complexes with organic ligands. Some amount of Al in solution could occur in aluminosilicate sols. The translocation of Al complexes from the litter through the AE horizon to the podzolic horizon was accompanied by an increase in the ratio between the Al concentration in fraction 2 and the C concentration in the solution. The concentrations of Altot in the surface waters varied in the range from 0.015 to 0.030 mmol/l. Most of the Al came to the surface waters from the litter and AE horizons and partially from the podzolic horizon due to the lateral runoff along the waterproof IIBD horizon. Approximate calculations showed that the recent annual removal of Al from the AE and E horizons with the lateral runoff was 7 to 560 mg (3–21 mmol) from 1 m2.  相似文献   

8.
Abstract

Acid soil limitations to plant growth were assessed In 55 horizons of 14 major Appalachian hill land soils. Aluminum sensitive “Romano” and Al‐tolerant “Dade” snapbeans (Phaseolus vulgaris L.) were grown for 5 weeks in limed and unlimed treatments of the 55 horizons. Shoot and root growth was depressed >20% in unlimed relative to limed treatments in approximately 2/3 of the horizons. Dade snapbeans were generally more tolerant of the acid soil conditions and had higher Ca concentrations in the shoots than Romano snapbeans. However, the sensitive‐tolerant snapbean pair could not consistently be used to identify horizons with soil Al problems. Growth of both snapbeans was generally best in A horizons and worst in E horizons. The E horizons in this study were characterized by low Ca saturation (exchangeable Ca x 100/cation exchange capacity) and high Al saturation (exchangeable Al x 100/cation exchange capacity). Exchangeable Ca, soil Ca saturation and total soil solution Ca were positively correlated (p<0.01) with snapbean root and shoot growth. Soil Al saturation, total soil solution Al and soil solution Al reacting in 15 seconds with 8‐hydroxyquinoline were negatively correlated (p<0.01) with growth. The ratio of Ca/Al in soil solution was more closely related to snapbean growth than the soil solution concentration of any individual element. Soil and soil solution Mn were, in general, not significantly correlated with snapbean growth. Many of the horizons in this study had both Al toxicity and Ca deficiency problems and interaction between Ca and Al affected both snapbean growth and Ca uptake. These findings confirm the importance of considering Ca as well as Al when investigating Al phytotoxicity.  相似文献   

9.
The denitrification potential of the soil horizons between 0- and 90-cm depth of 20 agricultural fields, representative of the most frequent combinations of agricultural crops and soil textures in Flanders (Belgium), and the factors affecting the denitrification potential were studied in the laboratory under controlled conditions. The denitrification potential in the presence of an added soluble C and N source was measured at 15°C after saturation of air-dried soil samples with water. The denitrification potential of the lower horizons was generally negligible compared to the upper horizons. The lower denitrification potential of the deeper horizons could partially be explained by their limited C availability. The denitrification potential of the upper horizons strongly depended on texture. Based on this parameter the soils could be divided into three groups: soils with a high clay content (>30% clay) were characterised by a high denitrification potential (>8.33 µg N g-1 dry soil day-1); soils with medium texture had a medium denitrification potential, between 0.41 and 7.25 µg N g-1 dry soil day-1; and soils with a high sand content (>80% sand) had a low denitrification potential (<2.58 µg N g-1 dry soil day-1). In most cases, extending the saturation period during pre-incubation increased the denitrification potential. Comparison of the denitrification potential of the upper horizons with and without addition of a soluble C source showed that the denitrification potential of the upper horizons of these soils was limited by their percentage of endogenous C. The measured denitrification potentials indicate that denitrification losses in soils high in clay content can be important when NO3 - concentrations are high.  相似文献   

10.
Between 1985 and 1990, bulk precipitation and soil solution from the organic (Oh) and mineral (Bs) horizons of a well developed podzol were regularly sampled at a moorland catchment in Mid-Wales. Samples were analysed for pH, major cations, major anions, and dissolved organic carbon (DOC). Acid neutralizing capacity (ANC) was estimated by the charge balance method. Average monthly ANC of soil solutions from the Oh horizon varied seasonally, with a maximum in July and a minimum in February. In contrast, H+ concentrations varied little. Solute deposition, dominated by sodium and chloride, also varied seasonally with a winter maximum, which is reflected in the soil solution chemical composition. In the Oh horizon during winter, the increase in base cation (Na) concentrations led to release of H+ through ion exchange. ANC declined in the absence of any buffering mechanism. In summer, the depletion of exchangeable acidity that occurred in winter, was replenished by H+ produced by the dissociation of organic acids. During this period, organic anions contribute to an increase in ANC, while H+ concentrations remained similar to those in winter. These processes probably influenced the acidity and ANC of Bs horizon soil solutions but to a lesser extent than in the Oh horizon. Other mechanisms such as weathering and ion exchange involving H+ and Al may buffer solution acidity in the mineral soil.  相似文献   

11.
In order to evaluate micro-scale heterogeneities 55 micro suction cups were placed in an array at 15 mm intervals in a profile face of a cambic podzol. The chemistry of soil solution (mineral anions, pH, UV absorption as a measure for DOC) was compared with solid-phase properties from soil samples (2 cm3 volume), which had surrounded the suction cups. Sequential extraction techniques (water, NF4Cl, hydroxylamin-hydrochloride, citrate-bicarbonate, oxalate, dithionite-citrate-bicarbonate) and base titrations were applied to characterize the solid phase. Although the average soil solution concentrations between horizons often differed significantly, the spatial distributions of pH and SO42? did not correlate with soil horizon borders. Even if concentration isolines and soil horizon borders were parallel, marked concentration gradients could be observed within individual soil horizons. The less intense the interaction between solute ion and soil matrix, the greater was the variation in solution concentration within a soil horizon. For the soil solid phase only a weak correlation of slow buffer reactions to soil horizons was found. The distribution of extractable Fe and Al was typical for a podzol profile, however, with very steep gradients within single soil horizons. Except for pH, which was related mainly to citrate-bicarbonate extractable aluminium, no solid-phase characteristic showed a clear correlation with soil solution chemistry.  相似文献   

12.
C.W. Childs  R.L. Parfitt  R. Lee 《Geoderma》1983,29(2):139-155
Chemical and mineralogical data are presented for three Spodosols (podzols) and a related Inceptisol (yellow-brown loam). Allophane with an Al/Si atomic ratio close to two is identified in the B horizons of all four soils, and minor amounts of imogolite are present in association with allophane in all but one soil where small-particle gibbsite occurs. Parent materials for these soils are essentially non-vitric. Allophane (Al/Si = 2) has been estimated quantitatively in all soils using oxalate-extractable Si (Si0) and is selected clay fractions using both Si0 and infrared spectroscopy. Maximum concentrations of allophane (Al/Si = 2) range from 5% to 18% of fine earth (< 2 mm) fractions and all occur in B horizons. Fe0 values are low relative to Al0 values except for the upper horizons of the Inceptisol. Al0 values peak in B horizons and the ratio pyrophosphate-extractable Al to Al0 decreases from about 1 in A and upper B horizons to 0.1–0.4 in lower B horizons.An interpretation of the data is consistent with recent proposals that the movement of Al in podzolisation is due primarily to the formation of inorganic complexes with Si. Chemical criteria for spodic horizons should be consistent with the total illuviation of Al and Fe (and perhaps Si), rather than just the organic-bound fraction of Al and Fe in these horizons as indicated by amounts in extractants such as pyrophosphate.  相似文献   

13.
Soil chemistry models often use gibbsite solubility and similar equilibrium models to predict Al concentrations in soil solution. A kinetic alternative was developed with the goal of finding universal rate constants instead of the site- and depth-specific solubility constants usually associated with the equilibrium approach. The behavior of the two approaches was studied within the framework of the steady-state soil chemistry model PROFILE using data from Solling, Germany and Gårdsjön, Sweden, two sites with different mineralogy and land use history. The kinetic alternative uses a mass balance to predict Al concentrations. The sources of Al in soil water are deposition, weathering and mineralization. The sinks are leaching and the formation of an aluminosilicate precursor. The precursor slowly transforms into an ordinary clay mineral. Both formation and transformation of the precursor are treated as irreversible processes. The kinetic model introduces a new relationship between pH and Al and produces a systematic pattern of different apparent gibbsite equilibrium constants at different depths. Results show that the kinetic model systematically underestimates Al concentration in the upper horizons, which indicates that there may be additional sources of Al in the upper horizons not accounted for in the model. Predicted values of pH and Al concentrations are comparable with field observations.  相似文献   

14.
To assess the potential effects of Al toxicity on the roots of young European beech (Fagus sylvatica L.), seeds were sown in soil monoliths taken from the Ah and B horizons of forest soils with very low base saturation (BS) and placed in the greenhouse. The Ah horizons offered a larger supply of exchangeable cation nutrients than the B horizons. After 8 weeks of growth under optimal moisture conditions, the seedlings were further grown for 14 d under drought conditions. Root‐growth dynamics were observed in rhizoboxes containing soils from the Ah and B horizons. The concentrations of Al3+, base cations, and nitrate in the soil solution and element concentrations in the root tissue were compared with above‐ and belowground growth parameters and root physiological parameters. There was no strong evidence that seedling roots suffered from high soil‐solution Al3+ concentrations. Within the tested range of BS (1.2%–6.5%) our results indicated that root physiological parameters such as O2 consumption decreased and callose concentration increased in soils with a BS < 3%. In contrast to the B horizons, seedlings in the Ah horizons had higher relative shoot‐growth rates, specific root lengths, and lengths and branching increments, but a lower root‐to‐shoot ratio and root‐branching frequency. In conclusion, these differences in growth patterns were most likely due to differences in nutrient availability and to the drought application and not attributable to differences in Al3+ concentrations in the soil solution.  相似文献   

15.
Colorimetric and ion exchange methods are commonly used to distinguish and measure Al species in natural waters. Unfortunately they also include weakly complexed Al species in their ‘reactive' or ‘labile' Al fractions and thus are of limited value for the estimation of free Al3+. Capillary electrophoresis (CE) has the potential for direct measurement of Al3+, and its performance has been verified experimentally. The method also detected the stable and positively charged AlOx+ complex formed with oxalic acid. It was compared with a colorimetric and an ion exchange method by analysing artificial solutions containing low molecular weight organic acids as well as soil extracts and seepage waters and was found to be the only method closely matching the theoretically calculated values of free Al3+. In samples from the upper soil horizons of an acid forest soil less than 14% of total Al was present as free Al3+, whereas the colorimetric method found more than 65%, and the ion exchange method more than 80% of total Al in a ‘reactive' or ‘labile' form. The latter methods thus would seriously overestimate Al toxicity, whereas using CE Al toxicity is likely to be only slightly underestimated.  相似文献   

16.
Tissue concentrations of Al in red and Norway spruce trees were compared across 5 sites in North America and Europe as part of an investigation of Al biogeochemistry in forested ecosystems (ALBIOS). Fine roots and foliage were sampled and analyzed for Al, Ca, Mg, and P, and the chemistry of soil and soil solutions was characterized at each plot by horizon. Sites exhibited a wide range in soil Al saturation and in concentrations of Al and sulfate in lysimeter solutions. Aluminium concentrations in roots were two orders of magnitude higher than those in foliage. Fine roots (<1.0 mm) from B horizons had the highest Al concentrations and appeared to be the best phytoindicators of plant-available Al. Aluminium concentrations in fine roots from B horizons were highly correlated with soil solution monomeric Al, and with Al in 0.01 M SrC2. soil extracts. Stronger soil Al extractants were generally poor predictors of concentrations of Al in plant tissue. Sites with higher levels of plant-available Al supported spruce trees with correspondingly lower foliar levels of Ca and Mg. As such, these field sites provided circumstantial evidence that Al may be interfering with Ca and Mg uptake and transport. No evidence was found of Al interference with P uptake or transport at these sites.  相似文献   

17.
To simulate a future ion input reduction scenario in forests, a large scale field experiment was set up in a (1999) 66‒year‒old Norway spruce plantation at Solling, central Germany. Throughfall input of H+, SO42—, and N‒compounds is artificially reduced by means of a permanent roof construction below the canopy and a de‒ionizing equipment since 1991. Here we present long term soil solution records for SO42—, NO3, Al3+ and the pH of the 10 cm mineral soil sampling depth. A significant decrease in ion concentrations since the start of the treatment is observed, but no change of the soil solution pH. Even in the fourth year pH values remained well within the aluminium buffer range (pH < 4.2). Three years after the start of the experiment (July 1994) it was examined whether microbial biomass (Cmic), specific activity (heat production per unit biomass), and the percentage of Cmic in organic C material indicated any changes. Furthermore chemical standard parameters (CEC, base saturation, pH) were analyzed for all soil samples. Results indicate that despite of drastic decreases of soil solution ion concentrations in the upper soil horizons microbial parameters were not affected and that the soil solid phase is not deacidified by the treatment until now.  相似文献   

18.
Depth distributions of metals in soil profiles are indicative of weathering and soil genesis and anthropogenic pollution. We studied the depth distribution of total Al, Cd, Cu, Fe, Mn, Pb, and Zn concentrations in 8 Oxisols, 5 Andisols, 2 Mollisols, and 2 Alfisols of coffee plantation areas in Costa Rica. The concentrations of the mainly geo‐/pedogenic Al (means of 76 g kg—1 in the A horizons and of 106 g kg—1 in the lowermost sampled B horizons) and Fe (A: 56 g kg—1, B: 66 g kg—1) generally increased with profile depth. In spite of the regular application of Cu‐containing fungicides, Cu (A: 135 mg kg—1, B: 158 mg kg—1) showed accumulations in the A horizons of only three profiles. Higher Cd (A: 0.14 mg kg—1, B: 0.09 mg kg—1) and Pb concentrations (A: 7.3 mg kg—1, B: 5.5 mg kg—1) in most topsoils compared to the subsoils indicated anthropogenic inputs. The mean Mn (A: 1190 mg kg—1, B: 1150 mg kg—1) and Zn (A: 59 mg kg—1, B: 66 mg kg—1) concentrations varied little with depth. In general, the metal depth distribution in the studied tropical soils was similar to that of temperate soils although the weathering regime is quite different.  相似文献   

19.
Manganese (Mn) contamination of drinking water may cause aesthetic and human health problems when concentrations exceed 50 and 500 μg l?1, respectively. In the UK, the majority of Mn-related drinking water supply failures originate from unpolluted upland catchments. The source of Mn is therefore soil, but the exact mechanisms by which it is mobilised into surface waters remain unknown. Elevated Mn concentrations in surface waters have been associated with the rewetting of dried upland soils and with conifer afforestation. We investigated these hypotheses in a laboratory experiment involving the drying and rewetting of intact soil cores (1,900 cm3 volume) of horizons of four representative soil type-land use combinations from an upland water supply catchment in southwest Scotland. Although no statistically significant effect of land use or soil type was detected on Mn concentrations in soil water, Mn release occurred from three soil horizons upon rewetting. Soil water Mn concentrations in the moorland histosol H2 (10–30 cm), the histic podzol H and Eh horizons increased from means of 5.8, 6.2 and 0.6 μg l?1 prior to rewetting to maxima of 90, 76 and 174 μg l?1 after rewetting, respectively. The properties of these three horizons indicate that Mn release is favoured from soil horizons containing a mixture of organic and mineral material. Mineral material provides a source of Mn, but relatively high soil organic matter content is required to facilitate mobilisation. The results can be used alongside soil information to identify catchments at risk of elevated Mn concentrations in water supplies.  相似文献   

20.
Chemistry of aqueous Al in a podzol on a Norway spruce (Picea abies [L.] Karst.) site in the Black Forest (SW Germany) and changes induced by experimental applications of MgSO4 were studied. Soil solution taken from the O, E and BC horizons were analyzed for the fractions ‘labile monomeric Al’, ‘non-labile monomeric Al’, and ‘acid-reactive Al’. The activities of ‘inorganic monomeric Al’ species and the saturation indices (SI) of the soil solution with respect to Al-bearing minerals were calculated using the equilibrium speciation model WATEQF. On the untreated plot, soil leachates are characterized by Altot concentrations of 0.1 mg L?1 (mineral soil). In the O horizon, the fractions ‘acidsoluble Al’ and ‘non-labile monomeric Al’ (mainly organically complexed Al) together comprise 80% of Altot. In the leachates from the mineral soil Al3+ prevails, being 50% of Altot. Al-F-complexes make up 5 to 10% in all horizons. MgSO4 and (NH4)2SO4 treatments resulted in an intense Al mobilization up to 50 mg L?1. In this situation, 60% of Altot is covered by Al3+ and 40% by non-phytotoxic Al-SO4-complexes. After rainfall events, mobilized Al is quickly translocated into the subsoil, with water flow through macropores then appearing to be an important mechanism. In both treatments, soil solution chemistry was favorable for the precipitation of the Al(OH)SO4-type minerals alunite and jurbanite. However, a control of Al solubility by this process is not likely due to kinetic restraints. Application of MgSO4 was followed by an increase of the Mg/Al molar ratio in the soil solution, whereas the Ca/Al ratio decreased. After treatment with (NH4)2SO4 both the Ca/Al and the Mg/Al ratios deteriorated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号